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1These slides adapt some content from similar slides by Aaron Cote.
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Mathematical Proofs
In the previous two lectures, we looked at formal proofs in
propositional logic

Very detailed and easy to verify (whether by human or computer)
Tedious to write, read, and understand

This is not how working mathematicians or computer scientists
write proofs

A common mathematical proof is written in a form of natural
language that is more brief, pleasant to read, and easier to
understand, but ridden of imprecision and ambiguity by the use of
some mathematical terminology and notation
These proofs take larger steps than a formal proof in logic, but are
still rigorous (precise, detailed)

The level of detail depends on mathematical maturity and
technical/domain background of your intended audience

Intended reader should be able to:
Convince themselves of any step after momentary reflection
Be able to turn your proof into a formal one given ample time,
paper, energy, and patience

Your intended audience in this class: Fellow 170 students!
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Logical Foundations of Proofs

You can think of a common mathematical proof as a
human-friendly abbreviation of a formal logical proof
In other words, it should in principle be able to converted to logic,
but which logic?

The statements and proofs we write will involve variables and
quantification (for all, there exists)

e.g. Show that for all integers n, if n is odd then n2 is odd
Propositional logic cannot capture these, so we need something
more general

First Order Logic
Propositional logic with variables and quantifiers

Logical Foundation of Modern Mathematics
First order logic, plus some axioms about how sets behave. This is
often called set theory or ZFC.

Don’t worry about these for now, will come back to them later.
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Some Useful Logical Terminology and Notation

A predicate is a template for propositions involving variables
It doesn’t have a truth value until the variables are specified or
quantified (see below)
E.g. “n is odd” is a predicate. “7 is odd” is a proposition. “There
exists n such that n is odd” is a proposition.

Quantifiers “for all” (denoted ∀) and “there exists” (denote ∃) turn
predicates into propositions. For example:

∀ integers n, if n is odd then n2 is odd.
∃ irrational numbers x, y such that xy is rational.
∀n ∃p p > n and p is prime. (nesting, omission of types)

Moving a negation inside a quantifier flips the quantifier. E.g. the
following are equivalent:

¬∀n ∃p p > n and p is prime.
∃n¬∃p p > n and p is prime.
∃n∀p ¬ (p > n and p is prime).
∃n∀p p ≤ n or p is not prime.
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Some Useful Logical Terminology and Notation

Given an implication statement p ⇒ q, we define its
Converse: q ⇒ p
Inverse: ¬p ⇒ ¬q
Contrapositive: ¬q ⇒ ¬p.

Notice that an implication is equivalent to its contrapositive, and
the converse is equivalent to the inverse.
An equivalence p ⇐⇒ q is the conjunction of p ⇒ q and its
converse q ⇒ p.

Often phrased as: p if and only if q.
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Forms of Proofs, at a High Level

There is almost limitless creativity in how you construct proofs
However, there are some forms that are quite common, and it is
instructive to learn and practice them
These forms are not mutually exclusive: often they are combined,
or multiple different ones can work
The list I give you is not exhaustive, and researchers often
discover new and creative ways of structuring proofs

Common Forms/Styles of Proof 6/19



Direct Proof

This is the most basic and common kind of proof
Start with assumptions, and then derive statements one by one
until you arrive at your desired conclusion.

Prove: If an integer n is odd, then n2 is odd.
n is odd
n = 2k + 1 for some integer k
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

Let m = 2k2 + 2k.
m is an integer, and n2 = 2m+ 1

Therefore, n2 is odd.
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Proof by Contraposition

To prove p implies q, sometimes it is easier to prove the contrapositive:
¬q implies ¬p

Recall: they are equivalent

Theorem
If n2 is odd, then n is odd

Common Forms/Styles of Proof 8/19
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Proof by Contraposition

To prove p implies q, sometimes it is easier to prove the contrapositive:
¬q implies ¬p

Recall: they are equivalent

Theorem
If n2 is odd, then n is odd

Let’s try a direct proof
Suppose n2 is odd
n2 = 2k + 1 for some integer k
n =

√
n2 =

√
2k + 1

???
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Proof by Contraposition

To prove p implies q, sometimes it is easier to prove the contrapositive:
¬q implies ¬p

Recall: they are equivalent

Theorem
If n2 is odd, then n is odd

Proof by Contraposition
Suppose n is even
n = 2k for some integer k
n2 = 4k2 = 2(2k2).
2k2 is an integer, therefore n2 is even.
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Equivalence

If your claim is an equivalence (if and only if), then commonly you have
to prove both directions

Prove: An integer n is odd if and only if n2 is odd
Forwards direction: if n is odd then n2 is odd

See two slides ago
Backwards direction: If n2 is odd then n is odd

See last slide
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Proof by Contradiction

This is a generalization of proof by contraposition
Can be used to prove statements that aren’t an if-then.
At a high level: To prove p, assume ¬p and derive a contradiction

I.e., conclude that q and ¬q, for some statement q

Since what you concluded can’t be true, your starting assumption
¬p must have been false. I.e., p must be true.

Common Forms/Styles of Proof 10/19



Proof by Contradiction

Theorem
There are arbitrarily large primes.

