
CS599: Algorithm Design in Strategic Settings
Fall 2012

Lecture 1: Introduction and Class Overview

Instructor: Shaddin Dughmi

Outline

1 Teaser

2 Course Goals and Administrivia

3 Algorithmic Mechanism Design Overview

4 Weeks 1-2: Preliminaries

5 Weeks 3-4: Prior-free single-parameter mechanism design

6 Weeks 5-7: Prior-free Multi-parameter mechanism design

7 Weeks 8-12: Bayesian Mechanism Design

8 Weeks 13-15: Student Presentations and/or additional Topics

Outline

1 Teaser

2 Course Goals and Administrivia

3 Algorithmic Mechanism Design Overview

4 Weeks 1-2: Preliminaries

5 Weeks 3-4: Prior-free single-parameter mechanism design

6 Weeks 5-7: Prior-free Multi-parameter mechanism design

7 Weeks 8-12: Bayesian Mechanism Design

8 Weeks 13-15: Student Presentations and/or additional Topics

We live in a world with scarce resources...

we want to allocate these resources “optimally”.

Electromagnetic Spectrum

Advertising space

Content Distribution
Networks

Take-off / landing
slots

Teaser 1/56

We live in a world with scarce resources...

we want to allocate these resources “optimally”.

Electromagnetic Spectrum

Advertising space

Content Distribution
Networks

Take-off / landing
slots

Teaser 1/56

We live in a world with scarce resources...

we want to allocate these resources “optimally”.

Electromagnetic Spectrum

Advertising space

Content Distribution
Networks

Take-off / landing
slots

Teaser 1/56

We live in a world with scarce resources...

we want to allocate these resources “optimally”.

Electromagnetic Spectrum

Advertising space

Content Distribution
Networks

Take-off / landing
slots

Teaser 1/56

We live in a world with scarce resources...

we want to allocate these resources “optimally”.

Electromagnetic Spectrum

Advertising space

Content Distribution
Networks

Take-off / landing
slots

Teaser 1/56

We live in a world with scarce resources...

we want to allocate these resources “optimally”.

Electromagnetic Spectrum

Advertising space

Content Distribution
Networks

Take-off / landing
slots

Teaser 1/56

What is a “good” allocation?
Utilitarian: maximize social welfare
Maximize revenue
Fairness
. . .

Licenses to companies best positioned
to serve their customers with them.

Space to advertisers most likely to
generate business (clicks)

Place servers/files on the Internet to
best serve content providers’

distribution needs.

Divide slots to maximize total air
traveler satisfaction (on time flights)

Teaser 2/56

What is a “good” allocation?
Utilitarian: maximize social welfare
Maximize revenue
Fairness
. . .

Licenses to companies best positioned
to serve their customers with them.

Space to advertisers most likely to
generate business (clicks)

Place servers/files on the Internet to
best serve content providers’

distribution needs.

Divide slots to maximize total air
traveler satisfaction (on time flights)

Teaser 2/56

Challenges

Economic Challenge
Agents receiving goods/services/resources are self-interested.
Quality of an allocation depends on private data of agents.
Agents may strategically misrepresent this data.

Computational Challenge
Need to compute the desired outcome efficiently (i.e. in polynomial
time)

Motivating Question
Can we allocate resources in a desirable manner in the presence of
self-interested behavior and limited computational power?

The field concerned with this question has come to be called
algorithmic mechanism design

Teaser 3/56

Challenges

Economic Challenge
Agents receiving goods/services/resources are self-interested.
Quality of an allocation depends on private data of agents.
Agents may strategically misrepresent this data.

Computational Challenge
Need to compute the desired outcome efficiently (i.e. in polynomial
time)

Motivating Question
Can we allocate resources in a desirable manner in the presence of
self-interested behavior and limited computational power?

The field concerned with this question has come to be called
algorithmic mechanism design

Teaser 3/56

Challenges

Economic Challenge
Agents receiving goods/services/resources are self-interested.
Quality of an allocation depends on private data of agents.
Agents may strategically misrepresent this data.

Computational Challenge
Need to compute the desired outcome efficiently (i.e. in polynomial
time)

Motivating Question
Can we allocate resources in a desirable manner in the presence of
self-interested behavior and limited computational power?

The field concerned with this question has come to be called
algorithmic mechanism design

Teaser 3/56

Example: Spectrum Auctions

Each telecom has a private value in $$ for each bundle of licenses
Dependencies: Some of the licenses are substitutes/complements

Teaser 4/56

Spectrum Auctions

FCC Statute
Design spectrum auctions that promote “efficient and intensive use” of
the electromagnetic spectrum.

Formal interpretation: Maximize social welfare of the allocation.

Definition (Social Welfare)
Sum of values of telecoms for the bundles they get.

Can be defined more generally for abstract resource allocation
problems.

Teaser 5/56

Spectrum Auctions

FCC Statute
Design spectrum auctions that promote “efficient and intensive use” of
the electromagnetic spectrum.

Formal interpretation: Maximize social welfare of the allocation.

Definition (Social Welfare)
Sum of values of telecoms for the bundles they get.

Can be defined more generally for abstract resource allocation
problems.

Teaser 5/56

Spectrum Auctions

FCC Statute
Design spectrum auctions that promote “efficient and intensive use” of
the electromagnetic spectrum.

Formal interpretation: Maximize social welfare of the allocation.

Definition (Social Welfare)
Sum of values of telecoms for the bundles they get.

Can be defined more generally for abstract resource allocation
problems.

Teaser 5/56

Spectrum Auctions

Spectrum auctions in USA, UK, Germany, Sweden . . .
1994-2001: More than $100 billion worth of licenses sold

FCC Auction 700MHz Band (2008)
1099 licenses
261 bidders
$19 Billion in revenue

. . . computing just one efficient allocation can be an
inhumanly hard problem, and getting participants to reveal
the information about their values necessary to do that
computation is probably impossible.

- Paul Milgrom

Teaser 6/56

Spectrum Auctions

Spectrum auctions in USA, UK, Germany, Sweden . . .
1994-2001: More than $100 billion worth of licenses sold

FCC Auction 700MHz Band (2008)
1099 licenses
261 bidders
$19 Billion in revenue

. . . computing just one efficient allocation can be an
inhumanly hard problem, and getting participants to reveal
the information about their values necessary to do that
computation is probably impossible.

- Paul Milgrom

Teaser 6/56

Spectrum Auctions

Spectrum auctions in USA, UK, Germany, Sweden . . .
1994-2001: More than $100 billion worth of licenses sold

FCC Auction 700MHz Band (2008)
1099 licenses
261 bidders
$19 Billion in revenue

. . . computing just one efficient allocation can be an
inhumanly hard problem, and getting participants to reveal
the information about their values necessary to do that
computation is probably impossible.

- Paul Milgrom

Teaser 6/56

Spectrum Auctions

Spectrum auctions in USA, UK, Germany, Sweden . . .
1994-2001: More than $100 billion worth of licenses sold

FCC Auction 700MHz Band (2008)
1099 licenses
261 bidders
$19 Billion in revenue

. . . computing just one efficient allocation can be an
inhumanly hard problem, and getting participants to reveal
the information about their values necessary to do that
computation is probably impossible.

- Paul Milgrom

Teaser 6/56

Economic Challenge

Mechanisms use incentives to extract private data.

Mechanism
1 Solicit preferences
2 Compute “good” allocation
3 Charge payments

Example: eBay Auction
1 Submit bids
2 Give to highest bidder
3 Charge second highest bid

Truthfulness
A mechanism is truthful (aka incentive-compatible) if players maximize
their utility by reporting their true preferences in the first step.

Fact [Vickrey, Clarke, Groves]
Ignoring computational constraints, there is a truthful mechanism that
computes an optimal allocation for any welfare maximization problem.

Teaser 7/56

Economic Challenge

Mechanisms use incentives to extract private data.

