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What is Logic?

The language of mathematics!
Symbols and rules for manipulating them
Allows us to reason clearly:

Make precise statements
Derive new facts from old

There are many sorts of logic, some more complicated and
expressive than others
Today: Propositional Logic (logic without quantification)
Later in the class: First-order Logic (logic with quantification)
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Proposition
A declarative statement of fact which is unambiguously either true or
false.

Which of the following are propositions?
2000 was a leap year
2001 was a leap year
16 is a prime number
384921379417237 is a prime number
Do your homework
Colorless green ideas speak furiously
This statement is false
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Propositional Variables and Formulas
We use variable symbols like p, q, r to refer to propositions

We call these propositional variables or atomic propositions.
We can combine simple propositions to form more propositions
using logical operators like ¬ (“not” a.k.a. “negation”), ∧ (“and”
a.k.a. “conjunction”), ∨ (“or” a.k.a. “disjunction”)

We call these propositional formulas or compound propositions
We refer to compound formulas using letters like α, β, . . .
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a.k.a. “conjunction”), ∨ (“or” a.k.a. “disjunction”)

We call these propositional formulas or compound propositions
We refer to compound formulas using letters like α, β, . . .

Example
p = “there is life on earth”
q = “there is life on mars”
r = “there is life outside the solar system”
¬p = “there is no life on Earth”
p ∨ q = “there is life on Earth or on Mars (or both)”
p ∧ q = “there is life on Earth and on Mars”
(p ∧ q) ∨ ¬r = “Either there is life on both Earth and Mars, or there
is no life outside the solar system (or both). ”
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Propositional Variables and Formulas
We use variable symbols like p, q, r to refer to propositions

We call these propositional variables or atomic propositions.
We can combine simple propositions to form more propositions
using logical operators like ¬ (“not” a.k.a. “negation”), ∧ (“and”
a.k.a. “conjunction”), ∨ (“or” a.k.a. “disjunction”)

We call these propositional formulas or compound propositions
We refer to compound formulas using letters like α, β, . . .

Note
We also allow the boolean constants T and F in formulas

Convenient for proofs
Not strictly necessary in a formula, since they can be simplified
away
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Truth Values and Truth Tables

Each propositional variable can take value T (“True”) or F (“False”)
In digital logic, we sometimes use 1 for T and 0 for F

A propositional formula’s truth value can be evaluated from the
truth values of its atomic propositions
This can be expressed as a truth table

A description of a boolean function which maps truth values of the
variables to the truth value of the formula

Let’s write the truth tables of the formulas from the last slide
How many possible truth tables are there for n variables?
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More Operators

¬,∧,∨ are often thought of as the “basic” operators
They are really all you need to express any truth table

However, some other operators are also common and useful
p⊕ q (“Exclusive or”): Either p or q, but not both.
p ⇒ q (“implies”): If p then q.
p ⇐⇒ q (“equivalence”): p if and only if q
. . .

Let’s draw the truth tables defining these operators

Propositions 6/23



More on the Implies Operator

The implies operator is a very common and useful one
It’s worth reflecting on semantics of p ⇒ q:

p ⇒ q can be written as ¬p ∨ q
It’s only false when p is true but q is false
True whenever p is false, regardless of what q is
A false assumption implies anything!

p ⇒ q is often read in variety of ways:
p implies q
If p then q
p only if q
q if p
q follows from p
q is necessary for p
p is sufficient for q
q unless ¬p
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Example

You cannot ride the roller coaster if you are under 4 feet tall, unless
you are older than 16 years.

r = You can ride the roller coaster‘
u= You are under 4 feet tall
o = You are older than 16

¬o ⇒ (u ⇒ ¬r)
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Propositional Formulas and Digital Logic

A hardware circuit simply evaluates a propositional formula!!
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Properties of Individual Propositions

A (compound) proposition α is said to be
satisfiable if there is a way to set its variables so it evaluates to
true

At least one row of its truth table ends with a T
unsatisfiable if it is not satisfiable.

All rows of its truth table ends with an F
e.g. p ∧ ¬p, (¬(p ⇒ q)) ∧ ¬p

a tautology if for any setting of its variables it evaluates to true
All rows of truth table end with a T
e.g. p ∨ ¬p, (p ⇒ q) ∨ p

α is a tautology if and only if ¬α is unsatisfiable
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Equivalence between Propositions

Two propositions α and β are equivalent if they have the same
truth value for every setting of the variables.

i.e., they have the same truth table

We write α ≡ β to say that α and β are equivalent.
E.g. p ⇒ q ≡ ¬p ∨ q

E.g. ¬(p ∨ q) ≡ ¬p ∧ ¬q.

