CS170: Discrete Methods in Computer Science Summer 2023 Propositional Logic

Instructor: Shaddin Dughmi¹

¹These slides adapt some content from similar slides by Aaron Cote. Moreover, the rules of inference table is drawn directly from those slides.

- The language of mathematics!
- Symbols and rules for manipulating them
- Allows us to reason clearly:
 - Make precise statements
 - Derive new facts from old

- The language of mathematics!
- Symbols and rules for manipulating them
- Allows us to reason clearly:
 - Make precise statements
 - Derive new facts from old
- There are many sorts of logic, some more complicated and expressive than others
- Today: Propositional Logic (logic without quantification)
- Later in the class: First-order Logic (logic with quantification)

2 Talking about Propositions

Proposition

A declarative statement of fact which is unambiguously either true or false.

Which of the following are propositions?

- 2000 was a leap year
- 2001 was a leap year
- 16 is a prime number
- 384921379417237 is a prime number
- Do your homework
- Colorless green ideas speak furiously
- This statement is false

Propositional Variables and Formulas

- We use variable symbols like p, q, r to refer to propositions
 - We call these propositional variables or atomic propositions.
- We can combine simple propositions to form more propositions using logical operators like ¬ ("not" a.k.a. "negation"), ∧ ("and" a.k.a. "conjunction"), ∨ ("or" a.k.a. "disjunction")
 - We call these propositional formulas or compound propositions
 - We refer to compound formulas using letters like α, β, \ldots

Propositional Variables and Formulas

- We use variable symbols like p, q, r to refer to propositions
 - We call these propositional variables or atomic propositions.
- We can combine simple propositions to form more propositions using logical operators like ¬ ("not" a.k.a. "negation"), ∧ ("and" a.k.a. "conjunction"), ∨ ("or" a.k.a. "disjunction")
 - We call these propositional formulas or compound propositions
 - We refer to compound formulas using letters like $lpha, eta, \ldots$

Example

- p = "there is life on earth"
- q = "there is life on mars"
- r = "there is life outside the solar system"
- $\neg p =$ "there is no life on Earth"
- $p \lor q =$ "there is life on Earth or on Mars (or both)"
- $p \wedge q =$ "there is life on Earth and on Mars"
- $(p \land q) \lor \neg r =$ "Either there is life on both Earth and Mars, or there is no life outside the solar system (or both). "

Propositional Variables and Formulas

- We use variable symbols like p, q, r to refer to propositions
 - We call these propositional variables or atomic propositions.
- We can combine simple propositions to form more propositions using logical operators like ¬ ("not" a.k.a. "negation"), ∧ ("and" a.k.a. "conjunction"), ∨ ("or" a.k.a. "disjunction")
 - We call these propositional formulas or compound propositions
 - We refer to compound formulas using letters like α, β, \dots

Note

We also allow the boolean constants T and F in formulas

- Convenient for proofs
- Not strictly necessary in a formula, since they can be simplified away

- Each propositional variable can take value T ("True") or F ("False")
 - In digital logic, we sometimes use 1 for T and 0 for F
- A propositional formula's truth value can be evaluated from the truth values of its atomic propositions
- This can be expressed as a truth table
 - A description of a boolean function which maps truth values of the variables to the truth value of the formula

- Each propositional variable can take value T ("True") or F ("False")
 - In digital logic, we sometimes use 1 for T and 0 for F
- A propositional formula's truth value can be evaluated from the truth values of its atomic propositions
- This can be expressed as a truth table
 - A description of a boolean function which maps truth values of the variables to the truth value of the formula
- Let's write the truth tables of the formulas from the last slide

- Each propositional variable can take value T ("True") or F ("False")
 - In digital logic, we sometimes use 1 for T and 0 for F
- A propositional formula's truth value can be evaluated from the truth values of its atomic propositions
- This can be expressed as a truth table
 - A description of a boolean function which maps truth values of the variables to the truth value of the formula
- Let's write the truth tables of the formulas from the last slide
- How many possible truth tables are there for *n* variables?