Mechanism
1 Solicit preferences
2 Compute “good” allocation
3 Charge payments

Example: eBay Auction
1 Submit bids
2 Give to highest bidder
3 Charge second highest bid

Truthfulness
A mechanism is truthful (aka incentive-compatible) if players maximize
their utility by reporting their true preferences in the first step.

Fact [Vickrey, Clarke, Groves]
Ignoring computational constraints, there is a truthful mechanism that
computes an optimal allocation for any welfare maximization problem.

Teaser 7/56

Economic Challenge

Mechanisms use incentives to extract private data.

Mechanism
1 Solicit preferences
2 Compute “good” allocation
3 Charge payments

Example: eBay Auction
1 Submit bids
2 Give to highest bidder
3 Charge second highest bid

Truthfulness
A mechanism is truthful (aka incentive-compatible) if players maximize
their utility by reporting their true preferences in the first step.

Fact [Vickrey, Clarke, Groves]
Ignoring computational constraints, there is a truthful mechanism that
computes an optimal allocation for any welfare maximization problem.

Teaser 7/56

Computational Challenge

Computational Challenge
Need to compute allocation in polynomial time.

Computational Solution
A rich theory of design and analysis of algorithms enables
polynomial-time algorithms for some resource allocation problems.
When problems NP-hard, theory of approximation algorithms
enables polytime computation of “near optimal” allocations.

Approximation ratio: Percentage of optimal welfare on worst-case
input.

Frequently, we know the “optimal” approximation algorithm.

Combinatorial Auctions [Vondrak ’08, Khot et al ’05]
When valuations are submodular, there is a 63% approximation
algorithm, and this is optimal assuming P 6= NP .

Teaser 8/56

Computational Challenge

Computational Challenge
Need to compute allocation in polynomial time.

Computational Solution
A rich theory of design and analysis of algorithms enables
polynomial-time algorithms for some resource allocation problems.
When problems NP-hard, theory of approximation algorithms
enables polytime computation of “near optimal” allocations.

Approximation ratio: Percentage of optimal welfare on worst-case
input.

Frequently, we know the “optimal” approximation algorithm.

Combinatorial Auctions [Vondrak ’08, Khot et al ’05]
When valuations are submodular, there is a 63% approximation
algorithm, and this is optimal assuming P 6= NP .

Teaser 8/56

So Whats the Problem?

Difficulty
There seems to be tension between the economic goal of
incentive-compatibility, and the computational goal of polynomial time.

This tension has been a major focus of algorithmic mechanism design
in recent years.

This Class
We will study this tension, and algorithmic techniques developed to
ameliorate it, using fundamental resource allocation problems as
examples.

Teaser 9/56

So Whats the Problem?

Difficulty
There seems to be tension between the economic goal of
incentive-compatibility, and the computational goal of polynomial time.

This tension has been a major focus of algorithmic mechanism design
in recent years.

This Class
We will study this tension, and algorithmic techniques developed to
ameliorate it, using fundamental resource allocation problems as
examples.

Teaser 9/56

So Whats the Problem?

Difficulty
There seems to be tension between the economic goal of
incentive-compatibility, and the computational goal of polynomial time.

This tension has been a major focus of algorithmic mechanism design
in recent years.

This Class
We will study this tension, and algorithmic techniques developed to
ameliorate it, using fundamental resource allocation problems as
examples.

Teaser 9/56

So Whats the Problem?

Difficulty
There seems to be tension between the economic goal of
incentive-compatibility, and the computational goal of polynomial time.

This tension has been a major focus of algorithmic mechanism design
in recent years.

This Class
We will study this tension, and algorithmic techniques developed to
ameliorate it, using fundamental resource allocation problems as
examples.

Teaser 9/56

Outline

1 Teaser

2 Course Goals and Administrivia

3 Algorithmic Mechanism Design Overview

4 Weeks 1-2: Preliminaries

5 Weeks 3-4: Prior-free single-parameter mechanism design

6 Weeks 5-7: Prior-free Multi-parameter mechanism design

7 Weeks 8-12: Bayesian Mechanism Design

8 Weeks 13-15: Student Presentations and/or additional Topics

Course Goals

Appreciate interplay between economic and computational
considerations in algorithm design.
Exposure to powerful algorithmic techniques and economic
concepts
Preparation for research in the burgeoning intersection of CS and
Econ/Game theory

Course Goals and Administrivia 10/56

This class is NOT . . .

an economics class,
a game theory class,
or even a mechanism design class!

Course Goals and Administrivia 11/56

This class is NOT . . .

an economics class,

a game theory class,
or even a mechanism design class!

Course Goals and Administrivia 11/56

This class is NOT . . .

an economics class,
a game theory class,

or even a mechanism design class!

Course Goals and Administrivia 11/56

This class is NOT . . .

an economics class,
a game theory class,
or even a mechanism design class!

Course Goals and Administrivia 11/56

This class IS . . .

. . . a theoretical CS class on algorithmic mechanism design.
Focus will be on the interplay between computational goals
(mainly, polynomial time) and economic goals (mainly incentive
compatibility).
Incentive compatibility will reduce to a combinatorial constraint on
the algorithm, akin to restricted computational models (online,
streaming, etc).
Lectures and assignments will be mathematical proof-based.

Course Goals and Administrivia 12/56

Prerequisites

Mathematical maturity: Be good at proofs
Algorithms and Optimization at the graduate level:

CS670 or equivalent
Exposure to approximation algorithms
Exposure to LP

Don’t worry, I will teach you all the econ/gt/md you need to know

Course Goals and Administrivia 13/56

Administrivia

Lecture time: Fridays 2 pm - 4:50 pm
Lecture place: KAP 145
Instructor: Shaddin Dughmi

Email: shaddin@usc.edu
Office: SAL 234
Office Hours: Tuesday 1:30 - 3:30pm (subject to change)

Course Homepage (to appear):
www.cs.usc.edu/people/shaddin/cs599fa12
References: AGT book (Nisan et al, editors), and Hartline’s
approximation in economic design book. Both available online,
linked on website. Also, we will refer to research papers.

Course Goals and Administrivia 14/56

Requirements and Grading

This is an advanced grad class, so grade is not the point.
I assume you want to learn this stuff.
If you can take pass/fail, please do.

3-4 homeworks, 70% of grade.
Proof based.
Challenging.
Discussion allowed, even encouraged, but must write up solutions
independently.

Problems in-class, 10% of grade.
Research project or final, 20% of grade. Suggestions will be
posted on website.
One late homework allowed, 2 days. (too harsh?)

Course Goals and Administrivia 15/56

A Note on Lecture Length / Time

I don’t want to listen to me talk for 3 hours on Friday late afernoon
either

Lecture portion will be ≈ 2 hours
Remainder will be discussion and problem solving
We can sometimes leave early (shhhh!)

Course Goals and Administrivia 16/56

Survey

Undergrad, Ms, PhD?
Grad algorithms class?
Grad theory class?
Exposure to approximation algorithms?
Exposure to LP?
Research project vs final?

