CS170: Discrete Methods in Computer Science Summer 2023 Propositional Logic

Instructor: Shaddin Dughmi ${ }^{1}$

${ }^{1}$ These slides adapt some content from similar slides by Aaron Cote. Moreover, the rules of inference table is drawn directly from those slides.

What is Logic?

- The language of mathematics!
- Symbols and rules for manipulating them
- Allows us to reason clearly:
- Make precise statements
- Derive new facts from old

What is Logic?

- The language of mathematics!
- Symbols and rules for manipulating them
- Allows us to reason clearly:
- Make precise statements
- Derive new facts from old
- There are many sorts of logic, some more complicated and expressive than others
- Today: Propositional Logic (logic without quantification)
- Later in the class: First-order Logic (logic with quantification)

Outline

(1) Propositions
(2) Talking about Propositions
(3) Arguments and Proofs

Proposition

A declarative statement of fact which is unambiguously either true or false.

Which of the following are propositions?

- 2000 was a leap year
- 2001 was a leap year
- 16 is a prime number
- 384921379417237 is a prime number
- Do your homework
- Colorless green ideas speak furiously
- This statement is false

Propositional Variables and Formulas

- We use variable symbols like p, q, r to refer to propositions
- We call these propositional variables or atomic propositions.
- We can combine simple propositions to form more propositions using logical operators like \neg ("not" a.k.a. "negation"), \wedge ("and" a.k.a. "conjunction"), v ("or" a.k.a. "disjunction")
- We call these propositional formulas or compound propositions
- We refer to compound formulas using letters like α, β, \ldots

Propositional Variables and Formulas

- We use variable symbols like p, q, r to refer to propositions
- We call these propositional variables or atomic propositions.
- We can combine simple propositions to form more propositions using logical operators like \neg ("not" a.k.a. "negation"), \wedge ("and" a.k.a. "conjunction"), v ("or" a.k.a. "disjunction")
- We call these propositional formulas or compound propositions
- We refer to compound formulas using letters like α, β, \ldots

Example

- $p=$ "there is life on earth"
- $q=$ "there is life on mars"
- $r=$ "there is life outside the solar system"
- $\neg p=$ "there is no life on Earth"
- $p \vee q=$ "there is life on Earth or on Mars (or both)"
- $p \wedge q=$ "there is life on Earth and on Mars"
- $(p \wedge q) \vee \neg r=$ "Either there is life on both Earth and Mars, or there is no life outside the solar system (or both). "

Propositional Variables and Formulas

- We use variable symbols like p, q, r to refer to propositions
- We call these propositional variables or atomic propositions.
- We can combine simple propositions to form more propositions using logical operators like \neg ("not" a.k.a. "negation"), \wedge ("and" a.k.a. "conjunction"), v ("or" a.k.a. "disjunction")
- We call these propositional formulas or compound propositions
- We refer to compound formulas using letters like α, β, \ldots

Note

We also allow the boolean constants T and F in formulas

- Convenient for proofs
- Not strictly necessary in a formula, since they can be simplified away

Truth Values and Truth Tables

- Each propositional variable can take value T ("True") or F ("False")
- In digital logic, we sometimes use 1 for T and 0 for F
- A propositional formula's truth value can be evaluated from the truth values of its atomic propositions
- This can be expressed as a truth table
- A description of a boolean function which maps truth values of the variables to the truth value of the formula

Truth Values and Truth Tables

- Each propositional variable can take value T ("True") or F ("False")
- In digital logic, we sometimes use 1 for T and 0 for F
- A propositional formula's truth value can be evaluated from the truth values of its atomic propositions
- This can be expressed as a truth table
- A description of a boolean function which maps truth values of the variables to the truth value of the formula
- Let's write the truth tables of the formulas from the last slide

Truth Values and Truth Tables

- Each propositional variable can take value T ("True") or F ("False")
- In digital logic, we sometimes use 1 for T and 0 for F
- A propositional formula's truth value can be evaluated from the truth values of its atomic propositions
- This can be expressed as a truth table
- A description of a boolean function which maps truth values of the variables to the truth value of the formula
- Let's write the truth tables of the formulas from the last slide
- How many possible truth tables are there for n variables?

More Operators

- \neg, \wedge, \vee are often thought of as the "basic" operators
- They are really all you need to express any truth table
- However, some other operators are also common and useful
- $p \oplus q$ ("Exclusive or"): Either p or q, but not both.
- $p \Rightarrow q$ ("implies"): If p then q.
- $p \Longleftrightarrow q$ ("equivalence"): p if and only if q
- ...

