CS170: Discrete Methods in Computer Science

Summer 2023
Recursion and lteration

Instructor: Shaddin Dughmi'

'These slides adapt some content from similar slides by Aaron Cote.



Recursion

Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence
@ fo=0and f; = 1. (base cases)
@ fn=fun1+ fnoforn>1.




Recursion

Something is defined recursively if it is defined in terms of itself.
Fibonacci sequence
@ fo=0and f; = 1. (base cases)
® fon="fo1+ fao forn > 1. )
Factorials . |
e 1l=1
onl=n-(n-1)!




Recursion

Something is defined recursively if it is defined in terms of itself.
Fibonacci sequence
@ fo=0and f; = 1. (base cases)
® fon="fo1+ fao forn > 1. )
Factorials . |
e 1l=1
onl=n-(n-1)!




Recursion
Something is defined recursively if it is defined in terms of itself.

Fibonacci sequence
@ fo=0and f; = 1. (base cases)
@ fn=fun-1+ fa—aforn>1.

i A\

o 1l=1
onl=n-(n-1)!

Binary Palindromes

A binary string is a palindrome if it is either
@ The empty string, 1, or 0
@ 1x1 or 020 where z is a palindrome

| A\

Many sorts of objects can be defined recursively: sequences,
functions, algorithms (e.g. mergesort), sets, graphs, ... ,



Recursive Algorithms

An algorithm is recursive if it calls itself (you can think of it as being
defined in terms of itself)
E.g. Factorial Algorithm
Factorial(n):
@ Ifn=1return1
@ Else return nx Factorial(n — 1)

A\

E.g. Binary Search
BinarySearch(a,val,L,R)

o If L > R return “Not Found”

O m =
@ If a[m] == val return m;
@ Ifa
@ Ifa

m] > val return Binarysearch(a,val,L,m — 1)
m] < val return Binarysearch(a,val,m + 1,R)

\




Recursion vs lteration

@ A function is Tail-Recursive if there is one recursive call and its the
last thing you do

@ You just return the result of the recursive call, instead of build on it
@ Binary search is tail recusrive, but factorial and mergesort are not.
@ Tail resursive function are just iterative in disguise, but recursive
form might be more convenient
@ Every iterative function can be made tail recursive

@ Some recursive functions (e.g. tail recursive) are easy to turn into
iterative. But others are much more challenging (e.g. Mergesort).

o Recursion really simplifies your life!



Recursion, Induction, and Loop Invariants

To prove anything about a recursive object, you typically use induction

@ We saw using induction to prove correctness and runtime of
mergesort

@ More generally, you prove what you want for the base case object,
then induct using the recursive definition

@ Since induction tracks the structure of the definition, we often call
it structural induction



Recursion, Induction, and Loop Invariants

To prove anything about a recursive object, you typically use induction
@ We saw using induction to prove correctness and runtime of
mergesort
@ More generally, you prove what you want for the base case object,
then induct using the recursive definition
@ Since induction tracks the structure of the definition, we often call
it structural induction

For tail recursion, the inductive hypothesis is the same as a loop
invariant in corresponding iterative implementation!

Loop Invariant for Iteration

A property that is preserved from iteration to iteration, from which what
you want follows.




