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Definition
A set is an unordered collection of distinct objects, which we call it’s
members.

Examples: N, Z, R, Q, ∅, even integers, prime numbers, students in
this class, runtime functions that are O(n)

Notation
∅ is the empty set
{1, 2, 3}: The set which includes the three number 1, 2, 3
Even = {x ∈ N : ∃k ∈ N x = 2k}
x ∈ A denotes membership. E.g. 4 ∈ Even
x ̸∈ A denotes non-membership. E.g. 3 ̸∈ Even

Note
Order and repetition don’t matter!

E.g. {1, 2, 3} = {3, 2, 1} = {2, 2, 1, 3, 3, 3}
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Relationships between sets

Subset: A ⊆ B means every element of A is in B

E.g. {1, 2} ⊆ {1, 2, 3}, N ⊆ Z, 170 students ⊆ USC students
The empty set ∅ is a subset of every set
Every set is a subset of itself: e.g. {1, 2, 3} ⊆ {1, 2, 3}.

Equality: A = B if both A ⊆ B and B ⊆ A.
Proper subset: A ⊂ B or A ⊊ B means A ⊆ B but A ̸= B.

E.g. 170 students ⊂ USC students, N ⊂ Z
Superset: A ⊇ B means B ⊆ A.
Proper Superset: A ⊃ B or A ⊋ B means B ⊆ A and B ̸= A.
We say A and B are disjoint if they have no elements in common

E.g. The set of Even numbers and the set of Odd numbers are
disjoint
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Sets of Sets

Sets can include other sets as members. For example
{{1} , {1, 2, 3} , ∅}
Set of communities in a social network{
A ⊆ N :

∑
i∈A i ≤ 3

}
= {∅, {1} , {2} , {3} , {1, 2}}

{∅, {∅} ,N, {N,Q}}
Powerset of A, denoted by P(A) or 2A, is set of all subsets of A

E.g. P({1, 2, 3}) = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}
E.g. P(∅) = {∅}, and P({∅}) = {∅, {∅}}
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Cardinality of Sets

The cardinality of a set A, denoted |A|, is the number of elements
in it. May be finite or infinite. For example:

| {1, 2, 3} | = 3 and |∅| = 0
|P({1, 2, 3})| = 8, | {∅} | = 1, |P(P(∅))| = 2
|Z| and |R| are ∞ (but not the same ∞!!)
| {Z,R} | = 2

|P(A)| = 2|A| for finite sets A (why?)

Interesting Fact
Comparing sizes of infinite sets is very interesting and relevant to CS!
You will see that cardinality of set of computer programs is a smaller
infinity than the cardinality of the set of problems you might want to
solve, therefore there are problems that are not computable!
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Operations on Sets and Venn Diagrams

Intersection: A
⋂
B contains elements that are in both A and B

Union: A
⋃
B contains elements that are in A or in B (or both)

Difference: A−B or A \B contains elements that are in A but not
in B
Complement: A contains elements that are not in A

Defined relative to a universe U, which should clear from context.
A = U−A

These operations are often visualized using Venn Diagrams (on
board)

Some Examples

Even = Z− Odd, which is Odd if universe is Z
Even

⋂
Odd = ∅ (they are disjoint)

Even
⋃

Odd = Z
Multiples-of-3

⋂
Multiples-of-2 = Multiples-of-6

Z
⋃

R = R
∅
⋃
A = A and ∅

⋂
A = ∅ for any set A
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Generalized Union and Intersection

Can union or intersect many sets all at once with following shorthand

n⋃
i=1

Si = S1

⋃
S2

⋃
. . .

⋃
Sn

n⋂
i=1

Si = S1

⋂
S2

⋂
. . .