¬, ∧, ∨ are often thought of as the "basic" operators
They are really all you need to express any truth table

- However, some other operators are also common and useful
 - $p \oplus q$ ("Exclusive or"): Either p or q, but not both.
 - $p \Rightarrow q$ ("implies"): If p then q.
 - $p \iff q$ ("equivalence"): p if and only if q
 - ...

Let's draw the truth tables defining these operators

More on the Implies Operator

- The implies operator is a very common and useful one
- It's worth reflecting on semantics of $p \Rightarrow q$:
 - $p \Rightarrow q$ can be written as $\neg p \lor q$
 - It's only false when p is true but q is false
 - True whenever p is false, regardless of what q is
 - A false assumption implies anything!

More on the Implies Operator

- The implies operator is a very common and useful one
- It's worth reflecting on semantics of $p \Rightarrow q$:
 - $p \Rightarrow q$ can be written as $\neg p \lor q$
 - It's only false when p is true but q is false
 - True whenever p is false, regardless of what q is
 - A false assumption implies anything!
- $p \Rightarrow q$ is often read in variety of ways:
 - p implies q
 - If p then q
 - p only if q
 - q if p
 - $\bullet \ q \text{ follows from } p$
 - $\bullet \ q \text{ is necessary for } p$
 - p is sufficient for q
 - q unless $\neg p$

You cannot ride the roller coaster if you are under 4 feet tall, unless you are older than 16 years.

You cannot ride the roller coaster if you are under 4 feet tall, unless you are older than 16 years.

- r = You can ride the roller coaster
- *u*= You are under 4 feet tall
- *o* = You are older than 16

You cannot ride the roller coaster if you are under 4 feet tall, unless you are older than 16 years.

- r = You can ride the roller coaster
- *u*= You are under 4 feet tall
- *o* = You are older than 16

$$\neg o \Rightarrow (u \Rightarrow \neg r)$$

A hardware circuit simply evaluates a propositional formula!!

A (compound) proposition α is said to be

- satisfiable if there is a way to set its variables so it evaluates to true
 - At least one row of its truth table ends with a T
- unsatisfiable if it is not satisfiable.
 - All rows of its truth table ends with an F
 - e.g. $p \land \neg p$, $(\neg (p \Rightarrow q)) \land \neg p$

• a tautology if for any setting of its variables it evaluates to true

• All rows of truth table end with a T

• e.g.
$$p \lor \neg p$$
, $(p \Rightarrow q) \lor p$

A (compound) proposition α is said to be

- satisfiable if there is a way to set its variables so it evaluates to true
 - At least one row of its truth table ends with a T
- unsatisfiable if it is not satisfiable.
 - All rows of its truth table ends with an F
 - e.g. $p \land \neg p$, $(\neg (p \Rightarrow q)) \land \neg p$

a tautology if for any setting of its variables it evaluates to true

• All rows of truth table end with a T

• e.g.
$$p \lor \neg p$$
, $(p \Rightarrow q) \lor p$

 α is a tautology if and only if $\neg \alpha$ is unsatisfiable

Equivalence between Propositions

- Two propositions α and β are equivalent if they have the same truth value for every setting of the variables.
 - i.e., they have the same truth table
- We write $\alpha \equiv \beta$ to say that α and β are equivalent.

• E.g.
$$p \Rightarrow q \equiv \neg p \lor q$$

• E.g.
$$\neg (p \lor q) \equiv \neg p \land \neg q$$
.

Equivalence between Propositions

- Two propositions α and β are equivalent if they have the same truth value for every setting of the variables.
 - i.e., they have the same truth table
- We write $\alpha \equiv \beta$ to say that α and β are equivalent.

• E.g.
$$p \Rightarrow q \equiv \neg p \lor q$$

• E.g.
$$\neg (p \lor q) \equiv \neg p \land \neg q$$
.

• Saying $\alpha \equiv \beta$ is the same as saying that $\alpha \iff \beta$ is a tautology

Equivalence between Propositions

- Two propositions α and β are equivalent if they have the same truth value for every setting of the variables.
 - i.e., they have the same truth table
- We write $\alpha \equiv \beta$ to say that α and β are equivalent.

