
CS170: Discrete Methods in Computer Science
Summer 2023

Sorting

Instructor: Shaddin Dughmi1

1These slides adapt some content from similar slides by Aaron Cote.
1



Sorting

In this lecture, we will examine the problem of sorting an array.
This will exercise what we learned about proofs (especially
induction) and runtime.
Good warmup for 270.

Sorting
Input: An array of n numbers, in arbitrary order

a = [a0, . . . , an−1]

Output: Array with same n numbers, ordered from small to large
If the same number appears multiple times in the input, it must
appear the same number of times in the output

Computational Model
We need to be clear about how to count runtime. In addition to usual,
we consider the following to be basic operations taking constant time:

Comparison of two numbers
Reading / Writing from array, given index

2



Sorting

In this lecture, we will examine the problem of sorting an array.
This will exercise what we learned about proofs (especially
induction) and runtime.
Good warmup for 270.

Sorting
Input: An array of n numbers, in arbitrary order

a = [a0, . . . , an−1]

Output: Array with same n numbers, ordered from small to large
If the same number appears multiple times in the input, it must
appear the same number of times in the output

Computational Model
We need to be clear about how to count runtime. In addition to usual,
we consider the following to be basic operations taking constant time:

Comparison of two numbers
Reading / Writing from array, given index

2



Sorting

In this lecture, we will examine the problem of sorting an array.
This will exercise what we learned about proofs (especially
induction) and runtime.
Good warmup for 270.

Sorting
Input: An array of n numbers, in arbitrary order

a = [a0, . . . , an−1]

Output: Array with same n numbers, ordered from small to large
If the same number appears multiple times in the input, it must
appear the same number of times in the output

Computational Model
We need to be clear about how to count runtime. In addition to usual,
we consider the following to be basic operations taking constant time:

Comparison of two numbers
Reading / Writing from array, given index

2



Outline

1 Bubble Sort

2 Selection Sort

3 Insertion Sort

4 Merge Sort



Bubble Sort at a High Level

Compare 1st and 2nd, swap if out of order
Compare 2nd and 3rd, swap if out of order
All the way to nth

At this point, we know the largest is at position n, so we repeat the
above up to position n− 1, then up to position n− 2, etc

Lets work through this example: [7, 9, 5, 9, 3]

Bubble Sort 3/21



Bubble Sort at a High Level

Compare 1st and 2nd, swap if out of order
Compare 2nd and 3rd, swap if out of order
All the way to nth

At this point, we know the largest is at position n, so we repeat the
above up to position n− 1, then up to position n− 2, etc

Lets work through this example: [7, 9, 5, 9, 3]

Bubble Sort 3/21



Bubble Sort at a High Level

Compare 1st and 2nd, swap if out of order
Compare 2nd and 3rd, swap if out of order
All the way to nth

At this point, we know the largest is at position n, so we repeat the
above up to position n− 1, then up to position n− 2, etc

Lets work through this example: [7, 9, 5, 9, 3]

Bubble Sort 3/21



Bubble Sort in Pseudocode

For i from n− 1 to 1
For j from 0 to i− 1

If a[j] > a[j + 1] then swap(a,j, j + 1)

The function swap(a,j,j + 1) just reads a[j] and a[j + 1] into registers
and then copies a[j] into position j + 1 and a[j + 1] into position j.
Obviously constant time.

Bubble Sort 4/21



Bubble Sort in Pseudocode

For i from n− 1 to 1
For j from 0 to i− 1

If a[j] > a[j + 1] then swap(a,j, j + 1)

The function swap(a,j,j + 1) just reads a[j] and a[j + 1] into registers
and then copies a[j] into position j + 1 and a[j + 1] into position j.
Obviously constant time.

Bubble Sort 4/21



Runtime Analysis

For i from n− 1 to 1
For j from 0 to i− 1

If a[j] > a[j + 1] then swap(a,j, j + 1)

Runtime Analysis
n− 1 = O(n) iterations of outer loop
(n− 1)+ (n− 2)+ . . .+1 =

∑n−1
i=1 = O(n2) iterations of inner loop.

Innermost statement takes time O(1), executed O(n2) times
Total: O(n2)

Bubble Sort 5/21



Correctness
For i from n− 1 to 1

For j from 0 to i− 1
If a[j] > a[j + 1] then swap(a,j, j + 1)

We use induction on number of iterations of the outer loop to prove

Loop invariant
At the start of the kth iteration, the largest k − 1 elements are in the
last k − 1 positions, in sorted order.

kth iteration is when i = n− k.