Course Goals and Administrivia 17/56

Outline

1 Teaser

2 Course Goals and Administrivia

3 Algorithmic Mechanism Design Overview

4 Weeks 1-2: Preliminaries

5 Weeks 3-4: Prior-free single-parameter mechanism design

6 Weeks 5-7: Prior-free Multi-parameter mechanism design

7 Weeks 8-12: Bayesian Mechanism Design

8 Weeks 13-15: Student Presentations and/or additional Topics

Single-item Allocation

$4000 $3000 $2000

Algorithmic Mechanism Design Overview 18/56

Single-item Allocation

$4000 $3000 $2000

First Price Auction
1 Collect bids
2 Give to highest bidder
3 Charge him his bid

Algorithmic Mechanism Design Overview 18/56

Single-item Allocation

$4000 $3000 $2000

Second-price (Vickrey) Auction
1 Collect bids
2 Give to highest bidder
3 Charge second highest bid

Algorithmic Mechanism Design Overview 18/56

Single-item Allocation

$4000 $3000 $2000

Vickrey Auction with Reserve
1 Choose a reserve price r
2 Collect bids
3 If nobody bids above reserve, then cancel the auction, otherwise
4 Give to highest bidder
5 Charge the second highest bid or r, whichever is bigger

Algorithmic Mechanism Design Overview 18/56

Example: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

An auction would partition items into sets S1, . . . , Sn, possibly charging
payments p1, . . . , pn

Goals
Welfare: Maximize v1(S1) + v2(S2) + . . . vn(Sn)

Revenue: Maximize p1 + . . .+ pn

Fairness: Maximize the minimum vi(Si)

Algorithmic Mechanism Design Overview 19/56

Example: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.
An auction would partition items into sets S1, . . . , Sn, possibly charging
payments p1, . . . , pn

Goals
Welfare: Maximize v1(S1) + v2(S2) + . . . vn(Sn)

Revenue: Maximize p1 + . . .+ pn

Fairness: Maximize the minimum vi(Si)

Algorithmic Mechanism Design Overview 19/56

Example: Knapsack Allocation

cost=80
value=10

budget=100

n players, each player i with a task requiring ci time
Machine has total processing time B (public)
Player i has (private) value vi for his task

Must choose a feasible subset S ⊆ [n] of the tasks to process, possibly
charging players

Goals
Welfare: maximize

∑
i∈S vi

Revenue
Algorithmic Mechanism Design Overview 20/56

Commonalities

There is a set of possible allocations
Single-item Allocation: The n different choices of winning player.

There is a set of players, each of which has a private valuation
function

Maps allocations to real numbers
Single item allocation: Player i’s value for all allocations is 0, except
for that in which he wins, where his value is some private quantity
vi.

Want to choose a “good” outcome (allocation+payments), as a
function of the private data.

Challenges
Economic: Agents invested in outcome and may have incentive to
manipulate the input? (their reported valuation)
Computational: The usual “can we do it in polynomial time”
question

Algorithmic Mechanism Design Overview 21/56

Commonalities

There is a set of possible allocations
Single-item Allocation: The n different choices of winning player.

There is a set of players, each of which has a private valuation
function

Maps allocations to real numbers
Single item allocation: Player i’s value for all allocations is 0, except
for that in which he wins, where his value is some private quantity
vi.

Want to choose a “good” outcome (allocation+payments), as a
function of the private data.

Challenges
Economic: Agents invested in outcome and may have incentive to
manipulate the input? (their reported valuation)
Computational: The usual “can we do it in polynomial time”
question

Algorithmic Mechanism Design Overview 21/56

Mechanism Design

Mechanism Design
The study of computing with data owned by selfish agents.

Mechanism Design Problem
Set Ω of allocations.
Set of n players, each with private valuation vi : Ω→ R. (aka type)

Combinatorial allocation (n players, m items)
Ω is set of allocations of items (S1, . . . , Sn)
vi(S1, . . . , Sn) is player i’s value for his bundle Si (shorthand vi(Si))

Knapsack Allocation
Ω is family of subsets of tasks that fit in the knapsack
Value of a player i for a subset S is vi if i ∈ S, otherwise 0

Algorithmic Mechanism Design Overview 22/56

Mechanism Design

Mechanism Design
The study of computing with data owned by selfish agents.

Mechanism Design Problem
Set Ω of allocations.
Set of n players, each with private valuation vi : Ω→ R. (aka type)

Combinatorial allocation (n players, m items)
Ω is set of allocations of items (S1, . . . , Sn)
vi(S1, . . . , Sn) is player i’s value for his bundle Si (shorthand vi(Si))

Knapsack Allocation
Ω is family of subsets of tasks that fit in the knapsack
Value of a player i for a subset S is vi if i ∈ S, otherwise 0

Algorithmic Mechanism Design Overview 22/56

Mechanism Design

Mechanism Design
The study of computing with data owned by selfish agents.

Mechanism Design Problem
Set Ω of allocations.
Set of n players, each with private valuation vi : Ω→ R. (aka type)

Combinatorial allocation (n players, m items)
Ω is set of allocations of items (S1, . . . , Sn)
vi(S1, . . . , Sn) is player i’s value for his bundle Si (shorthand vi(Si))

Knapsack Allocation
Ω is family of subsets of tasks that fit in the knapsack
Value of a player i for a subset S is vi if i ∈ S, otherwise 0

Algorithmic Mechanism Design Overview 22/56

Mechanisms

We focus on the design of direct-revelation mechanisms in a setting
where we may supplement allocation with a payment from each player.

Mechanism
1 Solicit valuations v1, . . . , vn
2 Compute “good” allocation
ω ∈ Ω

3 Charge payments p1, . . . pn

Example: Vickrey Auction
1 Collect bids
2 Give to highest bidder
3 Charge second highest bid

Helpful to separate a mechanism into:
Allocation rule A mapping (v1, . . . , vn) to allocations ω ∈ Ω

Payment rule p mapping (v1, . . . , vn) to payments (p1, . . . , pn).

Algorithmic Mechanism Design Overview 23/56

Mechanisms

We focus on the design of direct-revelation mechanisms in a setting
where we may supplement allocation with a payment from each player.

Mechanism
1 Solicit valuations v1, . . . , vn
2 Compute “good” allocation
ω ∈ Ω

3 Charge payments p1, . . . pn

Example: Vickrey Auction
1 Collect bids
2 Give to highest bidder
3 Charge second highest bid

Helpful to separate a mechanism into:
Allocation rule A mapping (v1, . . . , vn) to allocations ω ∈ Ω

Payment rule p mapping (v1, . . . , vn) to payments (p1, . . . , pn).

Algorithmic Mechanism Design Overview 23/56

Mechanisms and Games

If players knew each other’s valuations, we get a game of complete
information

Vickrey Auction
A painting is being sold in a second price auction. There are two
players, with public values v1 = $1 and v2 = $2. Bids may either be $1
or $2. What are the stable bid profiles?

Assume: Quasilinear utility
Winning player has utility vi − pi, losing player has utility 0.

Write down the game matrix.

Two Pure Nash equilibria.

Algorithmic Mechanism Design Overview 24/56

Mechanisms and Games

If players knew each other’s valuations, we get a game of complete
information

Vickrey Auction
A painting is being sold in a second price auction. There are two
players, with public values v1 = $1 and v2 = $2. Bids may either be $1
or $2. What are the stable bid profiles?

Assume: Quasilinear utility
Winning player has utility vi − pi, losing player has utility 0.

Write down the game matrix.

Two Pure Nash equilibria.

Algorithmic Mechanism Design Overview 24/56

Mechanisms and Games

If players knew each other’s valuations, we get a game of complete
information

Vickrey Auction
A painting is being sold in a second price auction. There are two
players, with public values v1 = $1 and v2 = $2. Bids may either be $1
or $2. What are the stable bid profiles?

Assume: Quasilinear utility
Winning player has utility vi − pi, losing player has utility 0.

Write down the game matrix.

Two Pure Nash equilibria.

P1

P2

1

2

1 2

Algorithmic Mechanism Design Overview 24/56

Mechanisms and Games

If players knew each other’s valuations, we get a game of complete
information

Vickrey Auction
A painting is being sold in a second price auction. There are two
players, with public values v1 = $1 and v2 = $2. Bids may either be $1
or $2. What are the stable bid profiles?

Assume: Quasilinear utility
Winning player has utility vi − pi, losing player has utility 0.

Write down the game matrix.

Two Pure Nash equilibria.

P1

P2

1

2

1 2

(0,1/2)

(-1/2,0)

(0,1)

(0,0)

Algorithmic Mechanism Design Overview 24/56

Mechanisms and Games

If players knew each other’s valuations, we get a game of complete
information

Vickrey Auction
A painting is being sold in a second price auction. There are two
players, with public values v1 = $1 and v2 = $2. Bids may either be $1
or $2. What are the stable bid profiles?