• E.g.
$$p \Rightarrow q \equiv \neg p \lor q$$

• E.g.
$$\neg (p \lor q) \equiv \neg p \land \neg q$$
.

• Saying $\alpha \equiv \beta$ is the same as saying that $\alpha \iff \beta$ is a tautology

Note

 \equiv and \iff are closely related, but are not the same! \iff is part of the language of propositions, but \equiv is a claim about propositions! In other words, $\alpha \iff \beta$ is a formula that may be true or false depending on how you set its variables, while \equiv is a meta-statement asserting that two formulas have the same truth tables.

A set of propositions is consistent if there is a way to set the variables so that all the propositions evaluate to true

• Same as saying that their conjunction is satisfiable

A set of propositions is consistent if there is a way to set the variables so that all the propositions evaluate to true

• Same as saying that their conjunction is satisfiable

Are the following consistent?

- There is life on Earth or on Mars
- If there is life on Earth, then there is life on Mars

A set of propositions is consistent if there is a way to set the variables so that all the propositions evaluate to true

• Same as saying that their conjunction is satisfiable

Are the following consistent?

- There is life on Earth or on Mars
- If there is life on Earth, then there is life on Mars
- There is no life on Mars

Propositions $\alpha_1, \ldots, \alpha_k$ imply or entail proposition β if for every setting of the variables for which $\alpha_1, \ldots, \alpha_k$ evaluate to T, β evaluates to T as well.

- We also say β follows from $\alpha_1, \ldots, \alpha_k$.
- We call $\alpha_1, \ldots, \alpha_k$ the premises, and β the conclusion
- We write $\alpha_1, \ldots, \alpha_k \vdash \beta$
- E.g. $p \Rightarrow q$, $p \lor q$ \vdash q

Propositions $\alpha_1, \ldots, \alpha_k$ imply or entail proposition β if for every setting of the variables for which $\alpha_1, \ldots, \alpha_k$ evaluate to T, β evaluates to T as well.

- We also say β follows from $\alpha_1, \ldots, \alpha_k$.
- We call $\alpha_1, \ldots, \alpha_k$ the premises, and β the conclusion

• We write
$$\alpha_1, \ldots, \alpha_k \vdash \beta$$

• E.g. $p \Rightarrow q$, $p \lor q$ \vdash q

Note

The word "implies" is overloaded. One use of the word is for the logical operator \Rightarrow , and another is for \vdash . The former constructs a proposition that can be true or false, whereas the latter is a claim in a meta-language about one set of propositions entailing another.

Propositions

2 Talking about Propositions

- An argument is a sequence of statements starting with premises (a.k.a. assumptions or axioms) and ending with a conclusion.
- When the argument is in in propositional logic, each statement is a propositional formula
- An argument is valid if each statement after the premises is logically implied by statements preceding it (in the sense of ⊢)

- An argument is a sequence of statements starting with premises (a.k.a. assumptions or axioms) and ending with a conclusion.
- When the argument is in in propositional logic, each statement is a propositional formula
- An argument is valid if each statement after the premises is logically implied by statements preceding it (in the sense of ⊢)

Note

If the premises are inconsistent (i.e, inherently contradictory) then the argument is automatically valid! Once you prove F, you can prove anything! (Garbage in, garbage out)

Example: Valid Argument

- Premise: All men are mortal
- Premise: Socrates is a man
- Conclusion: Socrates is mortal

Example: Valid Argument

- Premise: All men are mortal
- Premise: Socrates is a man
- Conclusion: Socrates is mortal

Example: Invalid Argument

- Premise: If there is life on Earth then there is life on Mars
- Premise: Either there is life on Mars or there is life on Europa
- Premise: There is no life on Earth
- There is no life on Mars
- Conclusion: There is life on Europa

A Proof is a valid argument where each statement after the premises "self-evidently" follows from the statements preceding it.

