CS170: Discrete Methods in Computer Science Summer 2023 Recursion and Iteration

Instructor: Shaddin Dughmi ${ }^{1}$

[^0]
Recursion

Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence

- $f_{0}=0$ and $f_{1}=1$. (base cases)
- $f_{n}=f_{n-1}+f_{n-2}$ for $n>1$.

Recursion

Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence

- $f_{0}=0$ and $f_{1}=1$. (base cases)
- $f_{n}=f_{n-1}+f_{n-2}$ for $n>1$.

Factorials

- $1!=1$
- $n!=n \cdot(n-1)$!

Recursion

Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence

- $f_{0}=0$ and $f_{1}=1$. (base cases)
- $f_{n}=f_{n-1}+f_{n-2}$ for $n>1$.

Factorials

- $1!=1$
- $n!=n \cdot(n-1)$!

Recursion

Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence

- $f_{0}=0$ and $f_{1}=1$. (base cases)
- $f_{n}=f_{n-1}+f_{n-2}$ for $n>1$.

Factorials

- 1 ! $=1$
- $n!=n \cdot(n-1)$!

Binary Palindromes

A binary string is a palindrome if it is either

- The empty string, 1 , or 0
- $1 x 1$ or $0 x 0$ where x is a palindrome

Many sorts of objects can be defined recursively: sequences, functions, algorithms (e.g. mergesort), sets, graphs, ...

Recursive Algorithms

An algorithm is recursive if it calls itself (you can think of it as being defined in terms of itself)

E.g. Factorial Algorithm

Factorial (n) :

- If $n=1$ return 1
- Else return $n \times \operatorname{Factorial}(n-1)$

E.g. Binary Search

BinarySearch $(a, v a l, L, R)$

- If $L>R$ return "Not Found"
- $m=\frac{L+R}{2}$
- If $a[m]==$ val return m;
- If $a[m]>$ val return Binarysearch(a,val,L, $m-1$)
- If $a[m]<$ val return Binarysearch $(a, v a l, m+1, R)$

Recursion vs Iteration

- A function is Tail-Recursive if there is one recursive call and its the last thing you do
- You just return the result of the recursive call, instead of build on it
- Binary search is tail recusrive, but factorial and mergesort are not.
- Tail resursive function are just iterative in disguise, but recursive form might be more convenient
- Every iterative function can be made tail recursive
- Some recursive functions (e.g. tail recursive) are easy to turn into iterative. But others are much more challenging (e.g. Mergesort).
- Recursion really simplifies your life!

Recursion, Induction, and Loop Invariants

To prove anything about a recursive object, you typically use induction

- We saw using induction to prove correctness and runtime of mergesort
- More generally, you prove what you want for the base case object, then induct using the recursive definition
- Since induction tracks the structure of the definition, we often call it structural induction

Recursion, Induction, and Loop Invariants

To prove anything about a recursive object, you typically use induction

- We saw using induction to prove correctness and runtime of mergesort
- More generally, you prove what you want for the base case object, then induct using the recursive definition
- Since induction tracks the structure of the definition, we often call it structural induction

For tail recursion, the inductive hypothesis is the same as a loop invariant in corresponding iterative implementation!

Loop Invariant for Iteration

A property that is preserved from iteration to iteration, from which what you want follows.

[^0]: ${ }^{1}$ These slides adapt some content from similar slides by Aaron Cote.