Assume: Quasilinear utility
Winning player has utility vi − pi, losing player has utility 0.

Write down the game matrix.

Two Pure Nash equilibria. P1

P2

1

2

1 2

(0,1/2)

(-1/2,0)

(0,1)

(0,0)

Algorithmic Mechanism Design Overview 24/56

Mechanisms and Games

P1

P2

1

2

1 2

(0,1/2)

(-1/2,0)

(0,1)

(0,0)

Two critiques of the full-information Nash equilibrium as the prediction:
Informational: Players can’t play at equilibrium because they don’t
know the game they are playing!
Equilibrium selection: Which one is a “better” prediction of reality?

Algorithmic Mechanism Design Overview 25/56

Mechanisms and Games

P1

P2

1

2

1 2

(0,1/2)

(-1/2,0)

(0,1)

(0,0)

One equilibrium stands out,

Fact
The Vickrey mechanism is dominant-strategy incentive-compatible
(DSIC): no matter what other players do, a player never loses by
bidding his value. And in fact, truth-telling is the only dominant strategy.

In other words, truth-telling is a “very stable” equilibrium, robust to
uncertainty in other player’s actions, and is the only such equilibrium.

Algorithmic Mechanism Design Overview 25/56

Dealing with Incomplete Information

In general, two main approaches to dealing with these problems:
1 Prior-free:

No assumption on what agents know about each other.
Dominant strategy equilibrium is a choice, for each i and vi, of an
action v̂i, such that v̂i is a best response regardless of v̂−i

Design mechanisms that have a “good” DSE

Example: Vickrey Auction
Truth-telling is a dominant strategy equilibrium in the Vickrey Auction.
Moreover, it is a “good” equilibrium for a utilitatrian auctioneer because
the player who most values the item gets it.

Algorithmic Mechanism Design Overview 26/56

Dealing with Incomplete Information

In general, two main approaches to dealing with these problems:
1 Prior-free:

No assumption on what agents know about each other.
Dominant strategy equilibrium is a choice, for each i and vi, of an
action v̂i, such that v̂i is a best response regardless of v̂−i

Design mechanisms that have a “good” DSE

Example: Vickrey Auction
Truth-telling is a dominant strategy equilibrium in the Vickrey Auction.
Moreover, it is a “good” equilibrium for a utilitatrian auctioneer because
the player who most values the item gets it.

Algorithmic Mechanism Design Overview 26/56

Dealing with Incomplete Information

In general, two main approaches to dealing with these problems:
2 Bayesian common prior:

Player types are drawn from a publicly known distribution (say
independent for now)
Bayesian Nash equilibrium is a choice, for each player i and each
type vi of his, of a report (bid) v̂i, such that v̂i is a best response to
v̂−i in expectation over draws of v−i.
Design mechanisms where there is a “good” BNE in expectation

Example: All-pay auction

n players with values i.i.d from [0, 1].

All-pay auction: Give to highest bidder, charge each player i the amount
(1− 1/n)vni

Fact: truth-telling is a BNE, resulting in the utilitarian allocation.

Algorithmic Mechanism Design Overview 26/56

Dealing with Incomplete Information

In general, two main approaches to dealing with these problems:
2 Bayesian common prior:

Player types are drawn from a publicly known distribution (say
independent for now)
Bayesian Nash equilibrium is a choice, for each player i and each
type vi of his, of a report (bid) v̂i, such that v̂i is a best response to
v̂−i in expectation over draws of v−i.
Design mechanisms where there is a “good” BNE in expectation

Example: All-pay auction

n players with values i.i.d from [0, 1].

All-pay auction: Give to highest bidder, charge each player i the amount
(1− 1/n)vni

Fact: truth-telling is a BNE, resulting in the utilitarian allocation.

Algorithmic Mechanism Design Overview 26/56

Mechanism Design and Game Theory

Whichever worldview you choose (Bayesian or Prior-free), you
have an equilibrium concept (BNE or DSE).

Task of Mechanism design
Design a mechanism which guarantees a “good” equilibrium

Single-item auction: Welfare, revenue

Knapsack auction: welfare, revenue

Combinatorial auction: welfare, revenue, fairness

Mechanism design is “reverse game theory.”

Algorithmic Mechanism Design Overview 27/56

Mechanism Design and Game Theory

Whichever worldview you choose (Bayesian or Prior-free), you
have an equilibrium concept (BNE or DSE).

Task of Mechanism design
Design a mechanism which guarantees a “good” equilibrium

Single-item auction: Welfare, revenue

Knapsack auction: welfare, revenue

Combinatorial auction: welfare, revenue, fairness

Mechanism design is “reverse game theory.”

Algorithmic Mechanism Design Overview 27/56

Incentive-compatibility

Luckily, our task simplifies further.

Definition
A mechanism is truthful (aka incentive compatible) if truth-telling is an
equilibrium.

Revelation Principle
If there is a mechanism that implements an outcome (A(v), p(v)) in
equilibrium, then there is also a truthful mechanism that implements
the same outcome in truth-telling equilibrium.

Therefore, as a designer it suffices to restrict attention to designing
truthful mechanisms.

Algorithmic Mechanism Design Overview 28/56

(Simplified) Task of Mechanism Design
Given resource allocation problem and an objective (welfare, revenue,
fairness, . . .), design a truthful mechanism that guarantees a “good”
outcome.

In a truthful mechanism, you may think of the “bids” as the true values.
You are working with the right inputs.

Single-item allocation: Vickrey optimal for welfare. Myerson
optimal for revenue (Bayesian settings).
Knapsack allocation, combinatorial auctions, . . .

Vickrey-Clarke-Groves optimal for welfare, but not polytime.
Revenue: ???

Algorithmic Mechanism Design Overview 29/56

(Simplified) Task of Mechanism Design
Given resource allocation problem and an objective (welfare, revenue,
fairness, . . .), design a truthful mechanism that guarantees a “good”
outcome.

In a truthful mechanism, you may think of the “bids” as the true values.
You are working with the right inputs.

Single-item allocation: Vickrey optimal for welfare. Myerson
optimal for revenue (Bayesian settings).
Knapsack allocation, combinatorial auctions, . . .

Vickrey-Clarke-Groves optimal for welfare, but not polytime.
Revenue: ???

Algorithmic Mechanism Design Overview 29/56

(Simplified) Task of Mechanism Design
Given resource allocation problem and an objective (welfare, revenue,
fairness, . . .), design a truthful mechanism that guarantees a “good”
outcome.

In a truthful mechanism, you may think of the “bids” as the true values.
You are working with the right inputs.

Single-item allocation: Vickrey optimal for welfare. Myerson
optimal for revenue (Bayesian settings).
Knapsack allocation, combinatorial auctions, . . .

Vickrey-Clarke-Groves optimal for welfare, but not polytime.
Revenue: ???

Algorithmic Mechanism Design Overview 29/56

Achievements of Mechanism Design

Revelation Principle
The welfare-optimal Vickrey-Clarke-Groves Mechanism
Myerson’s revenue-optimal single-item auction
Revenue equivalence theorems
. . .

Algorithmic Mechanism Design Overview 30/56

Algorithm Design

Algorithm Design
The study of computing with limited resources (e.g. polynomial time).

Main Challenge: NP-hardness
Unless P=NP, no “optimal” algorithm exists for many resource
allocation problems.

TCS answer: Approximation Algorithms
Algorithms that compute a “near optimal” solution

Knapsack Allocation: Fully Polynomial-time Approximation
Scheme
Combinatorial Allocation: Approximation ratio depends on
assumptions on valuations.

Algorithmic Mechanism Design Overview 31/56

Algorithm Design

Algorithm Design
The study of computing with limited resources (e.g. polynomial time).

Main Challenge: NP-hardness
Unless P=NP, no “optimal” algorithm exists for many resource
allocation problems.

