Homework #1
CS5H99 Fall 2012

Due Friday 10/5

General Instructions The following problems are meant to be challenging. Feel free to discuss
with fellow students, though please write up your solutions independently and acknowledge everyone
you discussed the homework with on your writeup. Additionally, please provide mathematical
proofs of all claims you make in your solutions.

Problem 1. Nash Equilibria in a Location Game.

Consider a walking trail along a stretch of beach, which we model as the interval T' = [0, 1]. There
are k ice-cream vendors, each looking to set up an icecream stand at some point along the trail,
with the goal of attracting as many customers as possible. We assume that pedestrians out for a
walk are uniformly distributed along the trail, and when faced with a craving for some icecream
head to the nearest icecream stand, so that the utility of an icecream stand ¢ is the measure of the
set of points on the trail closer to ¢ than to any of i’'s competitors. When two or more icecream
stands are located at the same point p, they evenly split the customers closer to p than any of the
other locations of icecream stands.

Formally, each icecream vendor ¢ € {1,...,k} chooses a location z(i) € [0,1] — i.e. his space of
actions is [0,1]. Given z € [0,1]¥ and i € {1,...,k}, let [I,(i),7,(7)] be the line segment of points
in T no further from from (i) than from any other x(j). Moreover, let c¢,(i) be the number of
vendors co-located with ¢ — i.e. the number of vendors j with x(j) = 2(¢) (including ¢ himself).
The utility of player ¢ is then defined as

ui(x) = (r2(i) = 1o(i)) /2 (7)

Clearly, this defines a game of complete information, where each player’s strategy set is [0, 1].
Answer the following:
a. (3 points). What is the set of pure Nash equilibria when k = 27
b. (3 points). What is the set of pure Nash equilibria for k = 3?

Now, consider a different trail 7" which goes around a circular lake — i.e. T is the circle in

2 dimensional space with circumference 1. The distance between two points p; and ps on T is
naturally defined as the length of the shorter of the two arcs defined by p; and py. Define utilities



as before: given a set of locations along 1" for each of the vendors, the utility of vendor ¢ is the
length of the arc of points on T which are no further from ¢ than from any of i’s competitors,
divided by the number of vendors co-located with i. Answer the following;:

c. (3 points). What is the set of pure Nash equilibria when k = 27
d. (3 points). What is the set of pure Nash equilibria when k& > 3?
Problem 2. Zero-sum Games and Linear Programming Review.

A game in normal form is said to be a zero-sum game if, for every action profile of the players,
the sum of players’ utilities is 0. Two-player zero-sum games exhibit specialized structure that
renders them central to much of computer science and mathematical optimization. Specifically,
zero-sum games are intimately related to linear programming, which is arguably the cornerstone of
mathematical and combinatorial optimization. A canonical example of two-player zero-sum games
is rock-paper-scissors.

Since the payoff of the second player is simply the negation of the payoff of the first player, we
represent a two-player zero-sum game simply by a matrix A € R™*™, where A;; is the payoff of

player 1 when player 1 plays strategy ¢ and player 2 plays strategy j. Let Ay = {p € ]R’f‘fF : Zle p; = 1}

denote the simplex of dimension k, let A; denote the j’th column of A, and let A; denote the i’th
row of A. Define the following two quantities:
m

mazmin(A) = max minp” A;
pEA, j=1

. . n —
minmaz(A) = in max Aiq
Observe that maxmin(A) is player 1’s maximum, over all his mixed strategies p, of his utility
when he plays p and player 2 plays a best response to p. The p achieving the maximum in this
definition is referred to as player 1’s maxmin strategy. Similarly, minmaz(A) is player 2’s minimum,
over all his mixed strategies ¢, of his loss (i.e. negation of his utility) when he plays ¢ and player 1
best responds to q. The ¢ achieving this minimum is referred to as player 2’s maxmin strategy.