Proof
Base case: At start of 1st iter, largest 0 elts are in last 0 positions.
Inductive Hypothesis: Loop invariant true for k
Induction step: Prove Loop invariant for k + 1. During iteration k,
last k − 1 elements (largest) don’t move. kth largest element will
be bubbled up to index n− k. So at start of k+1 iteration largest k
elements are in the last k positions in sorted order.

Bubble Sort 6/21



Correctness
For i from n− 1 to 1

For j from 0 to i− 1
If a[j] > a[j + 1] then swap(a,j, j + 1)

We use induction on number of iterations of the outer loop to prove

Loop invariant
At the start of the kth iteration, the largest k − 1 elements are in the
last k − 1 positions, in sorted order.

kth iteration is when i = n− k.

Proof
Base case: At start of 1st iter, largest 0 elts are in last 0 positions.
Inductive Hypothesis: Loop invariant true for k
Induction step: Prove Loop invariant for k + 1. During iteration k,
last k − 1 elements (largest) don’t move. kth largest element will
be bubbled up to index n− k. So at start of k+1 iteration largest k
elements are in the last k positions in sorted order.

Bubble Sort 6/21



Outline

1 Bubble Sort

2 Selection Sort

3 Insertion Sort

4 Merge Sort



Selection Sort at a High Level

Scan array to find smallest element, swap into first position
Scan array from 2nd to last element to find smallest, swap into in
2nd position
Scan array from 3rd to last element to find smallest, swap into in
3rd position
. . .
Until sorted

Lets work through this example: [7, 9, 5, 9, 3]

Selection Sort 7/21



Selection Sort at a High Level

Scan array to find smallest element, swap into first position
Scan array from 2nd to last element to find smallest, swap into in
2nd position
Scan array from 3rd to last element to find smallest, swap into in
3rd position
. . .
Until sorted

Lets work through this example: [7, 9, 5, 9, 3]

Selection Sort 7/21



Selection Sort in Pseudocode

For i from 0 to n− 1

small = i;
For j from i+ 1 to n− 1

If a[j] < a[small] then small = j

swap(a,i, small)

Selection Sort 8/21



Runtime Analysis

For i from 0 to n− 1

small = i;
For j from i+ 1 to n− 1

If a[j] < a[small] then small = j

swap(a,i, small)

Runtime Analysis
n iterations of outer loop
(n− 1) + (n− 2) + . . .+ 1 = O(n2) iterations of inner loop
Otherwise, each statement takes constant time per execution
Total: O(n2)

Selection Sort 9/21



Correctness
For i from 0 to n− 1

small = i;
For j from i+ 1 to n− 1

If a[j] < a[small] then small = j

swap(a,i, small)

Loop invariant
At the start of outer iteration with i = k, the smallest k elements are in
the first k positions, in sorted order.

Proof
Base case: Smallest 0 elts are in first 0 positions at beginning.
Inductive Hypothesis: Loop invariant true for k
Induction step: Prove Loop invariant for k+ 1. During iteration with
i = k, first k elements (smallest) don’t move. k + 1st smallest
element will be swapped into position k (the k + 1st position in the
array). So at start of iteration with i = k + 1, smallest k + 1
elements are in the first k + 1 positions in sorted order.

Selection Sort 10/21



Correctness
For i from 0 to n− 1

small = i;
For j from i+ 1 to n− 1

If a[j] < a[small] then small = j

swap(a,i, small)

Loop invariant
At the start of outer iteration with i = k, the smallest k elements are in
the first k positions, in sorted order.

Proof
Base case: Smallest 0 elts are in first 0 positions at beginning.
Inductive Hypothesis: Loop invariant true for k
Induction step: Prove Loop invariant for k+ 1. During iteration with
i = k, first k elements (smallest) don’t move. k + 1st smallest
element will be swapped into position k (the k + 1st position in the
array). So at start of iteration with i = k + 1, smallest k + 1
elements are in the first k + 1 positions in sorted order.Selection Sort 10/21



Outline

1 Bubble Sort

2 Selection Sort

3 Insertion Sort

4 Merge Sort



Insertion Sort at a High Level

Sort the first element of the array (i.e., do nothing)
Insert the second element of array so that first two elements are
sorted
Insert the third element so first three elements are sorted
. . .
Insert the last element so all elements are sorted.

