CS170: Discrete Methods in Computer Science Summer 2023 Sets and Friends

Instructor: Shaddin Dughmi ${ }^{1}$

[^0]
Outline

(1) Sets
(2) Tuples and Sequences
(3) Relations and Functions

4 Single-Set Relations

Definition

A set is an unordered collection of distinct objects, which we call it's members.

Examples: $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}, \emptyset$, even integers, prime numbers, students in this class, runtime functions that are $O(n)$

Definition

A set is an unordered collection of distinct objects, which we call it's members.

Examples: $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}, \emptyset$, even integers, prime numbers, students in this class, runtime functions that are $O(n)$

Notation

- \emptyset is the empty set
- $\{1,2,3\}$: The set which includes the three number $1,2,3$
- Even $=\{x \in \mathbb{N}: \exists k \in \mathbb{N} x=2 k\}$
- $x \in A$ denotes membership. E.g. $4 \in$ Even
- $x \notin A$ denotes non-membership. E.g. $3 \notin$ Even

Note

Order and repetition don't matter!

- E.g. $\{1,2,3\}=\{3,2,1\}=\{2,2,1,3,3,3\}$

Relationships between sets

- Subset: $A \subseteq B$ means every element of A is in B
- E.g. $\{1,2\} \subseteq\{1,2,3\}, \mathbb{N} \subseteq \mathbb{Z}, 170$ students \subseteq USC students
- The empty set \emptyset is a subset of every set
- Every set is a subset of itself: e.g. $\{1,2,3\} \subseteq\{1,2,3\}$.
- Equality: $A=B$ if both $A \subseteq B$ and $B \subseteq A$.
- Proper subset: $A \subset B$ or $A \subsetneq B$ means $A \subseteq B$ but $A \neq B$.
- E.g. 170 students \subset USC students, $\mathbb{N} \subset \mathbb{Z}$
- Superset: $A \supseteq B$ means $B \subseteq A$.
- Proper Superset: $A \supset B$ or $A \supsetneq B$ means $B \subseteq A$ and $B \neq A$.
- We say A and B are disjoint if they have no elements in common
- E.g. The set of Even numbers and the set of Odd numbers are disjoint

Sets of Sets

- Sets can include other sets as members. For example
- $\{\{1\},\{1,2,3\}, \emptyset\}$
- Set of communities in a social network
- $\left\{A \subseteq \mathbb{N}: \sum_{i \in A} i \leq 3\right\}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\}\}$
- $\{\emptyset,\{\emptyset\}, \mathbb{N},\{\mathbb{N}, \mathbb{Q}\}\}$
- Powerset of A, denoted by $\mathcal{P}(A)$ or 2^{A}, is set of all subsets of A
- E.g. $\mathcal{P}(\{1,2,3\})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- E.g. $\mathcal{P}(\emptyset)=\{\emptyset\}$, and $\mathcal{P}(\{\emptyset\})=\{\emptyset,\{\emptyset\}\}$

Cardinality of Sets

- The cardinality of a set A, denoted $|A|$, is the number of elements in it. May be finite or infinite. For example:
- $|\{1,2,3\}|=3$ and $|\emptyset|=0$
- $|\mathcal{P}(\{1,2,3\})|=8,|\{\emptyset\}|=1,|\mathcal{P}(\mathcal{P}(\emptyset))|=2$
- $|\mathbb{Z}|$ and $|\mathbb{R}|$ are ∞ (but not the same $\infty!!$)
- $|\{\mathbb{Z}, \mathbb{R}\}|=2$
- $|\mathcal{P}(A)|=2^{|A|}$ for finite sets A (why?)

Cardinality of Sets

- The cardinality of a set A, denoted $|A|$, is the number of elements in it. May be finite or infinite. For example:
- $|\{1,2,3\}|=3$ and $|\emptyset|=0$
- $|\mathcal{P}(\{1,2,3\})|=8,|\{\emptyset\}|=1,|\mathcal{P}(\mathcal{P}(\emptyset))|=2$
- $|\mathbb{Z}|$ and $|\mathbb{R}|$ are ∞ (but not the same $\infty!!$)
- $|\{\mathbb{Z}, \mathbb{R}\}|=2$
- $|\mathcal{P}(A)|=2^{|A|}$ for finite sets A (why?)