⋂
Sn

Can also take infinite union / intersection. For example:

N =

∞⋃
i=1

{i}

A =
⋂
x ̸∈A

(U− {x})
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Properties of Set operations

Commutative
A
⋃

B = B
⋃

A

A
⋂

B = B
⋂

A

Distributive
A
⋃

(B
⋂

C) = (A
⋃

B)
⋂

(A
⋃

C)

A
⋂

(B
⋃

C) = (A
⋂

B)
⋃

(A
⋂

C)

Should remind you of commutative and distributive from propositional
logic
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Tuples

An n-tuple is an ordered list of n elements (basically, an array of n
elements)

Written using () or <>, unlike sets which are written using {}
E.g. (1, 2, 3), (3, 2, 1), (1, 2, 2), (1, 2), (2, 1, 2) are all different tuples
When n = 2 often called an “ordered pair”

You often see tuples constructed from sets using Cartesian
products
The cartesian product of sets A and B, denoted A×B, is the set
of all ordered pairs (a, b) with a ∈ A and b ∈ B.

E.g. {1, 2} × {1, 3, 4} = {(1, 1), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4)}
E.g. USC Students × USC Courses = Set of possible class
enrollments

Note: |A×B| = |A||B|
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Sequences

Intuitively: A sequence is essentially a countably infinite tuple
Formally, it is a function from N to elements

E.g. Fibonacci Sequence: 0, 1, 1, 2, 3, 5, 8, . . .
E.g. The sequence T (n) of worst-case runtimes
A sequence is called a recurrence relation if it is defined
recursively

E.g. Fibonacci, worst case runtime of Mergesort
A closed form expression for a sequence is an elementary
mathematical expression for the nth element of a sequence

We found a closed form expression for the runtime of Mergesort
There also is one for the Fibonacci sequence (look it up)
Not every sequence has a closed-form expression
“closed form” depends on what you allow in your expression
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Relations

Definition
A Relation between sets A and B is some R ⊆ A×B.

Example
A is the set of USC Students
B is the set of USC Courses
R = {(a, b) ∈ A×B : student a is enrolled in class b}
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Functions

A function f from set A to set B takes as input a member of a, and
outputs a member of b.

Formally
f is a relation between A and B where each a ∈ A is related to exactly
one b ∈ B.

In other words, each a ∈ A shows up exactly once in the relation.
We use f(a) to denote the output of f on a (i.e., the unique
member of B which is related to a)
When b = f(a), we say b is the image of a under f .
We say f is a map or mapping from A to B.
We call A the domain and B the co-domain of f .
The range of f is the set of possible outputs, which may or may
not be the entire co-domain

range(f) = {f(a) : a ∈ A}.
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Important Kinds of Functions

A function f : A → B is
injective (a.k.a. one-to-one) if different inputs map to different
outputs

Formally: ∀x, y ∈ A (x ̸= y ⇒ f(x) ̸= f(y))
In other words: Every b ∈ B is the output of f on at most one a ∈ A.

surjective (a.k.a. onto) if every allowed output is produced from
some input

Formally: ∀b ∈ B ∃a ∈ A f(a) = b
In other words: Every b ∈ B is the output of f on at least one a ∈ A.
In other words still: range = codomain

bijective (a.k.a. one-to-one correspondance) if it is both injective
and surjective

In other words: Every b ∈ B is the output of f on exactly one a ∈ A.
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Examples

The function mapping USC students to their ID #s is injective, but
not surjective onto the co-domain of 10 digit numbers
f : R → Z defined by f(x) = ⌊x⌋ is surjective but not injective
The identity function on A, defined by f(a) = a, is bijective for any
set A.
The function f : Z → Even defined by f(x) = 2x is bijective
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Composition

Definition
If f : A → B and g : B → C are functions, then their composition is the
function g ◦ f : A → C is the function mapping a ∈ A to g(f(a)) ∈ C.

In other words: Apply f first, then apply g to its output.
Associative: h ◦ (g ◦ f) = (h ◦ g) ◦ f

Proof: h((g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x))
So we omit the parenthesis and write h ◦ g ◦ f

NOT usually commutative: f(g(x)) ̸= g(f(x))

First of all, this doesn’t even type check if A ̸= C
But even when A = B = C this isn’t true: (x+ 1)2 ̸= x2 + 1
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Inverse of a Function

If f : A → B is a bijection, then it has an inverse f−1 : B → A.
f−1(b) is defined as the unique a ∈ A such that f(a) = b.

f−1(f(a)) = a for all a ∈ A, and f(f−1(b)) = b for all b ∈ B.
IOW: f−1 ◦ f is the identity function on A, and f ◦ f−1 is the identity
function on B.

