
CS170: Discrete Methods in Computer Science
Summer 2023

Runtime and Order Notation

Instructor: Shaddin Dughmi1

1These slides adapt some content from similar slides by Aaron Cote.
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Comparing Algorithms

An algorithm takes an input and produces an output
E.g. Takes in an unsorted array, and sorts it

There are often different algorithms for the same task
Bubble sort vs mergesort vs quicksort vs insertion sort . . .

How to compare them?
Runtime
Memory
Simplicity
Communication bandwidth
. . .
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Measuring Runtime

How should we measure runtime?
Time on the clock: Depends on details of underlying architecture,
number of processors, whether you upgrade your machine, etc.
Number of basic operations: Number of basic instructions in the
programming language or machine model

We go with number of operations:
Different instruction sets / programming languages tend to be
effectively equivalent here (more on this later).
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Runtime Functions

We consider worst-case runtime over inputs of any given size
E.g. for arrays of size n, we judge our algorithm by the most
time-consuming array to sort

Runtime Function
Given an algorithm, its (worst-case) runtime function is f : N → N
where f(n) is the maximum, over all inputs of size n, of the number of
operations of the algorithm on that input.

Usually, and for all our purposes in this class, f is non-decreasing.
But what is the “size” of an input?

In the strictest sense, it is the number of bits used to write that
input down
Sometimes, we cut corners and quantify size differently

E.g. By the length of the array in sorting

So long as you’re clear about what your n “means”, you can
choose the measure of size that best suits your problem.
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Worst-Case vs Average Case

In CS, it is most common to consider worst-case runtime, instead of
“average case”. Why?

Gives iron-clad gaurantees that always hold regardless of
real-world setting
Tends to be predictive in practice
No need to make assumptions on real-world inputs, which often
are hard to formulate.

What is “average case” array, social network, image?

Gives rise to elegant theory that has had practical impact

Nevertheless, sometimes average case, or something between
average and worst case, makes sense. We won’t get into that in this
class.
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Common Examples of Runtimes

Constant: 3, 5, 134893430
Linear: n, 2n+ 1, 100n+ 3, . . .
Quadratic: n2, 3n2 + 1000n− 1, . . .
Polynomial: 2n5 + n3 − n+ 2, . . .
Logarithmic: log n, 5 log n log log n+ 3, . . .
Exponential: 2n, 3 · 5n + n2, . . .
. . .
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Granularity of Runtimes

At what granularity do we want to quantify runtime?
Capture aspects of runtime that persist as we tweak architecture,
basic instructions, increase number of cores,

Ignore constant multiples. n2 and 5n2 should be “effectively the
same”

Judge runtime “as input grows large”
Ignore vanishing terms. n2 and n2 + n+ 7 should be “effectively the
same”,

This is what Order Notation does (Next)

Quantifying Runtimes 7/13



Granularity of Runtimes

At what granularity do we want to quantify runtime?
Capture aspects of runtime that persist as we tweak architecture,
basic instructions, increase number of cores,

Ignore constant multiples. n2 and 5n2 should be “effectively the
same”

Judge runtime “as input grows large”
Ignore vanishing terms. n2 and n2 + n+ 7 should be “effectively the
same”,

This is what Order Notation does (Next)

Quantifying Runtimes 7/13



Outline

1 Quantifying Runtimes

2 Order Notation (Big-O and friends)

3 Comparing Runtimes



Big-O

Big-O
For two functions f, g : N → N, we say f(n) = O(g(n)) if there are
constants n0 and c such that f(n) ≤ cg(n) for all n ≥ n0.

In other words, f(n) eventually less than g(n), if you don’t care about
constants. We refer to this as asymptotic order of growth.

Another Definition of big-O

f(n) = O(g(n)) if limn→∞
f(n)
g(n) < ∞.

Equivalent when the limit exists, which is the case most of the time.

This is abuse of the = symbol
If f = O(g), we can’t say O(g) = f . Really, it should be f ∈ O(g),
where O(g) is the class of functions that asymptotically grow no faster
than g, but this abuse of notation is with us for historical reasons.
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Examples

10n3 = O(n3)

10000n = O(n2)

log n = O(n)

10000n100 = O(2n)

. . .
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Friends of Big-O

f(n) = Ω(g(n)) : ∃c, n0 ∀n ≥ n0 f(n) ≥ cg(n)

Equivalent to g(n) = O(f(n)).
f(n) = Θ(g(n)): Both f(n) = O(g(n)) and f(n) = Ω(g(n))

f and g are within a constant of each other for large enough n.
f(n) = o(g(n)): ∀c > 0 ∃n0 ∀n ≥ n0 f(n) < cg(n)

When limit ratio exists: Same as limn→∞
f(n)
g(n) = 0. Also same as

f(n) = O(g(n) but not f(n) = Ω(g(n)).
f(n) = ω(g(n)): ∀c > 0 ∃n0 ∀n ≥ n0 f(n) > cg(n)

Equivalent to g(n) = o(f(n)).
When limit ratio exists: Same as limn→∞

f(n)
g(n) = ∞. Also same as

f(n) = Ω(g(n) but not f(n) = O(g(n)).

Think of O,Ω, θ, o, ω as ≤,≥,=, <,> respectively for comparing order
of growth.
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Exercise

Compare log n and
√
n. (Hint: Use L’Hopital’s rule)
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Common Rules of Thumb

Constants are best
Then logs and polylogs
Then polynomials
Then exponentials

These are the most common, but there is other stuff between them,
and also beyond exponentials.
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Exercise

Order the following runtimes
nn

log2 n

n1.01

1.01n

2
√
logn

n log1000 n
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