Let's draw the truth tables defining these operators

More on the Implies Operator

- The implies operator is a very common and useful one
- It's worth reflecting on semantics of $p \Rightarrow q$:
- $p \Rightarrow q$ can be written as $\neg p \vee q$
- It's only false when p is true but q is false
- True whenever p is false, regardless of what q is
- A false assumption implies anything!

More on the Implies Operator

- The implies operator is a very common and useful one
- It's worth reflecting on semantics of $p \Rightarrow q$:
- $p \Rightarrow q$ can be written as $\neg p \vee q$
- It's only false when p is true but q is false
- True whenever p is false, regardless of what q is
- A false assumption implies anything!
- $p \Rightarrow q$ is often read in variety of ways:
- p implies q
- If p then q
- p only if q
- q if p
- q follows from p
- q is necessary for p
- p is sufficient for q
- q unless $\neg p$

Example

You cannot ride the roller coaster if you are under 4 feet tall, unless you are older than 16 years.

Example

You cannot ride the roller coaster if you are under 4 feet tall, unless you are older than 16 years.

- $r=$ You can ride the roller coaster ${ }^{6}$
- $u=$ You are under 4 feet tall
- $o=$ You are older than 16

Example

You cannot ride the roller coaster if you are under 4 feet tall, unless you are older than 16 years.

- $r=$ You can ride the roller coaster ${ }^{6}$
- $u=$ You are under 4 feet tall
- $o=$ You are older than 16

$$
\neg O \Rightarrow(u \Rightarrow \neg r)
$$

Propositional Formulas and Digital Logic

A hardware circuit simply evaluates a propositional formula!!

Outline

(9) Propositions

(2) Talking about Propositions
(3) Arguments and Proofs

Properties of Individual Propositions

A (compound) proposition α is said to be

- satisfiable if there is a way to set its variables so it evaluates to true
- At least one row of its truth table ends with a T
- unsatisfiable if it is not satisfiable.
- All rows of its truth table ends with an F
- e.g. $p \wedge \neg p,(\neg(p \Rightarrow q)) \wedge \neg p$
- a tautology if for any setting of its variables it evaluates to true
- All rows of truth table end with a T
- e.g. $p \vee \neg p,(p \Rightarrow q) \vee p$

Properties of Individual Propositions

A (compound) proposition α is said to be

- satisfiable if there is a way to set its variables so it evaluates to true
- At least one row of its truth table ends with a T
- unsatisfiable if it is not satisfiable.
- All rows of its truth table ends with an F
- e.g. $p \wedge \neg p,(\neg(p \Rightarrow q)) \wedge \neg p$
- a tautology if for any setting of its variables it evaluates to true
- All rows of truth table end with a T
- e.g. $p \vee \neg p,(p \Rightarrow q) \vee p$
α is a tautology if and only if $\neg \alpha$ is unsatisfiable

Equivalence between Propositions

- Two propositions α and β are equivalent if they have the same truth value for every setting of the variables.
- i.e., they have the same truth table
- We write $\alpha \equiv \beta$ to say that α and β are equivalent.
- E.g. $p \Rightarrow q \equiv \neg p \vee q$
- E.g. $\neg(p \vee q) \equiv \neg p \wedge \neg q$.

Equivalence between Propositions

- Two propositions α and β are equivalent if they have the same truth value for every setting of the variables.
- i.e., they have the same truth table
- We write $\alpha \equiv \beta$ to say that α and β are equivalent.
- E.g. $p \Rightarrow q \equiv \neg p \vee q$
- E.g. $\neg(p \vee q) \equiv \neg p \wedge \neg q$.
- Saying $\alpha \equiv \beta$ is the same as saying that $\alpha \Longleftrightarrow \beta$ is a tautology

Equivalence between Propositions

- Two propositions α and β are equivalent if they have the same truth value for every setting of the variables.
- i.e., they have the same truth table
- We write $\alpha \equiv \beta$ to say that α and β are equivalent.
- E.g. $p \Rightarrow q \equiv \neg p \vee q$
- E.g. $\neg(p \vee q) \equiv \neg p \wedge \neg q$.
- Saying $\alpha \equiv \beta$ is the same as saying that $\alpha \Longleftrightarrow \beta$ is a tautology

Note

\equiv and \Longleftrightarrow are closely related, but are not the same! \Longleftrightarrow is part of the language of propositions, but \equiv is a claim about propositions! In other words, $\alpha \Longleftrightarrow \beta$ is a formula that may be true or false depending on how you set its variables, while \equiv is a meta-statement asserting that two formulas have the same truth tables.

