The Runtime of Algorithms

The typical measure of running time is to count the number of operations performed.

e What is wrong with this measure?

e Suppose we have two algorithms to solve the same problem; that problem has, as input,
an array A of size n. Would it be better to have an algorithm that takes 20n operations
or one that takes n? operations? Why?

In general, we are concerned with solving very big problems. As such, our question becomes
“as n becomes very large, which is better?”

Based on this, a good question to ask is: “if I double the size of the input, how much longer
does the algorithm take?” For each of the following operation counts, how much longer will
the algorithm take if we do this?

Time Change Time Change
n 20m

10n + 37 n?

n n’® + 10n® + 21

Linear-time algorithms double in running-time when the size of the input doubles.
Polynomial-time algorithms increase by a constant factor.

Finding the running time of an algorithm

Consider the following algorithm:

Find-Max
Input: an array A of n comparable values, denoted A; ... A,
Output: the value of the largest element of A.

max = A;

fort: =2 —ndo

if max < A; then
max = A;
return max

How many lines of code get executed when Find-Max is run, as a function of n, the number
of elements in A?

Consider the following algorithm:

Bubble-Sort
Input: an array A of n comparable values, denoted A; ... A,
Effect: Array A contains the same elements, in sorted order, when this returns.

fori=1—-n—-1do
for j=1—-n—-ido

if aj > Gj41 then
swap a; and a1

How many lines of code get executed when Bubble-Sort is run, as a function of n, the
number of elements in A?

We will typically give the number of operations it takes in the worst case.

e What other ways could we analyze the number of operations?

e What kind of reasons can you think of for why we would want to analyze worst case?

e What kind of problems can you think of for analyzing in other ways?

Notation for growth of functions
We say that f(n) is O(g(n)) (read: f of n is big-oh of g of n) if and only if:

For some constants ¢ and ng, for all n > ng, f(n) < cg(n).

Alternatively, limnﬁw% <c

(This is sometimes written as f(n) = O(g(n)))

Effectively, we are ignoring constant factors in our analysis. Are these factors unimportant?
e 10n® is O(7)
e 20n* +13n+5is O(7)
e Is it the case that 10n® is O(n*)?
e f(n) =logyn and g(n) = log, n. How do they relate?

e f(n) =logn. What base do I mean?

O-notation means upper bounds! That is imperfect knowledge on our parts.

e [s our objection that operations take unequal amounts of time a problem in this model?

e What does this mean? “Algorithm A is at least O(n*)”.
e What does this mean? f(n) is Q(g(n)).
e What does this mean? f(n) is ©(g(n)).

e Merge-Sort is another sorting algorithm; it runs in ©(nlogn) time.

Consider the following sorting algorithm, called “Two-Face sort”:

Flip a fair coin
if the coin lands on heads then
return MergeSort(A; ... A,)
else
return BubbleSort(A4; ... A,)

Give O, €2, and © bounds on Two-Face Sort.

e What is the running time of the following algorithm:
Linear Search
Input: A value z, an array of n values A; ... A,
Output: True if z is a value within A; False otherwise.
1=1
while : < n and z # a; do
1=1+1
if © <n then
return True
else
return False

Which of the following algorithm running times has a better growth rate?

101og™® n or ﬁ n?

10019 or 1.017100?

log®n is O(n?), for any constants ¢, d > 0.
In other words, a logarithm is the smallest non-constant polynomial.

n®is O(d<), for any constants c and e, and any constant d > 1.
In other words, a polynomial function grows slower than an exponential function in
the limit.

Hierarchy of Running Times: Constant, Poly-logarithmic, Polynomial, Exponential
Rank the following functions from smallest to largest.
o fi=n" fo=log’n, fs =n"0% £, =1.0001", fs = 2V18" f, = nlog'™' n

o fr =200 g — 9 fo—on f =97 f = plen fo—nlognloglogn, f; = n2, fg =
3
nlog2n, fg = ns log?n

PowERS oF ONE

A MIND-EXPANDING LOOK AT QUR WORLD

1

Figure 1: XKCD # 271. It’s kinda Zen when you think about it, if you don’t think too hard.

Assuming that a bit operation takes 107! seconds, here is a table of actual running times.

Problem Size Bit Operations Used
n logn n nlogn n? 2" n!
10 3x 107t 10709 | 3x10709s | 10775 | 107 % s 3x107"s
102 7x 1071 s 107%s | 7x107%s | 107° s *
103 1.0x1071%s [108s | 107%s 1075s | * *
104 1.3x107%s [107"s | 107*s 1073s | * *
10° 1.7x107%s110%s |2x103s [0.1s |* *
109 2x1071%s | 107°s [2x1072s | 102s | * *

Entries marked with an * require so much time to complete that the heat death of the

universe is expected to occur before these finish. I don’t know about you, but I don’t want
to wait that long for an answer!

e Polynomial or better runtimes are considered tractable.

e Exponential or worse runtimes are considered intractable.

Whether or not a problem is tractable would be an important distinction. If it is, we can
probably write an algorithm that will eventually give us our answer. If it is not, we might
as well give up now.

There are some very important problems for whom we do not know whether they are
tractable or not.

Properties of O-notation
e f(n)is O(h(n)) and g(n) is O(h(n)). Prove or disprove: f(n)+ g(n) = O(h(n)).
o f(n)is O(g(n)). Xi, f(n) =7
e Suppose g(n) = O(r(n)). Prove or disprove: f(n) —r(n)is O(f(n) — g(n))

Additional Exercises

How long would Linear Search take to run on average?

