
CS170: Discrete Methods in Computer Science
Summer 2023

Recursion and Iteration

Instructor: Shaddin Dughmi1

1These slides adapt some content from similar slides by Aaron Cote.
1



Recursion

Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence
f0 = 0 and f1 = 1. (base cases)
fn = fn−1 + fn−2 for n > 1.

Factorials
1! = 1

n! = n · (n− 1)!

Binary Palindromes
A binary string is a palindrome if it is either

The empty string, 1, or 0
1x1 or 0x0 where x is a palindrome

Many sorts of objects can be defined recursively: sequences,
functions, algorithms (e.g. mergesort), sets, graphs, . . .

2



Recursion

Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence
f0 = 0 and f1 = 1. (base cases)
fn = fn−1 + fn−2 for n > 1.

Factorials
1! = 1

n! = n · (n− 1)!

Binary Palindromes
A binary string is a palindrome if it is either

The empty string, 1, or 0
1x1 or 0x0 where x is a palindrome

Many sorts of objects can be defined recursively: sequences,
functions, algorithms (e.g. mergesort), sets, graphs, . . .

2



Recursion

Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence
f0 = 0 and f1 = 1. (base cases)
fn = fn−1 + fn−2 for n > 1.

Factorials
1! = 1

n! = n · (n− 1)!

Binary Palindromes
A binary string is a palindrome if it is either

The empty string, 1, or 0
1x1 or 0x0 where x is a palindrome

Many sorts of objects can be defined recursively: sequences,
functions, algorithms (e.g. mergesort), sets, graphs, . . .

2



Recursion

Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence
f0 = 0 and f1 = 1. (base cases)
fn = fn−1 + fn−2 for n > 1.

Factorials
1! = 1

n! = n · (n− 1)!

Binary Palindromes
A binary string is a palindrome if it is either

The empty string, 1, or 0
1x1 or 0x0 where x is a palindrome

Many sorts of objects can be defined recursively: sequences,
functions, algorithms (e.g. mergesort), sets, graphs, . . .

2



Recursive Algorithms

An algorithm is recursive if it calls itself (you can think of it as being
defined in terms of itself)

E.g. Factorial Algorithm
Factorial(n):

If n = 1 return 1

Else return n× Factorial(n− 1)

E.g. Binary Search
BinarySearch(a,val,L,R)

If L > R return “Not Found”
m = L+R

2

If a[m] == val return m;
If a[m] > val return Binarysearch(a,val,L,m− 1)
If a[m] < val return Binarysearch(a,val,m+ 1,R)

3



Recursion vs Iteration

A function is Tail-Recursive if there is one recursive call and its the
last thing you do

You just return the result of the recursive call, instead of build on it

Binary search is tail recusrive, but factorial and mergesort are not.
Tail resursive function are just iterative in disguise, but recursive
form might be more convenient
Every iterative function can be made tail recursive
Some recursive functions (e.g. tail recursive) are easy to turn into
iterative. But others are much more challenging (e.g. Mergesort).

Recursion really simplifies your life!

4



Recursion, Induction, and Loop Invariants

To prove anything about a recursive object, you typically use induction
We saw using induction to prove correctness and runtime of
mergesort
More generally, you prove what you want for the base case object,
then induct using the recursive definition
Since induction tracks the structure of the definition, we often call
it structural induction

For tail recursion, the inductive hypothesis is the same as a loop
invariant in corresponding iterative implementation!

Loop Invariant for Iteration
A property that is preserved from iteration to iteration, from which what
you want follows.

5



Recursion, Induction, and Loop Invariants

To prove anything about a recursive object, you typically use induction
We saw using induction to prove correctness and runtime of
mergesort
More generally, you prove what you want for the base case object,
then induct using the recursive definition
Since induction tracks the structure of the definition, we often call
it structural induction

For tail recursion, the inductive hypothesis is the same as a loop
invariant in corresponding iterative implementation!

Loop Invariant for Iteration
A property that is preserved from iteration to iteration, from which what
you want follows.

5