- For a formal proof, a self-evident step is one that uses one of the rules of inference of the logical system
- For a "proof", as the term is usually used, a self-evident step is one that your audience thinks is "obvious" or "easy".
- In a proof, your audience should have little trouble turning it into a formal proof with ample time and paper

- A rule of inference draws a logically valid conclusion from existing knowledge
- The rule is usually obvious or easy to check using a truth table
- Can be applied mechanically, by pattern matching

- A rule of inference draws a logically valid conclusion from existing knowledge
- The rule is usually obvious or easy to check using a truth table
- Can be applied mechanically, by pattern matching

Note: You apply this when p,q, r are formulas as well!

	Rule	Meaning
	Modus Ponens	p, p \Rightarrow q, then q
	Modus Tollens	$p \Rightarrow q, \neg q, then \neg p$
Rules of Inference	Hypothetical Syllogism	$p \Rightarrow q, q \Rightarrow r$, then $p \Rightarrow r$
	Disjunctive Syllogism	p ∨ q, ¬p, then q
	Addition	p, then p \vee q
	Simplification	$p \land q$, then p
	Conjunction	p, q, then p \land q
	Resolution	p ∨ q, ¬p ∨ r, then q ∨ r

Rules of Inference (Equivalence)

Name	Meaning	Twin
Tautology	p ∨ ¬p ≡ T	
Contradiction	p ∧ ¬p ≡ F	
Double Negation	¬(¬p) ≡ p	
Contrapositive	$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$	
Mutual Implication	$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$	
Exclusive-or	$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$	
Implication	p⇒q≡¬p∨q	
Idempotent	p ∨ p≡p	p ∧ p ≡ p
Identity	F ∨ p≡p	T ∧ p≡p
Domination	T ∨ p≡T	F∧p≡F
Commutative	$p \lor q \equiv q \lor p$	$p \land q \equiv q \land p$
Associative	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(p \land q) \land r \equiv p \land (q \land r)$
Distributive	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
DeMorgan's	$\neg(p \land q) \equiv (\neg p \lor \neg q)$	$\neg(p \lor q) \equiv (\neg p \land \neg q)$
Absorption	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$

Starting from the premises $p \lor (q \land r)$ and $\neg r$, prove p.

Starting from the premises $p \lor (q \land r)$ and $\neg r$, prove p.

- **1** $p \lor (q \land r)$ (Premise)
- **2** $\neg r$ (Premise)
- **3** $(p \lor q) \land (p \lor r)$ (1, Distributive)
- $(p \lor r) \land (p \lor q)$ (3, Commutative)
- **5** $p \lor r$ (4, Simplification)
- **(5)** $r \lor p$ (5, Commutative)
- p (2 and 6, Disjunctive Syllogism)

Show that $\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$.

Show that $\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$. We need to show that $\neg (p \lor (\neg p \land q))$ implies $\neg p \land \neg q$, and vice versa.

Show that $\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg q$. We need to show that $\neg(p \lor (\neg p \land q))$ implies $\neg p \land \neg q$, and vice versa. Let's start with the forward direction.

- $\neg (p \lor (\neg p \land q))$ (Premise)
- 2 $\neg p \land \neg (\neg p \land q)$ (1,DeMorgan's)
- **3** $\neg p$ (2, Simplification)
- $\neg(\neg p \land q) \land \neg p$ (2,Commutative)
- **(**) $\neg(\neg p \land q)$ (4, Simplification)
- **(b)** $\neg \neg p \lor \neg q$ (5, DeMorgan's)
- \bigcirc $\neg \neg \neg p$ (3, Double Negation)
- **(and 7, Disjunctive Syllogism)**
- **9** $\neg p \land \neg q$ (3 and 8, Conjunction)

Show that $\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg q$. We need to show that $\neg(p \lor (\neg p \land q))$ implies $\neg p \land \neg q$, and vice versa. Let's start with the forward direction.