Saying α ≡ β is the same as saying that α ⇐⇒ β is a tautology

Note
≡ and ⇐⇒ are closely related, but are not the same! ⇐⇒ is part of
the language of propositions, but ≡ is a claim about propositions! In
other words, α ⇐⇒ β is a formula that may be true or false depending
on how you set its variables, while ≡ is a meta-statement asserting
that two formulas have the same truth tables.
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Consistency

A set of propositions is consistent if there is a way to set the variables
so that all the propositions evaluate to true

Same as saying that their conjunction is satisfiable

Are the following consistent?
There is life on Earth or on Mars
If there is life on Earth, then there is life on Mars
There is no life on Mars
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Implication

Propositions α1, . . . , αk imply or entail proposition β if for every setting
of the variables for which α1, . . . , αk evaluate to T, β evaluates to T as
well.

We also say β follows from α1, . . . , αk.
We call α1, . . . , αk the premises, and β the conclusion
We write α1, . . . , αk ⊢ β

E.g. p ⇒ q, p ∨ q ⊢ q

Note
The word “implies” is overloaded. One use of the word is for the logical
operator ⇒, and another is for ⊢. The former constructs a proposition
that can be true or false, whereas the latter is a claim in a
meta-language about one set of propositions entailing another.

Talking about Propositions 13/23



Implication

Propositions α1, . . . , αk imply or entail proposition β if for every setting
of the variables for which α1, . . . , αk evaluate to T, β evaluates to T as
well.

We also say β follows from α1, . . . , αk.
We call α1, . . . , αk the premises, and β the conclusion
We write α1, . . . , αk ⊢ β

E.g. p ⇒ q, p ∨ q ⊢ q

Note
The word “implies” is overloaded. One use of the word is for the logical
operator ⇒, and another is for ⊢. The former constructs a proposition
that can be true or false, whereas the latter is a claim in a
meta-language about one set of propositions entailing another.

Talking about Propositions 13/23



Outline

1 Propositions

2 Talking about Propositions

3 Arguments and Proofs



Arguments

An argument is a sequence of statements starting with premises
(a.k.a. assumptions or axioms) and ending with a conclusion.
When the argument is in in propositional logic, each statement is
a propositional formula
An argument is valid if each statement after the premises is
logically implied by statements preceding it (in the sense of ⊢)

Note
If the premises are inconsistent (i.e, inherently contradictory) then the
argument is automatically valid! Once you prove F, you can prove
anything! (Garbage in, garbage out)
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Example: Valid Argument
Premise: All men are mortal
Premise: Socrates is a man
Conclusion: Socrates is mortal

Example: Invalid Argument
Premise: If there is life on Earth then there is life on Mars
Premise: Either there is life on Mars or there is life on Europa
Premise: There is no life on Earth
There is no life on Mars
Conclusion: There is life on Europa
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Proofs

A Proof is a valid argument where each statement after the premises
“self-evidently” follows from the statements preceding it.

For a formal proof, a self-evident step is one that uses one of the
rules of inference of the logical system
For a “proof”, as the term is usually used, a self-evident step is
one that your audience thinks is “obvious” or “easy”.
In a proof, your audience should have little trouble turning it into a
formal proof with ample time and paper
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Rules of Inference

A rule of inference draws a logically valid conclusion from existing
knowledge
The rule is usually obvious or easy to check using a truth table
Can be applied mechanically, by pattern matching

Example: Hypothetical Syllogism

p ⇒ q

q ⇒ r

∴ p ⇒ r

Note: You apply this when p,q, r are formulas as well!
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Rules of 
Inference

Rule Meaning

Modus Ponens p, p ⇒ q, then q

Modus Tollens p ⇒ q, ¬q, then ¬p

Hypothetical Syllogism p ⇒ q, q ⇒ r, then p ⇒ r

Disjunctive Syllogism p ∨ q, ¬p, then q

Addition p, then p ∨ q

Simplification p ∧ q, then p

Conjunction p, q, then p ∧ q

Resolution p ∨ q, ¬p ∨ r, then q ∨ r



Rules of 
Inference
(Equivalence)

Name Meaning Twin

Tautology p ∨ ¬p ≡ T

Contradiction p ∧ ¬p ≡ F

Double Negation ¬(¬p) ≡ p

Contrapositive p ⇒ q ≡ ¬q ⇒ ¬p

Mutual Implication p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p)

Exclusive-or p ⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q)

Implication p ⇒ q ≡ ¬p ∨ q

Idempotent p ∨ p ≡ p p ∧ p ≡ p

Identity F ∨ p ≡ p T ∧ p ≡ p

Domination T ∨ p ≡ T F ∧ p ≡ F

Commutative p ∨ q ≡ q ∨ p p ∧ q ≡ q ∧ p

Associative (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Distributive p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p 
∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p 
∧ r)

DeMorgan’s ¬(p ∧ q) ≡ (¬p ∨ ¬q) ¬(p ∨ q) ≡ (¬p ∧ ¬q)

Absorption p ∨ (p ∧ q) ≡ p p ∧ (p ∨ q) ≡ p



Example

Starting from the premises p ∨ (q ∧ r) and ¬r, prove p.