Interesting Fact

Comparing sizes of infinite sets is very interesting and relevant to CS! You will see that cardinality of set of computer programs is a smaller infinity than the cardinality of the set of problems you might want to solve, therefore there are problems that are not computable!

Operations on Sets and Venn Diagrams

- Intersection: $A \bigcap B$ contains elements that are in both A and B
- Union: $A \cup B$ contains elements that are in A or in B (or both)
- Difference: $A-B$ or $A \backslash B$ contains elements that are in A but not in B
- Complement: \bar{A} contains elements that are not in A
- Defined relative to a universe \mathbb{U}, which should clear from context.
- $\bar{A}=\mathbb{U}-A$
- These operations are often visualized using Venn Diagrams (on board)

Operations on Sets and Venn Diagrams

- Intersection: $A \bigcap B$ contains elements that are in both A and B
- Union: $A \cup B$ contains elements that are in A or in B (or both)
- Difference: $A-B$ or $A \backslash B$ contains elements that are in A but not in B
- Complement: \bar{A} contains elements that are not in A
- Defined relative to a universe \mathbb{U}, which should clear from context.
- $\bar{A}=\mathbb{U}-A$
- These operations are often visualized using Venn Diagrams (on board)

Some Examples

- Even $=\mathbb{Z}$ - Odd, which is Odd if universe is \mathbb{Z}
- Even \bigcap Odd $=\emptyset$ (they are disjoint)
- Even \bigcup Odd $=\mathbb{Z}$
- Multiples-of-3 \bigcap Multiples-of-2 $=$ Multiples-of-6
- $\mathbb{Z} \bigcup \mathbb{R}=\mathbb{R}$

Sets $\bullet \emptyset \bigcup A=A$ and $\emptyset \bigcap A=\emptyset$ for any set A

Generalized Union and Intersection

Can union or intersect many sets all at once with following shorthand

$$
\begin{aligned}
& \bigcup_{i=1}^{n} S_{i}=S_{1} \bigcup S_{2} \bigcup \ldots \bigcup S_{n} \\
& \bigcap_{i=1}^{n} S_{i}=S_{1} \bigcap S_{2} \bigcap \ldots \bigcap S_{n}
\end{aligned}
$$

Can also take infinite union / intersection. For example:

$$
\begin{gathered}
\mathbb{N}=\bigcup_{i=1}^{\infty}\{i\} \\
A=\bigcap_{x \notin A}(\mathbb{U}-\{x\})
\end{gathered}
$$

Properties of Set operations

Commutative

$$
\begin{aligned}
& A \bigcup B=B \bigcup A \\
& A \bigcap B=B \bigcap A
\end{aligned}
$$

Distributive

$$
\begin{aligned}
& A \bigcup(B \bigcap C)=(A \bigcup B) \bigcap(A \bigcup C) \\
& A \bigcap(B \bigcup C)=(A \bigcap B) \bigcup(A \bigcap C)
\end{aligned}
$$

Properties of Set operations

Commutative

$$
\begin{aligned}
& A \bigcup B=B \bigcup A \\
& A \bigcap B=B \bigcap A
\end{aligned}
$$

Distributive

$$
\begin{aligned}
& A \bigcup(B \bigcap C)=(A \bigcup B) \bigcap(A \bigcup C) \\
& A \bigcap(B \bigcup C)=(A \bigcap B) \bigcup(A \bigcap C)
\end{aligned}
$$

Should remind you of commutative and distributive from propositional logic

Outline

(1) Sets

(2) Tuples and Sequences
(3) Relations and Functions

4 Single-Set Relations

Tuples

- An n-tuple is an ordered list of n elements (basically, an array of n elements)
- Written using () or $<>$, unlike sets which are written using $\}$
- E.g. (1, 2, 3), (3, 2, 1), (1, 2, 2), (1, 2), (2, 1, 2) are all different tuples
- When $n=2$ often called an "ordered pair"
- You often see tuples constructed from sets using Cartesian products
- The cartesian product of sets A and B, denoted $A \times B$, is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.
- E.g. $\{1,2\} \times\{1,3,4\}=\{(1,1),(1,3),(1,4),(2,1),(2,3),(2,4)\}$
- E.g. USC Students \times USC Courses $=$ Set of possible class enrollments
- Note: $|A \times B|=|A||B|$