TCS answer: Approximation Algorithms
Algorithms that compute a “near optimal” solution

Knapsack Allocation: Fully Polynomial-time Approximation
Scheme
Combinatorial Allocation: Approximation ratio depends on
assumptions on valuations.

Algorithmic Mechanism Design Overview 31/56

Algorithm Design

Algorithm Design
The study of computing with limited resources (e.g. polynomial time).

Main Challenge: NP-hardness
Unless P=NP, no “optimal” algorithm exists for many resource
allocation problems.

TCS answer: Approximation Algorithms
Algorithms that compute a “near optimal” solution

Knapsack Allocation: Fully Polynomial-time Approximation
Scheme
Combinatorial Allocation: Approximation ratio depends on
assumptions on valuations.

Algorithmic Mechanism Design Overview 31/56

Algorithm Design

Algorithm Design
The study of computing with limited resources (e.g. polynomial time).

Main Challenge: NP-hardness
Unless P=NP, no “optimal” algorithm exists for many resource
allocation problems.

TCS answer: Approximation Algorithms
Algorithms that compute a “near optimal” solution

Knapsack Allocation: Fully Polynomial-time Approximation
Scheme
Combinatorial Allocation: Approximation ratio depends on
assumptions on valuations.

Algorithmic Mechanism Design Overview 31/56

Algorithmic Mechanism Design

Main Question
For which resource allocation problems can we design (approximately)
optimal mechanisms that are truthful and also run in polynomial time?

Challenge
Incentive compatibility and polynomial-time implementation can not be
“cut and pasted” together. Requires new algorithmic techniques.

This will send us through a tour of algorithms and optimization,
involving approximation algorithms, linear programming, polytope
theory, smoothed complexity, and convex analysis

Algorithmic Mechanism Design Overview 32/56

Outline

1 Teaser

2 Course Goals and Administrivia

3 Algorithmic Mechanism Design Overview

4 Weeks 1-2: Preliminaries

5 Weeks 3-4: Prior-free single-parameter mechanism design

6 Weeks 5-7: Prior-free Multi-parameter mechanism design

7 Weeks 8-12: Bayesian Mechanism Design

8 Weeks 13-15: Student Presentations and/or additional Topics

Game Theory and Mechanism Design Basics

Complete information Games and Nash equilibrium
Games of incomplete information, dominant strategy and
Bayesian equilibria.
Mechanisms, revelation principle, incentive compatibility

Weeks 1-2: Preliminaries 33/56

Approximation Algorithms and Optimization (??)

Linear Programming
Approximation Algorithms

Weeks 1-2: Preliminaries 34/56

Outline

1 Teaser

2 Course Goals and Administrivia

3 Algorithmic Mechanism Design Overview

4 Weeks 1-2: Preliminaries

5 Weeks 3-4: Prior-free single-parameter mechanism design

6 Weeks 5-7: Prior-free Multi-parameter mechanism design

7 Weeks 8-12: Bayesian Mechanism Design

8 Weeks 13-15: Student Presentations and/or additional Topics

Single-parameter Problems

First half of the class will focus on the prior-free model. We begin with

Single-parameter problems
There is a homogenous resource to be allocated.
An allocation defines an amount of the resource for each player

Ω ⊆ Rn
+

A player’s value is linear in the amount of resource received
Player i’s valuation summarized by vi ∈ R
Value for ω ∈ Ω is vi · ωi

Examples
Single-item allocation
Knapsack allocation
Single-minded combinatorial allocation
Related machine scheduling
. . .

Weeks 3-4: Prior-free single-parameter mechanism design 35/56

Single-parameter Problems

First half of the class will focus on the prior-free model. We begin with

Single-parameter problems
There is a homogenous resource to be allocated.
An allocation defines an amount of the resource for each player

Ω ⊆ Rn
+

A player’s value is linear in the amount of resource received
Player i’s valuation summarized by vi ∈ R
Value for ω ∈ Ω is vi · ωi

Examples
Single-item allocation
Knapsack allocation
Single-minded combinatorial allocation
Related machine scheduling
. . .

Weeks 3-4: Prior-free single-parameter mechanism design 35/56

Monotonicity Characterization

Single-parameter problems receive special attention in part because
their space of truthful mechanisms is much more permissive.

Theorem (Myerson ’81, Archer/Tardos ’01)
An allocation rule A for a single-parameter problem can be combined
with a payment scheme p to give a DSIC mechanism iff A is monotone.

An allocation rule A for a single-parameter problem is monotone if
increasing vi, holding v−i fixed, does not decrease Ai(v) (in
expectation).

Example: Allocation rule that gives single item to highest bidder is
monotone, combined with the second-price payment scheme, gives
Vickrey Auction.

Weeks 3-4: Prior-free single-parameter mechanism design 36/56

Monotonicity Characterization

Single-parameter problems receive special attention in part because
their space of truthful mechanisms is much more permissive.

Theorem (Myerson ’81, Archer/Tardos ’01)
An allocation rule A for a single-parameter problem can be combined
with a payment scheme p to give a DSIC mechanism iff A is monotone.

An allocation rule A for a single-parameter problem is monotone if
increasing vi, holding v−i fixed, does not decrease Ai(v) (in
expectation).

Example: Allocation rule that gives single item to highest bidder is
monotone, combined with the second-price payment scheme, gives
Vickrey Auction.

Weeks 3-4: Prior-free single-parameter mechanism design 36/56

Algorithmic Results for Single-parameter Problems

Due to the “permissiveness” of monotone algorithms:

For most natural single-parameter problems, DSIC approximation
mechanisms matching guarantee of the best approximation algorithm
are known:

Welfare in Knapsack allocation and generalizations [BKV ’05]
Welfare in Single-minded combinatorial auctions [LOS ’02]
Makespan in Related machine scheduling [DDDR ’08]
. . .

Approximation-preserving black-box reductions from algorithms to
truthful mechanisms for classes of single-parameter problems

Welfare problems with an FPTAS (e.g. Knapsack) [BKV ’05]
Welfare problems that are “player-symmetric” [HWZ ’11]

Weeks 3-4: Prior-free single-parameter mechanism design 37/56

Algorithmic Results for Single-parameter Problems

Due to the “permissiveness” of monotone algorithms:

For most natural single-parameter problems, DSIC approximation
mechanisms matching guarantee of the best approximation algorithm
are known:

Welfare in Knapsack allocation and generalizations [BKV ’05]
Welfare in Single-minded combinatorial auctions [LOS ’02]
Makespan in Related machine scheduling [DDDR ’08]
. . .

Approximation-preserving black-box reductions from algorithms to
truthful mechanisms for classes of single-parameter problems

Welfare problems with an FPTAS (e.g. Knapsack) [BKV ’05]
Welfare problems that are “player-symmetric” [HWZ ’11]

Weeks 3-4: Prior-free single-parameter mechanism design 37/56

Algorithmic Results for Single-parameter Problems

Due to the “permissiveness” of monotone algorithms:

For most natural single-parameter problems, DSIC approximation
mechanisms matching guarantee of the best approximation algorithm
are known:

Welfare in Knapsack allocation and generalizations [BKV ’05]
Welfare in Single-minded combinatorial auctions [LOS ’02]
Makespan in Related machine scheduling [DDDR ’08]
. . .

Approximation-preserving black-box reductions from algorithms to
truthful mechanisms for classes of single-parameter problems

Welfare problems with an FPTAS (e.g. Knapsack) [BKV ’05]
Welfare problems that are “player-symmetric” [HWZ ’11]

Weeks 3-4: Prior-free single-parameter mechanism design 37/56

Outline

1 Teaser

2 Course Goals and Administrivia

3 Algorithmic Mechanism Design Overview

4 Weeks 1-2: Preliminaries

5 Weeks 3-4: Prior-free single-parameter mechanism design

6 Weeks 5-7: Prior-free Multi-parameter mechanism design

7 Weeks 8-12: Bayesian Mechanism Design

8 Weeks 13-15: Student Presentations and/or additional Topics

Multi-parameter Problems

Definition
Mechanism design problems that aren’t single-parameter. . .