Groundwork. Review linear programming and linear programming duality. I recommend Luca
Trevisan’s notes here (chapters 5 and 6), though there are many good treatments of LP both in
course notes and in textbooks. If you are confused, or want pointers to additional resources, come
see me or write me.

a. Prove that, for every finite matrix A, maaxmin(A) = minmax(A). This is known as the minimaz
theorem, and the quantity maxmin(A) = minmaz(A) is referred to as the value of the game. You
will need to invoke linear programming duality. (Do not hand in)

b. Prove that both players playing their maxmin strategies is a mixed Nash equilibirum of the
zero-sum game. (Do not hand in)


http://theory.stanford.edu/~trevisan/books/cs261.pdf

c. (10 points). Consider the following 2-player, zero-sum game, defined on an undirected graph
G = (V, E) with a designated source node s, and target node t. The first player is the attacker, and
his actions are the set of s — ¢ paths in G. Another player is the defender, and his actions are the
set of edges in G. When the attacker plays a path p and the defender plays an edge e, the utility
of the attacker is 1 if e ¢ p and 0 if e € p. Find the value of the game. You may express the value
of the game in terms of the size of the minimum s-t cut in G. (Hint: Invoke the minimax theorem
and Menger’s theorem (google it)).

Problem 3. Existence of Bayes-Nash Equilibrium. (12 points).

Prove that every finite Bayesian game of incomplete information, under the common prior assump-
tion, admits a (mixed) Bayes-Nash equilibrium. (Hint: invoke Nash’s theorem, which states that
every finite game of complete information admits a mixed Nash equilibrium)

Problem 4. Auctions in More General Environments.

Recall that the Vickrey auction is a dominant-strategy truthful mechanism which sells a single
item to the player who values it most. Now, we will extend the Vickrey auction to settings where
the seller has multiple copies of the item for sale. As in single-item allocation, we assume players
exhibit quasi-linear utility in all these examples — i.e. a player’s utility for an allocation and
payment is his value for the allocation less his payment.

a. (3 points). Consider an auctioneer with & identical items for sale, and n players interested
in at most one item each. As in the single-item allocation problem, each player i’s type is a real
number v;, encoding his value for receiving at least 1 item. Assume that a player exhibits unit
demand, meaning that his value for more than one item is the same as his value for a single item.
Design a dominant-strategy truthful mechanism that maximizes social welfare, defined as the sum
over all players of their value for the items they receive. Your mechanism may charge payments,
as in the Vickrey auction. (Hint: the mechanism will be a natural generalization of the Vickrey
auction).

b. (Adapted from problem 2.3 in Hartline). (8 points). Now, consider a generalization
of the k-item allocation problem in (a) above, faced in online advertising. Adwords is a Google
product in which the search engine sells at auction advertisements that appear along side search
results on the search results page.

Consider the following position auction environment which provides a simplified model of Ad-
words. There are m advertisement slots that appear along side search results and n advertisers
(the players, or bidders). Each advertiser’s type is his value v; for a click on his advertisement. Slot
J has click through rate w;, meaning, if an advertiser is assigned slot j the advertiser will receive
a click with probability w;. Therefore, player i’s value for being placed in slot j is vjw;. Each
advertiser can be assigned at most one slot and each slot can be assignment at most one advertiser.
You may assume, for convenience, that wy > wg > ... > wy,.

Design a dominant-strategy truthful mechanism that maximizes social welfare, defined as the
sum over all players of their value per click multiplied by the click-through rate of the slot to
which they are assigned, if any (else 0). As before, you may charge payments. (Hint: you can
map the problem of welfare maximization in position auctions to m separate problems of welfare-



maximization in k-item auctions (see subproblem a)).

c. (5 points). Now, consider different generalization of the k-item auction. A bipartite graph
encodes sets of players who may jointly receive an item, as follows. Specifically, the bipartite
graph G has players on the left hand side, and k& non-identical items on the right hand side. The
mechanism may assign item j to player ¢ only if there is an edge between player ¢ and item j in G.
A player has the same value v;, encoded by his type, for any item which may be assigned to him
(as specified by G). Moreover, all players exhibit unit demand, as in subproblem (b).

Design a dominant-strategy truthful mechanism that maximizes social welfare, defined as the
sum, over all players i who receive an item, of the player’s value v; for an item. (Note: The k item
auction of subproblem (a) is encoded by the complete bipartite graph.)