Lets work through this example: [7, 9, 5, 9, 3]

Insertion Sort 11/21



Insertion Sort at a High Level

Sort the first element of the array (i.e., do nothing)
Insert the second element of array so that first two elements are
sorted
Insert the third element so first three elements are sorted
. . .
Insert the last element so all elements are sorted.

Lets work through this example: [7, 9, 5, 9, 3]

Insertion Sort 11/21



Insertion Sort in Pseudocode

For i from 1 to n− 1

j = i
While (j > 0 and a[j] < a[j − 1])

swap(a,j,j − 1)
j = j − 1

Insertion Sort 12/21



Runtime Analysis

For i from 1 to n− 1

j = i
While (j > 0 and a[j] < a[j − 1])

swap(a,j,j − 1)
j = j − 1

Runtime Analysis
n− 1 = O(n) iterations of outer loop
1 + 2 . . .+ (n− 1) = O(n2) iterations of inner loop
Otherwise, each statement takes constant time per execution
Total: O(n2)

Insertion Sort 13/21



Correctness
For i from 1 to n− 1

j = i
While (j > 0 and a[j] < a[j − 1])

swap(a,j,j − 1)
j = j − 1

Loop invariant
At the start of outer iteration with i = k, the first k elements of the array
are in sorted order.

Proof
Base case: The first element is in sorted order
Inductive Hypothesis: Loop invariant true for k
Induction step: Prove Loop invariant for k+ 1. During iteration with
i = k, first k elements don’t change their relative order. The
k + 1st element will be inserted (bubbled down) in its proper place
between them. So at start of iteration with i = k + 1, first k + 1
elements are in sorted order.

Insertion Sort 14/21



Correctness
For i from 1 to n− 1

j = i
While (j > 0 and a[j] < a[j − 1])

swap(a,j,j − 1)
j = j − 1

Loop invariant
At the start of outer iteration with i = k, the first k elements of the array
are in sorted order.

Proof
Base case: The first element is in sorted order
Inductive Hypothesis: Loop invariant true for k
Induction step: Prove Loop invariant for k+ 1. During iteration with
i = k, first k elements don’t change their relative order. The
k + 1st element will be inserted (bubbled down) in its proper place
between them. So at start of iteration with i = k + 1, first k + 1
elements are in sorted order.

Insertion Sort 14/21



Outline

1 Bubble Sort

2 Selection Sort

3 Insertion Sort

4 Merge Sort



Merge Sort at a High Level

If your array has 1 element, you’re done
Otherwise, resursively sort left half and right half
Merge the left and right half to produce the entire sorted array

Smallest element overall must be smallest on left or on right
Most that to final array
Repeat

Lets work through this example: [1, 5, 3, 4, 2, 6]

Merge Sort 15/21



Merge Sort at a High Level

If your array has 1 element, you’re done
Otherwise, resursively sort left half and right half
Merge the left and right half to produce the entire sorted array

Smallest element overall must be smallest on left or on right
Most that to final array
Repeat

Lets work through this example: [1, 5, 3, 4, 2, 6]

Merge Sort 15/21



Merge Sort in Pseudocode

Mergsort(a, L,R):
If L = R return.
Let m be the middle between L and R (what should exact
equation for m be?)
Mergesort(a, L,m)
Mergesort(a,m+ 1,R)
Merge(a,L,m,R)

Merge(a, L,m,R):
Create temporary array b (how long?)
i = L, j = m+ 1, k = 0

While i ≤ m and j ≤ r

Copy the smaller of a[i] and a[j] to b[k], incrementing the
corresponding index (i or j), and incrementing k.

Copy the remaining (uncopied) elements to b in order
Copy b back to a[L, . . . , R].

Merge Sort 16/21



Merge Sort in Pseudocode

Merge(a, L,m,R):
Create temporary array b (how long?)
i = L, j = m+ 1, k = 0

While i ≤ m and j ≤ r

Copy the smaller of a[i] and a[j] to b[k], incrementing the
corresponding index (i or j), and incrementing k.

Copy the remaining (uncopied) elements to b in order
Copy b back to a[L, . . . , R].

Merge Sort 16/21



Correctness

Lemma
Let aℓ denote the subarray a[L, . . . ,m] and ar denote the subarray
a[m+ 1, . . . , R]. When aℓ and ar are sorted, merge sorts a[L . . . , R].