1 p ∨ (q ∧ r) (Premise)
2 ¬r (Premise)
3 (p ∨ q) ∧ (p ∨ r) (1, Distributive)
4 (p ∨ r) ∧ (p ∨ q) (3, Commutative)
5 p ∨ r (4, Simplification)
6 r ∨ p (5, Commutative)
7 p (2 and 6, Disjunctive Syllogism)
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Example

Show that ¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬q.

We need to show that ¬(p ∨ (¬p ∧ q)) implies ¬p ∧ ¬q, and vice versa.
Let’s start with the forward direction.

1 ¬(p ∨ (¬p ∧ q)) (Premise)
2 ¬p ∧ ¬(¬p ∧ q) (1,DeMorgan’s)
3 ¬p (2, Simplification)
4 ¬(¬p ∧ q) ∧ ¬p (2,Commutative)
5 ¬(¬p ∧ q) (4, Simplification)
6 ¬¬p ∨ ¬q (5, DeMorgan’s)
7 ¬¬¬p (3, Double Negation)
8 ¬q (6 and 7, Disjunctive Syllogism)
9 ¬p ∧ ¬q (3 and 8, Conjunction)

For the backwards direction, we have to start with premise ¬p ∧ ¬q and
prove conclusion ¬(p ∨ (¬p ∧ q)). Left as an exercise.
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Another Approach to Proving Equivalence

To show that ¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬q, we can manipulate using only
logical equivalences. (No need for two directions anymore)

1 ¬(p ∨ (¬p ∧ q))

2 ¬p ∧ ¬(¬p ∧ q)) (1,DeMorgan’s)
3 ¬p ∧ (p ∨ ¬q) (2, DeMorgan’s)
4 (¬p ∧ p) ∨ (¬p ∧ ¬q) (3, Distributive)
5 F ∨ (¬p ∧ ¬q) (4, Contradiction)
6 ¬p ∧ ¬q (5, Identity)
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Rules of Inference vs Equivalences

Some of the rules of inference can only be applied in one direction
(Everything on our first list, e.g. Addition or Hypothetical
Syllogism)
Others go both ways (Everything on our second list, E.g.
DeMorgan’s), we call these Logical Equivalences.

Equivalences can be used to manipulate a subformula of a
statement you have in your proof (like in the previous slides)

E.g. p ∨ ¬(p ⇒ q) ≡ p ∨ ¬(¬q ⇒ ¬p) (Contrapositive)
Rules of inference that are not equivalences cannot be used that
way in general

E.g. ¬p does not imply ¬(p ∨ q) by using the Addition rule
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Garbage In, Garbage Out

Show that if you assume a statement p and its negation, then you can
prove any other (possibly unrelated) statement q.

1 p (premise)
2 ¬p (premise)
3 p ∧ ¬p (1 and 2, Conjunction)
4 (p ∧ ¬p) ∨ q (3, Addition)
5 F ∨ q (4, Contradiction)
6 q (5, Identity)

More generally, if your premises are inconsistent then you can prove
something and its negation, and therefore can prove anything.

Arguments and Proofs 22/23



Garbage In, Garbage Out

Show that if you assume a statement p and its negation, then you can
prove any other (possibly unrelated) statement q.

1 p (premise)
2 ¬p (premise)
3 p ∧ ¬p (1 and 2, Conjunction)
4 (p ∧ ¬p) ∨ q (3, Addition)
5 F ∨ q (4, Contradiction)
6 q (5, Identity)

More generally, if your premises are inconsistent then you can prove
something and its negation, and therefore can prove anything.

Arguments and Proofs 22/23



Soundness and Completeness

There are two main desirable properties of a logical system
1 Soundness: You can only prove statements that are entailed by

the assumptions
If you can write a formal proof that starts from premises A and ends
with conclusion C, then every truth assignment that satisfies A
must also satisfy C.

2 Completeness: Everything that is logically entailed by a set of
assumptions can be formally proved

If it is indeed the case that every truth assignment that satisfies A
also satisfies C, then there is a proof that starts with premises A
and concludes C.

When designing a logic, it is trivial to have only one of these
properties (why?). Takes more care to have both.

Luckily
Propositional Logic, with the rules of inference we saw, is both sound
and complete!
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