Player valuations are described by many private parameters
Combinatorial allocation: value for each bundle
Assignment Problems: generalizations of knapsack where there
are multiple bins, and value of a player depends on bin to which
his task is assigned.

Often, multi-parameter problems have single-parameter special cases
Single-minded combinatorial auctions
Knapsack auction

Weeks 5-7: Prior-free Multi-parameter mechanism design 38/56

Multi-parameter Problems

Definition
Mechanism design problems that aren’t single-parameter. . .

Player valuations are described by many private parameters
Combinatorial allocation: value for each bundle
Assignment Problems: generalizations of knapsack where there
are multiple bins, and value of a player depends on bin to which
his task is assigned.

Often, multi-parameter problems have single-parameter special cases
Single-minded combinatorial auctions
Knapsack auction

Weeks 5-7: Prior-free Multi-parameter mechanism design 38/56

VCG Mechanism

Vickrey Clarke Groves (VCG) Mechanism
1 Solicit (purported) valuations b1, . . . , bn
2 Find allocation ω ∈ Ω maximizing (purported) welfare:

∑
i bi(S

∗
i)

3 Charge each player his externality
The increase in (purported) welfare of other players if he drops out

Theorem (Vickrey, Clarke, Groves)
VCG is truthful, and (therefore also) welfare maximizing.

i.e. Reporting bi = vi is a dominant strategy.

However, requires exact optimization, which is NP-hard for problems
we will look at.

Therefore, we will examine the space of truthful mechanisms beyond
VCG. . .

Weeks 5-7: Prior-free Multi-parameter mechanism design 39/56

VCG Mechanism

Vickrey Clarke Groves (VCG) Mechanism
1 Solicit (purported) valuations b1, . . . , bn
2 Find allocation ω ∈ Ω maximizing (purported) welfare:

∑
i bi(S

∗
i)

3 Charge each player his externality
The increase in (purported) welfare of other players if he drops out

Theorem (Vickrey, Clarke, Groves)
VCG is truthful, and (therefore also) welfare maximizing.

i.e. Reporting bi = vi is a dominant strategy.

However, requires exact optimization, which is NP-hard for problems
we will look at.

Therefore, we will examine the space of truthful mechanisms beyond
VCG. . .

Weeks 5-7: Prior-free Multi-parameter mechanism design 39/56

VCG Mechanism

Vickrey Clarke Groves (VCG) Mechanism
1 Solicit (purported) valuations b1, . . . , bn
2 Find allocation ω ∈ Ω maximizing (purported) welfare:

∑
i bi(S

∗
i)

3 Charge each player his externality
The increase in (purported) welfare of other players if he drops out

Theorem (Vickrey, Clarke, Groves)
VCG is truthful, and (therefore also) welfare maximizing.

i.e. Reporting bi = vi is a dominant strategy.

However, requires exact optimization, which is NP-hard for problems
we will look at.

Therefore, we will examine the space of truthful mechanisms beyond
VCG. . .

Weeks 5-7: Prior-free Multi-parameter mechanism design 39/56

Deterministic Truthfulness with Unrestricted Valuations

First, we examine requirements for truthfulness in a very general
setting. . .

Unrestricted Mechanism Design Problem
Each player’s valuation is an arbitrary function vi : Ω→ R.

For a deterministic mechanism to be truthful over all valuations, it must
be of a specific form

Theorem (Roberts (Informal))
When player valuations are unrestricted, the allocation rule of every
deterministic and dominant-strategy truthful mechanism is (essentially)
maximal-in-range. Moreover, its payments are (essentially) the
externality.

Weeks 5-7: Prior-free Multi-parameter mechanism design 40/56

Deterministic Truthfulness with Unrestricted Valuations

First, we examine requirements for truthfulness in a very general
setting. . .

Unrestricted Mechanism Design Problem
Each player’s valuation is an arbitrary function vi : Ω→ R.

For a deterministic mechanism to be truthful over all valuations, it must
be of a specific form

Theorem (Roberts (Informal))
When player valuations are unrestricted, the allocation rule of every
deterministic and dominant-strategy truthful mechanism is (essentially)
maximal-in-range. Moreover, its payments are (essentially) the
externality.

Weeks 5-7: Prior-free Multi-parameter mechanism design 40/56

Maximal-in-Range Algorithm
1 Choose a subset R of all feasible allocations Ω, independent of

valuations.
2 Solicit valuations v1, . . . , vn
3 Output ω ∈ R maximizing

∑
i vi(ω)

Fact
Any maximal-in-range algorithm can be equipped with VCG payments
(externality) to yield a truthful mechanism.

Essentially a converse of Roberts’ Theorem

Flexibility in choosing R allows the design of mechanisms other than
VCG that are both polytime and approximately optimal.

Weeks 5-7: Prior-free Multi-parameter mechanism design 41/56

Maximal-in-Range Algorithm
1 Choose a subset R of all feasible allocations Ω, independent of

valuations.
2 Solicit valuations v1, . . . , vn
3 Output ω ∈ R maximizing

∑
i vi(ω)

Fact
Any maximal-in-range algorithm can be equipped with VCG payments
(externality) to yield a truthful mechanism.

Essentially a converse of Roberts’ Theorem

Flexibility in choosing R allows the design of mechanisms other than
VCG that are both polytime and approximately optimal.

Weeks 5-7: Prior-free Multi-parameter mechanism design 41/56

Maximal-in-Range Algorithm
1 Choose a subset R of all feasible allocations Ω, independent of

valuations.
2 Solicit valuations v1, . . . , vn
3 Output ω ∈ R maximizing

∑
i vi(ω)

Fact
Any maximal-in-range algorithm can be equipped with VCG payments
(externality) to yield a truthful mechanism.

Essentially a converse of Roberts’ Theorem

Flexibility in choosing R allows the design of mechanisms other than
VCG that are both polytime and approximately optimal.

Weeks 5-7: Prior-free Multi-parameter mechanism design 41/56

Maximal-in-Range Algorithm
1 Choose a subset R of all feasible allocations Ω, independent of

valuations.
2 Solicit valuations v1, . . . , vn
3 Output ω ∈ R maximizing

∑
i vi(ω)

Fact
Any maximal-in-range algorithm can be equipped with VCG payments
(externality) to yield a truthful mechanism.

Essentially a converse of Roberts’ Theorem

Flexibility in choosing R allows the design of mechanisms other than
VCG that are both polytime and approximately optimal.

Weeks 5-7: Prior-free Multi-parameter mechanism design 41/56

Example of MIR

Due to Dobzinski, Nisan, and
Schapira ’05.

Range
Allocations that either allocate
all items to a single player, or
each player at most one item.

Weeks 5-7: Prior-free Multi-parameter mechanism design 42/56

Example of MIR

Due to Dobzinski, Nisan, and
Schapira ’05.

Range
Allocations that either allocate
all items to a single player, or
each player at most one item.

Lemma
When players have complement-free valuations, there is always an
allocation in the range guaranteeing a

√
m approximation.

Lemma
There is a polynomial-time algorithm for optimizing over this range.

Reduces to maximum matching.

Weeks 5-7: Prior-free Multi-parameter mechanism design 42/56

Example of MIR

Due to Dobzinski, Nisan, and
Schapira ’05.

Range
Allocations that either allocate
all items to a single player, or
each player at most one item.

Lemma
When players have complement-free valuations, there is always an
allocation in the range guaranteeing a

√
m approximation.

Lemma
There is a polynomial-time algorithm for optimizing over this range.

Reduces to maximum matching.
Weeks 5-7: Prior-free Multi-parameter mechanism design 42/56

Example of MIR

Due to Dobzinski, Nisan, and
Schapira ’05.

Range
Allocations that either allocate
all items to a single player, or
each player at most one item.