Consistency

A set of propositions is consistent if there is a way to set the variables so that all the propositions evaluate to true

- Same as saying that their conjunction is satisfiable

Consistency

A set of propositions is consistent if there is a way to set the variables so that all the propositions evaluate to true

- Same as saying that their conjunction is satisfiable Are the following consistent?
- There is life on Earth or on Mars
- If there is life on Earth, then there is life on Mars

Consistency

A set of propositions is consistent if there is a way to set the variables so that all the propositions evaluate to true

- Same as saying that their conjunction is satisfiable Are the following consistent?
- There is life on Earth or on Mars
- If there is life on Earth, then there is life on Mars
- There is no life on Mars

Implication

Propositions $\alpha_{1}, \ldots, \alpha_{k}$ imply or entail proposition β if for every setting of the variables for which $\alpha_{1}, \ldots, \alpha_{k}$ evaluate to T, β evaluates to T as well.

- We also say β follows from $\alpha_{1}, \ldots, \alpha_{k}$.
- We call $\alpha_{1}, \ldots, \alpha_{k}$ the premises, and β the conclusion
- We write $\alpha_{1}, \ldots, \alpha_{k} \vdash \beta$
- E.g. $p \Rightarrow q, \quad p \vee q \quad \vdash \quad q$

Implication

Propositions $\alpha_{1}, \ldots, \alpha_{k}$ imply or entail proposition β if for every setting of the variables for which $\alpha_{1}, \ldots, \alpha_{k}$ evaluate to T, β evaluates to T as well.

- We also say β follows from $\alpha_{1}, \ldots, \alpha_{k}$.
- We call $\alpha_{1}, \ldots, \alpha_{k}$ the premises, and β the conclusion
- We write $\alpha_{1}, \ldots, \alpha_{k} \vdash \beta$
- E.g. $p \Rightarrow q, \quad p \vee q \quad \vdash \quad q$

Note

The word "implies" is overloaded. One use of the word is for the logical operator \Rightarrow, and another is for \vdash. The former constructs a proposition that can be true or false, whereas the latter is a claim in a meta-language about one set of propositions entailing another.

Outline

(1) Propositions

(2) Talking about Propositions
(3) Arguments and Proofs

Arguments

- An argument is a sequence of statements starting with premises (a.k.a. assumptions or axioms) and ending with a conclusion.
- When the argument is in in propositional logic, each statement is a propositional formula
- An argument is valid if each statement after the premises is logically implied by statements preceding it (in the sense of \vdash)

Arguments

- An argument is a sequence of statements starting with premises (a.k.a. assumptions or axioms) and ending with a conclusion.
- When the argument is in in propositional logic, each statement is a propositional formula
- An argument is valid if each statement after the premises is logically implied by statements preceding it (in the sense of \vdash)

Note

If the premises are inconsistent (i.e, inherently contradictory) then the argument is automatically valid! Once you prove F, you can prove anything! (Garbage in, garbage out)

Example: Valid Argument

- Premise: All men are mortal
- Premise: Socrates is a man
- Conclusion: Socrates is mortal

Example: Valid Argument

- Premise: All men are mortal
- Premise: Socrates is a man
- Conclusion: Socrates is mortal

Example: Invalid Argument

- Premise: If there is life on Earth then there is life on Mars
- Premise: Either there is life on Mars or there is life on Europa
- Premise: There is no life on Earth
- There is no life on Mars
- Conclusion: There is life on Europa

Proofs

A Proof is a valid argument where each statement after the premises "self-evidently" follows from the statements preceding it.

- For a formal proof, a self-evident step is one that uses one of the rules of inference of the logical system
- For a "proof", as the term is usually used, a self-evident step is one that your audience thinks is "obvious" or "easy".
- In a proof, your audience should have little trouble turning it into a formal proof with ample time and paper

Rules of Inference

- A rule of inference draws a logically valid conclusion from existing knowledge
- The rule is usually obvious or easy to check using a truth table
- Can be applied mechanically, by pattern matching

Rules of Inference

- A rule of inference draws a logically valid conclusion from existing knowledge
- The rule is usually obvious or easy to check using a truth table
- Can be applied mechanically, by pattern matching

Example: Hypothetical Syllogism

$$
\begin{aligned}
& p \Rightarrow q \\
& q \Rightarrow r \\
& \therefore p \Rightarrow r
\end{aligned}
$$

Note: You apply this when p, q, r are formulas as well!