Proof
It suffices to prove that after the iteration of the while loop with
k = t, b[0, . . . , t] contains the t smallest elements in a[L, . . . , R] in
order.

The rest, after the while loop, is obvious since we copy remaining
elements in order.

We do this by induction on t.

Merge Sort 17/21



Correctness

Lemma
Let aℓ denote the subarray a[L, . . . ,m] and ar denote the subarray
a[m+ 1, . . . , R]. When aℓ and ar are sorted, merge sorts a[L . . . , R].

Proof
It suffices to prove that after the iteration of the while loop with
k = t, b[0, . . . , t] contains the t smallest elements in a[L, . . . , R] in
order.

The rest, after the while loop, is obvious since we copy remaining
elements in order.

We do this by induction on t.

Merge Sort 17/21



Correctness

Lemma
Let aℓ denote the subarray a[L, . . . ,m] and ar denote the subarray
a[m+ 1, . . . , R]. When aℓ and ar are sorted, merge sorts a[L . . . , R].

Proof
Base case t = 0: We copy the smaller of a[L] and a[m+ 1] to b[0].
Since aℓ and ar are sorted, this is smallest overall in a[L, . . . , R].
Inductive hypothesis: After iteration of the while loop with k = t,
b[0, . . . , t] contains the t smallest elements in a[L, . . . , R] in order.
Inductive step:

Consider the iteration with k = t+ 1.
a[i] is the smallest element of aℓ that has not been copied to b, and
a[j] is the smallest element of ar that has not been copied to b.
We pick smaller of these to copy into b[k]. This is the next smallest.
Therefore, b[0, . . . , t+ 1] now contains the t+ 1 smallest elements
in order.

Merge Sort 17/21



Correctness

Theorem
Mergesort correctly sorts the subarray a′ = a[L, . . . , R].

Proof
We induct on the length n of a′.
Base case n = 1: Here L = R, and the algorithm returns.
Induction hypothesis: Mergesort correctly sorts subarrays of
length at most n.
Induction step:

Consider subarray a′ of length n+ 1.
Mergesort splits it into two parts a′ℓ = a[L, . . . ,m] and
a′r = a[m+ 1, . . . , R] of length no more than n (in fact, roughly n+1

2 ),
and recurses on each part.
By the induction hypothesis, the recursive calls correctly sort a′ℓ and
a′r.
By our Lemma, Merge correctly sorts a′ given the two sorted parts
a′ℓ and a′rMerge Sort 18/21



Runtime Analysis: Merge

Lemma
The Merge operation runs in linear time.

In more detail: When given subarrays aℓ = a[L, . . . ,m] and
ar = a[m+1, . . . , R], with total length n = R−L+1, runs in time O(n).

Proof
Creating b takes linear time
While loop has O(n) iterations, since it increments one of i or j
each iteration, and this can happen at most
m− L+R−m = O(n) times before the while loop terminates.
Each iteration of loop takes constant time
Remaining copying operations take linear time

Merge Sort 19/21



Runtime Analysis: Merge

Lemma
The Merge operation runs in linear time.

In more detail: When given subarrays aℓ = a[L, . . . ,m] and
ar = a[m+1, . . . , R], with total length n = R−L+1, runs in time O(n).

Proof
Creating b takes linear time
While loop has O(n) iterations, since it increments one of i or j
each iteration, and this can happen at most
m− L+R−m = O(n) times before the while loop terminates.
Each iteration of loop takes constant time
Remaining copying operations take linear time

Merge Sort 19/21



Runtime Analysis: Solve by Tree

On board

Merge Sort 20/21



Runtime Analysis: Induction

Claim
Mergesort runs in time O(n log n).

Proof
Let T (n) be the worst-case runtime of mergesort on arrays of
length n.
There is a constant c such that

T (1) ≤ c
T (n) ≤ 2T (n/2) + cn for all n ≥ 2 (why?)

We can show by strong induction that T (n) ≤ cn(log(n) + 1)

Base case: Trivial
Inductive step:

T (n) = 2T (n/2) + cn ≤ 2c
n

2
(log(n/2) + 1) + cn = cn(log n+ 1)

where the inequality invokes the inductive hypothesis for n/2
Merge Sort 21/21


	Bubble Sort
	Selection Sort
	Insertion Sort
	Merge Sort