Sequences

- Intuitively: A sequence is essentially a countably infinite tuple
- Formally, it is a function from \mathbb{N} to elements
- E.g. Fibonacci Sequence: $0,1,1,2,3,5,8, \ldots$
- E.g. The sequence $T(n)$ of worst-case runtimes
- A sequence is called a recurrence relation if it is defined recursively
- E.g. Fibonacci, worst case runtime of Mergesort
- A closed form expression for a sequence is an elementary mathematical expression for the nth element of a sequence
- We found a closed form expression for the runtime of Mergesort
- There also is one for the Fibonacci sequence (look it up)
- Not every sequence has a closed-form expression
- "closed form" depends on what you allow in your expression

Outline

(1) Sets

(2) Tuples and Sequences
(3) Relations and Functions

4 Single-Set Relations

Relations

Definition

A Relation between sets A and B is some $R \subseteq A \times B$.

Example

- A is the set of USC Students
- B is the set of USC Courses
- $R=\{(a, b) \in A \times B$: student a is enrolled in class $b\}$

Functions

A function f from set A to set B takes as input a member of a, and outputs a member of b.

Formally

f is a relation between A and B where each $a \in A$ is related to exactly one $b \in B$.

- In other words, each $a \in A$ shows up exactly once in the relation.
- We use $f(a)$ to denote the output of f on a (i.e., the unique member of B which is related to a)
- When $b=f(a)$, we say b is the image of a under f.
- We say f is a map or mapping from A to B.
- We call A the domain and B the co-domain of f.
- The range of f is the set of possible outputs, which may or may not be the entire co-domain
- range $(f)=\{f(a): a \in A\}$.

Important Kinds of Functions

A function $f: A \rightarrow B$ is

- injective (a.k.a. one-to-one) if different inputs map to different outputs
- Formally: $\forall x, y \in A \quad(x \neq y \Rightarrow f(x) \neq f(y))$
- In other words: Every $b \in B$ is the output of f on at most one $a \in A$.
- surjective (a.k.a. onto) if every allowed output is produced from some input
- Formally: $\forall b \in B \exists a \in A \quad f(a)=b$
- In other words: Every $b \in B$ is the output of f on at least one $a \in A$.
- In other words still: range = codomain
- bijective (a.k.a. one-to-one correspondance) if it is both injective and surjective
- In other words: Every $b \in B$ is the output of f on exactly one $a \in A$.

Examples

- The function mapping USC students to their ID \#s is injective, but not surjective onto the co-domain of 10 digit numbers
- $f: \mathbb{R} \rightarrow \mathbb{Z}$ defined by $f(x)=\lfloor x\rfloor$ is surjective but not injective
- The identity function on A, defined by $f(a)=a$, is bijective for any set A.
- The function $f: \mathbb{Z} \rightarrow$ Even defined by $f(x)=2 x$ is bijective

Composition

Definition

If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, then their composition is the function $g \circ f: A \rightarrow C$ is the function mapping $a \in A$ to $g(f(a)) \in C$.

- In other words: Apply f first, then apply g to its output.
- Associative: $h \circ(g \circ f)=(h \circ g) \circ f$
- Proof: $h((g \circ f)(x))=h(g(f(x)))=(h \circ g)(f(x))$
- So we omit the parenthesis and write $h \circ g \circ f$
- NOT usually commutative: $f(g(x)) \neq g(f(x))$
- First of all, this doesn't even type check if $A \neq C$
- But even when $A=B=C$ this isn't true: $(x+1)^{2} \neq x^{2}+1$

Inverse of a Function

- If $f: A \rightarrow B$ is a bijection, then it has an inverse $f^{-1}: B \rightarrow A$.
- $f^{-1}(b)$ is defined as the unique $a \in A$ such that $f(a)=b$.
- $f^{-1}(f(a))=a$ for all $a \in A$, and $f\left(f^{-1}(b)\right)=b$ for all $b \in B$.
- IOW: $f^{-1} \circ f$ is the identity function on A, and $f \circ f^{-1}$ is the identity function on B.