- $\neg (p \lor (\neg p \land q))$ (Premise)
- 2 $\neg p \land \neg (\neg p \land q)$ (1,DeMorgan's)
- **3** $\neg p$ (2, Simplification)
- $\neg(\neg p \land q) \land \neg p$ (2,Commutative)
- **(**) $\neg(\neg p \land q)$ (4, Simplification)
- **(b)** $\neg \neg p \lor \neg q$ (5, DeMorgan's)
- \bigcirc $\neg \neg \neg p$ (3, Double Negation)
- **1** $\neg q$ (6 and 7, Disjunctive Syllogism)
- **9** $\neg p \land \neg q$ (3 and 8, Conjunction)

For the backwards direction, we have to start with premise $\neg p \land \neg q$ and prove conclusion $\neg (p \lor (\neg p \land q))$. Left as an exercise.

To show that $\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg q$, we can manipulate using only logical equivalences. (No need for two directions anymore)

$$(p \lor (\neg p \land q))$$

2
$$\neg p \land \neg (\neg p \land q))$$
 (1,DeMorgan's)

③
$$\neg p \land (p \lor \neg q)$$
 (2, DeMorgan's)

(
$$\neg p \land p$$
) \lor ($\neg p \land \neg q$) (3, Distributive)

•
$$F \lor (\neg p \land \neg q)$$
 (4, Contradiction)

- Some of the rules of inference can only be applied in one direction (Everything on our first list, e.g. Addition or Hypothetical Syllogism)
- Others go both ways (Everything on our second list, E.g. DeMorgan's), we call these Logical Equivalences.

- Some of the rules of inference can only be applied in one direction (Everything on our first list, e.g. Addition or Hypothetical Syllogism)
- Others go both ways (Everything on our second list, E.g. DeMorgan's), we call these Logical Equivalences.
- Equivalences can be used to manipulate a subformula of a statement you have in your proof (like in the previous slides)

• E.g.
$$p \lor \neg(p \Rightarrow q) \equiv p \lor \neg(\neg q \Rightarrow \neg p)$$
 (Contrapositive)

- Rules of inference that are not equivalences cannot be used that way in general
 - E.g. $\neg p$ does not imply $\neg (p \lor q)$ by using the Addition rule

Show that if you assume a statement p and its negation, then you can prove any other (possibly unrelated) statement q.

- p (premise)
- 2 $\neg p$ (premise)
- 3 $p \wedge \neg p$ (1 and 2, Conjunction)
- (**9** $(p \land \neg p) \lor q$ (**3**, Addition)
- **(3)** $F \lor q$ (4, Contradiction)
- \bigcirc q (5, Identity)

Show that if you assume a statement p and its negation, then you can prove any other (possibly unrelated) statement q.

- p (premise)
- 2 $\neg p$ (premise)
- 3 $p \wedge \neg p$ (1 and 2, Conjunction)
- (**9** $(p \land \neg p) \lor q$ (**3**, Addition)
- **(3)** $F \lor q$ (4, Contradiction)
- \bigcirc q (5, Identity)

More generally, if your premises are inconsistent then you can prove something and its negation, and therefore can prove anything.

Soundness and Completeness

There are two main desirable properties of a logical system

- Soundness: You can only prove statements that are entailed by the assumptions
 - If you can write a formal proof that starts from premises *A* and ends with conclusion *C*, then every truth assignment that satisfies *A* must also satisfy *C*.
- Completeness: Everything that is logically entailed by a set of assumptions can be formally proved
 - If it is indeed the case that every truth assignment that satisfies *A* also satisfies *C*, then there is a proof that starts with premises *A* and concludes *C*.

Soundness and Completeness

There are two main desirable properties of a logical system

- Soundness: You can only prove statements that are entailed by the assumptions
 - If you can write a formal proof that starts from premises *A* and ends with conclusion *C*, then every truth assignment that satisfies *A* must also satisfy *C*.
- Completeness: Everything that is logically entailed by a set of assumptions can be formally proved
 - If it is indeed the case that every truth assignment that satisfies *A* also satisfies *C*, then there is a proof that starts with premises *A* and concludes *C*.

When designing a logic, it is trivial to have only one of these properties (why?). Takes more care to have both.

Luckily

Propositional Logic, with the rules of inference we saw, is both sound and complete!