When f : A → B is just injective but not surjective, it is common to
define f−1 : range(f) → A by first restricting the co-domain to the
range (to make it surjective) then taking the inverse of that.
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Single-Set Relations

Recall:

Definition
A Relation between sets A and B is some R ⊆ A×B.

We now look more closely at the special case when A = B. We
call these Single-set Relations.

A single set relation on A is some R ⊆ A×A

Many relations you have encountered, and will continue to
encounter, are on the same set
We will look at order relations (e.g. ≤, <,⊆,⊂, big-O) and
equivalence relations (e.g. =, ≡, big-Θ)

Infix Notation
Often it is convenient to use infix notation.

a R b means (a, b) ∈ R

e.g. a ≤ b, a = b
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Properties of Single-set Relations

Here are some properties that a single-set relation R on A may or may
not have:

Reflexive: Every element is related to itself. Formally, (x, x) ∈ R
for all x ∈ A.
Irreflexive: No element is related to itself. Formally, (x, x) ̸∈ R for
all x ∈ A.

Symmetric: All relationships are mutual. Formally,
(x, y) ∈ R ⇐⇒ (y, x) ∈ R for all a, b ∈ A.
Antisymmetric: No relationship between distinct elements is
mutual. Formally, (x, y) ∈ R ⇒ (y, x) ̸∈ R for all x, y ∈ A with
x ̸= y.
Transitive: If x is related to y and y is related to z then x is also
related to z. Formally, (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R.
Total: Every distinct pair of elements is related in at least one
direction. Formally, (x, y) ∈ R ∨ (y, x) ∈ R for all x, y ∈ A with
x ̸= y.
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Order Relations

A partial order is a single-set relation which is reflexive,
antisymmetric, and transitive

E.g. ≤ on numbers, ⊆ on sets, divisibility | on integers
Sometimes calles weak partial order

A strict partial order is a single-set relation which is irreflexive,
antisymmetric, and transitive

E.g. < on numbers, ⊂ on sets, little-o on functions, prerequisite on
courses
Note: can be converted to partial order by adding all self-relations,
and vice versa

Can be visualized by a directed acyclic graph (DAG)!
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Order Relations

A total order is a partial order which is also total.
Every pair of elements is comparable
e.g. ≤ on numbers, lexicographic (dictionary) order on strings,
temporal order of events
Sometimes also called a weak total order

A strict total order is a strict partial order which is also total.
Every pair of distinct elements is comparable
e.g. < on numbers
Can be converted to weak total order by adding all self relations,
and vice versa

Can be visualized on a line.

Topological Ordering
A partial order (weak or strict) can be completed to a total order. For
example, the order in which you take your classes, respecting
pre-requisites, is a topological ordering of the prerequisite relation.
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Equivalence Relations

Definition
An Equivalence Relation is a single-set relation which is reflexive,
symmetric, and transitive.

These capture various notions of “equality”

Examples
= on numbers, sets, . . .
Getting the same grade in 170
big-Θ on functions
≡ on logical formulas
Reachability in an undirected graph
Congruence modulo k, on integers. Written a ≡ b(mod k).

a ≡ b(mod k) iff k|(a− b)
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Equivalence Relations

Useful Fact
An equivalence relation ≈ on a set A partitions the set into
equivalence classes, where a ≈ b iff they are in the same class.

What are the equivalence classes in these examples?

Examples
= on numbers, sets, . . .
Getting the same grade in 170
big-Θ on functions
≡ on logical formulas
Reachability in an undirected graph
Congruence modulo k, on integers. Written a ≡ b(mod k).

a ≡ b(mod k) iff k|(a− b)
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