Inverse of a Function

- If $f: A \rightarrow B$ is a bijection, then it has an inverse $f^{-1}: B \rightarrow A$.
- $f^{-1}(b)$ is defined as the unique $a \in A$ such that $f(a)=b$.
- $f^{-1}(f(a))=a$ for all $a \in A$, and $f\left(f^{-1}(b)\right)=b$ for all $b \in B$.
- IOW: $f^{-1} \circ f$ is the identity function on A, and $f \circ f^{-1}$ is the identity function on B.
- When $f: A \rightarrow B$ is just injective but not surjective, it is common to define f^{-1} : range $(f) \rightarrow A$ by first restricting the co-domain to the range (to make it surjective) then taking the inverse of that.

Outline

(1) Sets

2 Tuples and Sequences

(3) Relations and Functions
(4) Single-Set Relations

Single-Set Relations

Recall:
Definition
A Relation between sets A and B is some $R \subseteq A \times B$.

Single-Set Relations

Recall:

Definition

A Relation between sets A and B is some $R \subseteq A \times B$.

- We now look more closely at the special case when $A=B$. We call these Single-set Relations.
- A single set relation on A is some $R \subseteq A \times A$
- Many relations you have encountered, and will continue to encounter, are on the same set
- We will look at order relations (e.g. $\leq,<, \subseteq, \subset$, big- O) and equivalence relations (e.g. $=, \equiv$, big- Θ)

Single-Set Relations

Recall:

Definition

A Relation between sets A and B is some $R \subseteq A \times B$.

- We now look more closely at the special case when $A=B$. We call these Single-set Relations.
- A single set relation on A is some $R \subseteq A \times A$
- Many relations you have encountered, and will continue to encounter, are on the same set
- We will look at order relations (e.g. $\leq,<, \subseteq, \subset$, big- O) and equivalence relations (e.g. $=, \equiv$, big- Θ)

Infix Notation

Often it is convenient to use infix notation.

$$
a R b \text { means }(a, b) \in R
$$

$$
\text { e.g. } a \leq b, a=b
$$

Properties of Single-set Relations

Here are some properties that a single-set relation R on A may or may not have:

- Reflexive: Every element is related to itself. Formally, $(x, x) \in R$ for all $x \in A$.
- Irreflexive: No element is related to itself. Formally, $(x, x) \notin R$ for all $x \in A$.

Properties of Single-set Relations

Here are some properties that a single-set relation R on A may or may not have:

- Reflexive: Every element is related to itself. Formally, $(x, x) \in R$ for all $x \in A$.
- Irreflexive: No element is related to itself. Formally, $(x, x) \notin R$ for all $x \in A$.
- Symmetric: All relationships are mutual. Formally, $(x, y) \in R \Longleftrightarrow(y, x) \in R$ for all $a, b \in A$.
- Antisymmetric: No relationship between distinct elements is mutual. Formally, $(x, y) \in R \Rightarrow(y, x) \notin R$ for all $x, y \in A$ with $x \neq y$.

Properties of Single-set Relations

Here are some properties that a single-set relation R on A may or may not have:

- Reflexive: Every element is related to itself. Formally, $(x, x) \in R$ for all $x \in A$.
- Irreflexive: No element is related to itself. Formally, $(x, x) \notin R$ for all $x \in A$.
- Symmetric: All relationships are mutual. Formally, $(x, y) \in R \Longleftrightarrow(y, x) \in R$ for all $a, b \in A$.
- Antisymmetric: No relationship between distinct elements is mutual. Formally, $(x, y) \in R \Rightarrow(y, x) \notin R$ for all $x, y \in A$ with $x \neq y$.
- Transitive: If x is related to y and y is related to z then x is also related to z. Formally, $(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$.

Properties of Single-set Relations

Here are some properties that a single-set relation R on A may or may not have:

- Reflexive: Every element is related to itself. Formally, $(x, x) \in R$ for all $x \in A$.
- Irreflexive: No element is related to itself. Formally, $(x, x) \notin R$ for all $x \in A$.
- Symmetric: All relationships are mutual. Formally, $(x, y) \in R \Longleftrightarrow(y, x) \in R$ for all $a, b \in A$.
- Antisymmetric: No relationship between distinct elements is mutual. Formally, $(x, y) \in R \Rightarrow(y, x) \notin R$ for all $x, y \in A$ with $x \neq y$.
- Transitive: If x is related to y and y is related to z then x is also related to z. Formally, $(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$.
- Total: Every distinct pair of elements is related in at least one direction. Formally, $(x, y) \in R \vee(y, x) \in R$ for all $x, y \in A$ with $x \neq y$.