Takeaways
Throwing away “complicated” allocations, ended up with polytime
solvable optimization problem without much loss in optimality.
Plugging in an algorithm for this problem into the allocation step of
VCG recovers incentive compatibility.
Designing truthful mechanisms in this way is akin to working in a
restricted computational model

Weeks 5-7: Prior-free Multi-parameter mechanism design 42/56

Roberts’ theorem does not formally hold for individual problems,
like combinatorial allocation, knapsack allocation, etc.
Neither is it known to hold if randomization is allowed in the
mechanism.
Nevertheless, a randomized analogue of Roberts’ Theorem
appears to hold “in spirit”.

Trend
Usually, DSIC mechanisms for multi-parameter problems employ
maximal-in-distributional-range (MIDR) allocation algorithms and VCG
payments.

Weeks 5-7: Prior-free Multi-parameter mechanism design 43/56

Techniques for Multi-parameter Problems

Polynomial-time Maximal-in-distributional-range (MIDR) algorithms led
to improved mechanisms for many problems

Combinatorial auctions
Assignment problems
Public project problems
. . .

These algorithms came as biproducts of new algorithmic techniques,
rather than from the direct definition of “range”.

1 Lavi/Swamy LP Technique

The design of linear programs with small integrality gaps

2 Perturbation-based techniques

Smoothed Complexity

3 Rounding-based techniques

Randomized rounding algorithms for linear programs

These techniques, in turn, built on classical ideas in algorithm design

In much of this portion of the class, we will present these techniques.

Weeks 5-7: Prior-free Multi-parameter mechanism design 44/56

Techniques for Multi-parameter Problems

Polynomial-time Maximal-in-distributional-range (MIDR) algorithms led
to improved mechanisms for many problems

Combinatorial auctions
Assignment problems
Public project problems
. . .

These algorithms came as biproducts of new algorithmic techniques,
rather than from the direct definition of “range”.

1 Lavi/Swamy LP Technique

The design of linear programs with small integrality gaps

2 Perturbation-based techniques

Smoothed Complexity

3 Rounding-based techniques

Randomized rounding algorithms for linear programs

These techniques, in turn, built on classical ideas in algorithm design

In much of this portion of the class, we will present these techniques.

Weeks 5-7: Prior-free Multi-parameter mechanism design 44/56

Techniques for Multi-parameter Problems

Polynomial-time Maximal-in-distributional-range (MIDR) algorithms led
to improved mechanisms for many problems

Combinatorial auctions
Assignment problems
Public project problems
. . .

These algorithms came as biproducts of new algorithmic techniques,
rather than from the direct definition of “range”.

1 Lavi/Swamy LP Technique
The design of linear programs with small integrality gaps

2 Perturbation-based techniques
Smoothed Complexity

3 Rounding-based techniques
Randomized rounding algorithms for linear programs

These techniques, in turn, built on classical ideas in algorithm design

In much of this portion of the class, we will present these techniques.

Weeks 5-7: Prior-free Multi-parameter mechanism design 44/56

Techniques for Multi-parameter Problems

Polynomial-time Maximal-in-distributional-range (MIDR) algorithms led
to improved mechanisms for many problems

Combinatorial auctions
Assignment problems
Public project problems
. . .

These algorithms came as biproducts of new algorithmic techniques,
rather than from the direct definition of “range”.

1 Lavi/Swamy LP Technique
The design of linear programs with small integrality gaps

2 Perturbation-based techniques
Smoothed Complexity

3 Rounding-based techniques
Randomized rounding algorithms for linear programs

These techniques, in turn, built on classical ideas in algorithm design

In much of this portion of the class, we will present these techniques.
Weeks 5-7: Prior-free Multi-parameter mechanism design 44/56

Techniques for Multi-parameter Problems

Polynomial-time Maximal-in-distributional-range (MIDR) algorithms led
to improved mechanisms for many problems

Combinatorial auctions
Assignment problems
Public project problems
. . .

These algorithms came as biproducts of new algorithmic techniques,
rather than from the direct definition of “range”.

1 Lavi/Swamy LP Technique
The design of linear programs with small integrality gaps

2 Perturbation-based techniques
Smoothed Complexity

3 Rounding-based techniques
Randomized rounding algorithms for linear programs

These techniques, in turn, built on classical ideas in algorithm design

In much of this portion of the class, we will present these techniques.
Weeks 5-7: Prior-free Multi-parameter mechanism design 44/56

Overview

Considers welfare maximization mechanism design problems in a
prior-free setting
Reduces the design of approximate mechanisms to the design of
linear programming relaxations satisfying certain conditions.

Theorem (Lavi and Swamy)
Consider a welfare-maximization problem. If

the problem can be written as a packing integer linear program
with integrality gap at most α,
the PILP can be solved in polynomial time,
and there is an algorithm that shows integrality gap α,

then an α-approximate MIDR algorithm can be generically derived in
polynomial time.

Weeks 5-7: Prior-free Multi-parameter mechanism design 45/56

Overview

Considers welfare maximization mechanism design problems in a
prior-free setting
Reduces the design of approximate mechanisms to the design of
linear programming relaxations satisfying certain conditions.

Theorem (Lavi and Swamy)
Consider a welfare-maximization problem. If

the problem can be written as a packing integer linear program
with integrality gap at most α,

the PILP can be solved in polynomial time,
and there is an algorithm that shows integrality gap α,

then an α-approximate MIDR algorithm can be generically derived in
polynomial time.

Weeks 5-7: Prior-free Multi-parameter mechanism design 45/56

Overview

Considers welfare maximization mechanism design problems in a
prior-free setting
Reduces the design of approximate mechanisms to the design of
linear programming relaxations satisfying certain conditions.

Theorem (Lavi and Swamy)
Consider a welfare-maximization problem. If

the problem can be written as a packing integer linear program
with integrality gap at most α,
the PILP can be solved in polynomial time,

and there is an algorithm that shows integrality gap α,
then an α-approximate MIDR algorithm can be generically derived in
polynomial time.

Weeks 5-7: Prior-free Multi-parameter mechanism design 45/56

Overview

Considers welfare maximization mechanism design problems in a
prior-free setting
Reduces the design of approximate mechanisms to the design of
linear programming relaxations satisfying certain conditions.

Theorem (Lavi and Swamy)
Consider a welfare-maximization problem. If

the problem can be written as a packing integer linear program
with integrality gap at most α,
the PILP can be solved in polynomial time,
and there is an algorithm that shows integrality gap α,

then an α-approximate MIDR algorithm can be generically derived in
polynomial time.

Weeks 5-7: Prior-free Multi-parameter mechanism design 45/56

Overview

Considers welfare maximization mechanism design problems in a
prior-free setting
Reduces the design of approximate mechanisms to the design of
linear programming relaxations satisfying certain conditions.

Theorem (Lavi and Swamy)
Consider a welfare-maximization problem. If

the problem can be written as a packing integer linear program
with integrality gap at most α,
the PILP can be solved in polynomial time,
and there is an algorithm that shows integrality gap α,

then an α-approximate MIDR algorithm can be generically derived in
polynomial time.

Weeks 5-7: Prior-free Multi-parameter mechanism design 45/56

Example: Generalized Assignment

cost=80
value=10

budget=100

budget=150

n self-interested agents, m machines.
vi(j) is agent i’s value for his task going on machine j. (private)
ci(j) is the cost to machine j of agent i’s job. (public)
bj is machine j’s budget. (public)

Goal
Partial assignment of jobs to machines, respecting machine budgets,
and maximizing total value of agents.

Weeks 5-7: Prior-free Multi-parameter mechanism design 46/56

Packing Linear Integer Programs

Generic PILP
(A, v ≥ 0)

max
∑

i v
T
i x

s.t. Ax ≤ b
x ≥ 0
x ∈ Zm

Example: GAP PILP

max
∑

ij vi(j)xij
s.t.

∑
i cijxij ≤ bj , for j ∈ [m].

xij ≥ 0, for i ∈ [n], j ∈ [m].
xij ∈ {0, 1} , for i ∈ [n], j ∈ [m].