Assume for a contradiction that there is a biggest prime p

p! is divisible by all primes less than or equal to p

p! + 1 is not divisible by any prime less than or equal to p
(remainder is 1)
By fundamental theorem of arithmetic, p! + 1 has a prime
factorization
Each prime in that factorization must be > p.
There if a prime > p, contradiction.
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Proof by Contradiction

Claim
√
2 is irrational.

Suppose for a contradiction that
√
2 is rational.

There are a, b with a
b =

√
2.

Take such a and b with no common divisors (i.e. cancel out the
common prime divisors).
a2 = 2b2.
a2 is even, therefore a is even (recall slide 8) and can be written as
a = 2k for an integer k.
b2 = a2

2 = 4k2

2 = 2k2

b2 is even, therefore b is even (recall slide 8)
Both a and b are even, but we chose a and b with no common
divisors, a contradiction!
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Case Analysis

Sometimes, you need to break up your proof into cases, and prove
your conclusion in each case. The cases should cover all possibilities.

Proposition
In a group of 6 people, there must be 3 who all know each other or
there must be 3 who don’t know each other.

Proof
Let a be one of the people, chosen arbitrarily
There are 3 people that a knows, or 3 people that a does not know.
Case 1: There are three people that a knows

If those people all don’t know each other, then we are done
Otherwise, at least two of them b and c know each other, so a, b, c
all know each other and we are done.

Case 2: There are three people that a does not know
If those people all know each other, then we are done
Otherwise, at least two of them b and c don’t know each other, so
a, b, c all don’t know each other, and we are done.Common Forms/Styles of Proof 13/19



Existence Proofs

Often, you want to prove that some mathematical object, satisfying
some desired properties, exists.

Prove: There exists an odd number that is a perfect square
9 is odd since 9 = 2 ∗ 4 + 1, and it is a perfect square since 9 = 32.

This proof is constructive, since our proof explicitly provides the object
(or, more generally, describes an algorithm for constructing it). Often,
such proofs require no or minimal justification that your object has the
desired property.

Prove: There exists irrational x, y such that xy is rational
We proved this in Lecture 1 . . .

That proof was nonconstructive, since it did not provide x and y
explicitly.
Our proof of the Pigeonhole principle in Lecture 1 was also
nonconstructive.
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Visual Proofs

You are allowed to use visual aids in your proof
E.g. recall our visually-aided proof on the board that in any group of
6 people, there must be at least 3 that know each other or don’t
know each other.

When you do this, you must ensure that your figures do not make
spurious assumptions

For example, if you want to prove a fact about general triangles, you
shouldn’t draw an isosceles triangle and use that property implicitly

In other words, your proof has to still be general, and not tied to
the particulars of the figure you choose to draw.
Usually a good idea to accompany the visual aid with a natural
language proof to avoid loss of generality.

Some Tricks and Shortcuts 15/19



Without Loss of Generality

Often in your proofs, you have a mathematical object (or set of
mathematical objects) that can be easily converted to having a
certain useful property
Example: In our proof that

√
2 is irrational, we were able to enforce

that a and b have no common divisors by dividing those out.
In those cases, we can write “we assume without loss of
generality that . . . ”
In the above example, we say “We assume without loss of
generality that a and b have no common divisors”.

Some Tricks and Shortcuts 16/19



Symmetry

Often in your proofs, there are two cases that are essentially
identical by some sort of symmetry
Example: In our proof that a group of 6 people must have 3 that
know each other or don’t know each other, the two cases are
identical by interchanging the roles of knowing each other (which
we drew as a blue edge on the board) and not knowing each other
(which we drew as a red edge).
In those situations, it is a kindness to your reader to point out this
symmetry, and omit part of your proof.
In our example, you can say “The argument for case 2 is
symmetrical by interchanging the role of knowing and not knowing
(or interchanging blue and red)”, and omit the proof of Case 2.

Some Tricks and Shortcuts 17/19
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Mathematical Statements

There are many labels that mathematicians use for statements

Theorem: A mathematical statement which has been proven, is
interesting in its own right, and is thought of as important, useful,
difficult, or deeply insightful. This is the highest stature an
established mathematical fact can have.

Other proven mathematical statements go by different names
Lemma: A mathematical statement that is primarily useful as a tool
for proving other statements (mainly theorems).
Corollary: A mathematical statement that is a relatively simple
consequence of a more general or deeper Theorem.
Proposition, Claim, Fact: These are statements that stand alone,
but are thought of as too “easy” to qualify as theorems. Sometimes
they are too easy to warrant a written proof, and are left as an
exercise for the reader.

Conjecture: A mathematical statement which has not been
proven, but is believed to be true (by the person asserting the
conjecture, or a broader subset of the research community).
Often, these are also believed to be important, or a barrier to
further progress in a field. Posing a conjecture is an invitation for
others to help you prove it.

Misc Mathematical Lingo and Notation 18/19
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QED

It is customary to end a mathematical proof with one of the
following:

The abbreviation Q.E.D.: This stands for “quod erat
demonstrandum”, which is Latin for “which was to be
demonstrated”.
The Q.E.D. symbol: A square, which can be solid ■ or hollow

Symbolizes the end of a proof, indicating that the argument is
complete.
In typeset modern mathematics, the symbol is most common.

Misc Mathematical Lingo and Notation 19/19
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