Order Relations

- A partial order is a single-set relation which is reflexive, antisymmetric, and transitive
- E.g. \leq on numbers, \subseteq on sets, divisibility | on integers
- Sometimes calles weak partial order

Order Relations

- A partial order is a single-set relation which is reflexive, antisymmetric, and transitive
- E.g. \leq on numbers, \subseteq on sets, divisibility | on integers
- Sometimes calles weak partial order
- A strict partial order is a single-set relation which is irreflexive, antisymmetric, and transitive
- E.g. < on numbers, \subset on sets, little-o on functions, prerequisite on courses
- Note: can be converted to partial order by adding all self-relations, and vice versa

Order Relations

- A partial order is a single-set relation which is reflexive, antisymmetric, and transitive
- E.g. \leq on numbers, \subseteq on sets, divisibility | on integers
- Sometimes calles weak partial order
- A strict partial order is a single-set relation which is irreflexive, antisymmetric, and transitive
- E.g. < on numbers, \subset on sets, little-o on functions, prerequisite on courses
- Note: can be converted to partial order by adding all self-relations, and vice versa

Can be visualized by a directed acyclic graph (DAG)!

Order Relations

- A total order is a partial order which is also total.
- Every pair of elements is comparable
- e.g. \leq on numbers, lexicographic (dictionary) order on strings, temporal order of events
- Sometimes also called a weak total order

Order Relations

- A total order is a partial order which is also total.
- Every pair of elements is comparable
- e.g. \leq on numbers, lexicographic (dictionary) order on strings, temporal order of events
- Sometimes also called a weak total order
- A strict total order is a strict partial order which is also total.
- Every pair of distinct elements is comparable
- e.g. < on numbers
- Can be converted to weak total order by adding all self relations, and vice versa

Order Relations

- A total order is a partial order which is also total.
- Every pair of elements is comparable
- e.g. \leq on numbers, lexicographic (dictionary) order on strings, temporal order of events
- Sometimes also called a weak total order
- A strict total order is a strict partial order which is also total.
- Every pair of distinct elements is comparable
- e.g. < on numbers
- Can be converted to weak total order by adding all self relations, and vice versa

Can be visualized on a line.

Order Relations

- A total order is a partial order which is also total.
- Every pair of elements is comparable
- e.g. \leq on numbers, lexicographic (dictionary) order on strings, temporal order of events
- Sometimes also called a weak total order
- A strict total order is a strict partial order which is also total.
- Every pair of distinct elements is comparable
- e.g. < on numbers
- Can be converted to weak total order by adding all self relations, and vice versa

Can be visualized on a line.

Topological Ordering

A partial order (weak or strict) can be completed to a total order. For example, the order in which you take your classes, respecting pre-requisites, is a topological ordering of the prerequisite relation.

Equivalence Relations

Definition

An Equivalence Relation is a single-set relation which is reflexive, symmetric, and transitive.

These capture various notions of "equality"

Examples

- o on numbers, sets, ...
- Getting the same grade in 170
- big- Θ on functions
- \equiv on logical formulas
- Reachability in an undirected graph
- Congruence modulo k, on integers. Written $a \equiv b(\bmod k)$.
- $a \equiv b(\bmod k)$ iff $k \mid(a-b)$

Equivalence Relations

Useful Fact

An equivalence relation \approx on a set A partitions the set into equivalence classes, where $a \approx b$ iff they are in the same class.

Equivalence Relations

Useful Fact

An equivalence relation \approx on a set A partitions the set into equivalence classes, where $a \approx b$ iff they are in the same class.

What are the equivalence classes in these examples?

Examples

- = on numbers, sets, ...
- Getting the same grade in 170
- big- Θ on functions
- \equiv on logical formulas
- Reachability in an undirected graph
- Congruence modulo k, on integers. Written $a \equiv b(\bmod k)$.
- $a \equiv b(\bmod k)$ iff $k \mid(a-b)$

[^0]: ${ }^{1}$ These slides adapt some content from similar slides by Aaron Cote.