Rule	Meaning
Modus Ponens	$p, p \Rightarrow q$, then q
Modus Tollens	$p \Rightarrow q, \neg q$, then $\neg p$
Hypothetical Syllogism	$p \Rightarrow q, q \Rightarrow r$, then $p \Rightarrow r$
Disjunctive Syllogism	$p \vee q, \neg p$, then q
Addition	p, then $p \vee q$
Simplification	$p \wedge q$, then p
Conjunction	p, q, then $p \wedge q$
Resolution	$p \vee q, \neg p \vee r$, then $q \vee r$

Rules of Inference (Equivalence)

Name	Meaning	Twin
Tautology	$p \vee \neg p \equiv T$	
Contradiction	$p \wedge \neg p \equiv F$	
Double Negation	$\neg(\neg p) \equiv p$	
Contrapositive	$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$	
Mutual Implication	$p \Leftrightarrow q \equiv(p \Rightarrow q) \wedge(q \Rightarrow p)$	
Exclusive-or	$p \oplus q \equiv(p \wedge \neg q) \vee(\neg p \wedge q)$	
Implication	$p \Rightarrow q \equiv \neg p \vee q$	$p \wedge p \equiv p$
Idempotent	$p \vee p \equiv p$	$T \wedge p \equiv p$
Identity	$F \vee p \equiv p$	$p \wedge p \equiv F$
Domination	$T \vee p \equiv T$	$p \wedge q \equiv q \wedge p$
Commutative	$p \vee q \equiv q \vee p$	$p \vee q) \vee r \equiv p \vee(q \vee r)$
$(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$		
Associative	$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p$	$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p$
Distributive	$\vee \vee)$	$\neg(p \wedge q) \equiv(\neg p \vee \neg q)$
DeMorgan's	$p(p \vee q) \equiv(\neg p \wedge \neg q)$	
Absorption	$p \vee(p \wedge q) \equiv p$	$p \wedge(p \vee q) \equiv p$

Example

Starting from the premises $p \vee(q \wedge r)$ and $\neg r$, prove p.

Example

Starting from the premises $p \vee(q \wedge r)$ and $\neg r$, prove p.
(1) $p \vee(q \wedge r)$ (Premise)
(2) $\neg r$ (Premise)
(3) $(p \vee q) \wedge(p \vee r)(1$, Distributive)
(4) $(p \vee r) \wedge(p \vee q)$ (3, Commutative)
(5) $p \vee r$ (4, Simplification)
(6) $r \vee p$ (5, Commutative)
(3) p (2 and 6, Disjunctive Syllogism)

Example

Show that $\neg(p \vee(\neg p \wedge q)) \equiv \neg p \wedge \neg q$.

Example

Show that $\neg(p \vee(\neg p \wedge q)) \equiv \neg p \wedge \neg q$.
We need to show that $\neg(p \vee(\neg p \wedge q))$ implies $\neg p \wedge \neg q$, and vice versa.

Example

Show that $\neg(p \vee(\neg p \wedge q)) \equiv \neg p \wedge \neg q$.
We need to show that $\neg(p \vee(\neg p \wedge q))$ implies $\neg p \wedge \neg q$, and vice versa.
Let's start with the forward direction.
(1) $\neg(p \vee(\neg p \wedge q))$ (Premise)
(2) $\neg p \wedge \neg(\neg p \wedge q)$ (1,DeMorgan's)
(3) $\neg p$ (2, Simplification)
(4) $\neg(\neg p \wedge q) \wedge \neg p$ (2,Commutative)
(5) $\neg(\neg p \wedge q)$ (4, Simplification)
(6) $\neg \neg p \vee \neg q$ (5, DeMorgan's)
(7) $\neg \neg \neg p$ (3, Double Negation)
(8) $\neg q$ (6 and 7, Disjunctive Syllogism)
(9) $\neg p \wedge \neg q$ (3 and 8, Conjunction)

Example

Show that $\neg(p \vee(\neg p \wedge q)) \equiv \neg p \wedge \neg q$.
We need to show that $\neg(p \vee(\neg p \wedge q))$ implies $\neg p \wedge \neg q$, and vice versa.
Let's start with the forward direction.
(1) $\neg(p \vee(\neg p \wedge q))$ (Premise)
(2) $\neg p \wedge \neg(\neg p \wedge q)$ (1,DeMorgan's)
(3) $\neg p$ (2, Simplification)
(4) $\neg(\neg p \wedge q) \wedge \neg p$ (2,Commutative)
(5) $\neg(\neg p \wedge q)$ (4, Simplification)
(6) $\neg \neg p \vee \neg q$ (5, DeMorgan's)
(7) $\neg \neg \neg p$ (3, Double Negation)
(8) $\neg q$ (6 and 7, Disjunctive Syllogism)
(9) $\neg p \wedge \neg q$ (3 and 8, Conjunction)

For the backwards direction, we have to start with premise $\neg p \wedge \neg q$ and prove conclusion $\neg(p \vee(\neg p \wedge q))$. Left as an exercise.

Another Approach to Proving Equivalence

To show that $\neg(p \vee(\neg p \wedge q)) \equiv \neg p \wedge \neg q$, we can manipulate using only logical equivalences. (No need for two directions anymore)
(1) $\neg(p \vee(\neg p \wedge q))$
(2) $\neg p \wedge \neg(\neg p \wedge q))$ (1,DeMorgan's)
(3) $\neg p \wedge(p \vee \neg q)$ (2, DeMorgan's)
(4) $(\neg p \wedge p) \vee(\neg p \wedge \neg q)$ (3, Distributive)
(5) $F \vee(\neg p \wedge \neg q)$ (4, Contradiction)
(6) $\neg p \wedge \neg q$ (5, Identity)

Rules of Inference vs Equivalences

- Some of the rules of inference can only be applied in one direction (Everything on our first list, e.g. Addition or Hypothetical Syllogism)
- Others go both ways (Everything on our second list, E.g. DeMorgan's), we call these Logical Equivalences.

Rules of Inference vs Equivalences

- Some of the rules of inference can only be applied in one direction (Everything on our first list, e.g. Addition or Hypothetical Syllogism)
- Others go both ways (Everything on our second list, E.g. DeMorgan's), we call these Logical Equivalences.
- Equivalences can be used to manipulate a subformula of a statement you have in your proof (like in the previous slides)
- E.g. $p \vee \neg(p \Rightarrow q) \equiv p \vee \neg(\neg q \Rightarrow \neg p)$ (Contrapositive)
- Rules of inference that are not equivalences cannot be used that way in general
- E.g. $\neg p$ does not imply $\neg(p \vee q)$ by using the Addition rule

Garbage In, Garbage Out

Show that if you assume a statement p and its negation, then you can prove any other (possibly unrelated) statement q.
(1) p (premise)
(2) $\neg p$ (premise)
($p \wedge \neg p$ (1 and 2, Conjunction)
(9) $(p \wedge \neg p) \vee q(3$, Addition)
(0) $F \vee q$ (4, Contradiction)

- q (5, Identity)

Garbage In, Garbage Out

Show that if you assume a statement p and its negation, then you can prove any other (possibly unrelated) statement q.
(1) p (premise)
(2) $\neg p$ (premise)
(3) $p \wedge \neg p$ (1 and 2, Conjunction)
(9) $(p \wedge \neg p) \vee q(3$, Addition)
(0) $F \vee q$ (4, Contradiction)

- q (5, Identity)

More generally, if your premises are inconsistent then you can prove something and its negation, and therefore can prove anything.

Soundness and Completeness

There are two main desirable properties of a logical system
(1) Soundness: You can only prove statements that are entailed by the assumptions

- If you can write a formal proof that starts from premises A and ends with conclusion C, then every truth assignment that satisfies A must also satisfy C.
(2) Completeness: Everything that is logically entailed by a set of assumptions can be formally proved
- If it is indeed the case that every truth assignment that satisfies A also satisfies C, then there is a proof that starts with premises A and concludes C.

Soundness and Completeness

There are two main desirable properties of a logical system
(1) Soundness: You can only prove statements that are entailed by the assumptions

- If you can write a formal proof that starts from premises A and ends with conclusion C, then every truth assignment that satisfies A must also satisfy C.
(2) Completeness: Everything that is logically entailed by a set of assumptions can be formally proved
- If it is indeed the case that every truth assignment that satisfies A also satisfies C, then there is a proof that starts with premises A and concludes C.
When designing a logic, it is trivial to have only one of these properties (why?). Takes more care to have both.

Luckily

Propositional Logic, with the rules of inference we saw, is both sound and complete!