Weeks 5-7: Prior-free Multi-parameter mechanism design 47/56

Packing Linear Integer Programs

Definition (Integrality Gap)
A PILP has integrality gap at most α if, for every objective v ∈ Rm

+ , the
ratio of the welfare of the best fractional solution and the best integer
solution is at most α.

Weeks 5-7: Prior-free Multi-parameter mechanism design 47/56

Packing Linear Integer Programs

Definition (Integrality Gap)
A PILP has integrality gap at most α if, for every objective v ∈ Rm

+ , the
ratio of the welfare of the best fractional solution and the best integer
solution is at most α.

Note: must hold for all nonnegative objectives v.

Weeks 5-7: Prior-free Multi-parameter mechanism design 47/56

Packing Linear Integer Programs

Definition
An algorithm for a PILP shows an integrality gap of α if, for every
objective v ∈ Rm

+ , it always outputs an integer solution with objective
value at least 1/α of that of the best fractional solution, in expectation.

Weeks 5-7: Prior-free Multi-parameter mechanism design 47/56

Packing Linear Integer Programs

X

Definition
An algorithm for a PILP shows an integrality gap of α if, for every
objective v ∈ Rm

+ , it always outputs an integer solution with objective
value at least 1/α of that of the best fractional solution, in expectation.

Commonly, such an algorithm “rounds” the optimal fractional solution
of the LP, but this is not necessary.

Weeks 5-7: Prior-free Multi-parameter mechanism design 47/56

Recall: Theorem Statement

Theorem (Lavi and Swamy)
Consider a welfare-maximization problem. If

the problem can be written as a packing integer linear program
with integrality gap at most α,
the PILP can be solved in polynomial time,
and there is an algorithm that shows integrality gap α,

then an α-approximate MIDR algorithm can be generically derived in
polynomial time.

The PILP for gap has integrality gap 2, and there is a rounding
algorithm showing it. Therfore, implies a 2-approximate,
polynomial-time, DSIC mechanism.

Weeks 5-7: Prior-free Multi-parameter mechanism design 48/56

Recall: Theorem Statement

Theorem (Lavi and Swamy)
Consider a welfare-maximization problem. If

the problem can be written as a packing integer linear program
with integrality gap at most α,
the PILP can be solved in polynomial time,
and there is an algorithm that shows integrality gap α,

then an α-approximate MIDR algorithm can be generically derived in
polynomial time.

The PILP for gap has integrality gap 2, and there is a rounding
algorithm showing it. Therfore, implies a 2-approximate,
polynomial-time, DSIC mechanism.

Weeks 5-7: Prior-free Multi-parameter mechanism design 48/56

Outline

1 Teaser

2 Course Goals and Administrivia

3 Algorithmic Mechanism Design Overview

4 Weeks 1-2: Preliminaries

5 Weeks 3-4: Prior-free single-parameter mechanism design

6 Weeks 5-7: Prior-free Multi-parameter mechanism design

7 Weeks 8-12: Bayesian Mechanism Design

8 Weeks 13-15: Student Presentations and/or additional Topics

Second half of the class will focus on Bayesian model
Assume agent valuations are drawn from a (publicly known)
distribution.
Require incentive-compatibility and good outcomes only in
expectation.
Weaker guarantees depart from the “worst case” paradigm
traditional in TCS
However, can do more...

Weeks 8-12: Bayesian Mechanism Design 49/56

Black-box Reductions for Welfare

Much of the first half of the class considered the following question in
the prior-free setting

Question
When can we convert a “good” polynomial-time algorithm to a truthful
polynomial time mechanism without much loss in optimality?

The best possible answer . . .

Aspirational Answer
For every mechanism design problem and polynomial-time
α-approximation algorithm for the problem, a black-box reduction
converts the algorithm to a truthful, polynomial-time mechanism with
the same approximation ratio.

Unfortunately, this is false in prior free settings, even for some concrete
welfare-maximization problems.

Weeks 8-12: Bayesian Mechanism Design 50/56

Black-box Reductions for Welfare

Much of the first half of the class considered the following question in
the prior-free setting

Question
When can we convert a “good” polynomial-time algorithm to a truthful
polynomial time mechanism without much loss in optimality?

The best possible answer . . .

Aspirational Answer
For every mechanism design problem and polynomial-time
α-approximation algorithm for the problem, a black-box reduction
converts the algorithm to a truthful, polynomial-time mechanism with
the same approximation ratio.

Unfortunately, this is false in prior free settings, even for some concrete
welfare-maximization problems.

Weeks 8-12: Bayesian Mechanism Design 50/56

Black-box Reductions for Welfare

Much of the first half of the class considered the following question in
the prior-free setting

Question
When can we convert a “good” polynomial-time algorithm to a truthful
polynomial time mechanism without much loss in optimality?

The best possible answer . . .

Aspirational Answer
For every mechanism design problem and polynomial-time
α-approximation algorithm for the problem, a black-box reduction
converts the algorithm to a truthful, polynomial-time mechanism with
the same approximation ratio.

Unfortunately, this is false in prior free settings, even for some concrete
welfare-maximization problems.

Weeks 8-12: Bayesian Mechanism Design 50/56

Theorem (HL ’10)
For any single-parameter problem in a Bayesian setting and
α-approximation algorithm for that problem, a black box reduction
converts the algorithm in polynomial-time to an α-approximate BIC
mechanism.

Theorem (HKM / BH ’11)
For a multi-parameter problem in a Bayesian setting with small
support, and α-approximation algorithm for that problem, a black box
reduction converts the algorithm in polynomial-time to an
α-approximate BIC mechanism.

Weeks 8-12: Bayesian Mechanism Design 51/56

Revenue-Optimal Mechanisms

In prior-free settings, we mostly ignored revenue
No unequivocal benchmark
Every auction will produce very small revenue on SOME worst
case valuation profile
Even single-item, single-bidder. . .

In Bayesian settings, we can formulate reasonable benchmarks and
get interesting results

Benchmark
The maximum expected revenue of a BIC mechanism, where
expectation is over valuations.

Weeks 8-12: Bayesian Mechanism Design 52/56

Revenue-Optimal Mechanisms

In prior-free settings, we mostly ignored revenue
No unequivocal benchmark
Every auction will produce very small revenue on SOME worst
case valuation profile
Even single-item, single-bidder. . .

In Bayesian settings, we can formulate reasonable benchmarks and
get interesting results

Benchmark
The maximum expected revenue of a BIC mechanism, where
expectation is over valuations.

Weeks 8-12: Bayesian Mechanism Design 52/56

Classics: Myerson’s Optimal Auction

Theorem (Myerson ’81)
Consider a bayesian single-item allocation setting, where player values
are drawn i.i.d from some distribution D. The revenue-optimal BIC
mechanism is Vickrey with reserve r = r(D).

Vickrey Auction with Reserve
1 Let r = r(D)

2 Collect bids
3 If nobody bids above reserve, then cancel the auction, otherwise
4 Give to highest bidder
5 Charge the second highest bid or r, whichever is bigger

Weeks 8-12: Bayesian Mechanism Design 53/56

Classics: Myerson’s Lemma

Recall: Single-parameter problems
There is a homogenous resource to be allocated.
An allocation defines an amount of the resource for each player

Ω ⊆ Rn
+

A player’s value is linear in the amount of resource received
Player i’s valuation summarized by vi ∈ R
Value for ω ∈ Ω is vi · ωi

Myerson’s Lemma
Consider a bayesian single-parameter setting where vi are
independently drawn from distributions Di. The revenue-optimal BIC
mechanism is the welfare-optimal BIC mechanism for “virtual”
valuations φi(vi).

Upshot: in single-parameter settings, revenue maximization reduces to
welfare maximization, which we know how to do using VCG in many
contexts.

Weeks 8-12: Bayesian Mechanism Design 54/56

Classics: Myerson’s Lemma

Recall: Single-parameter problems
There is a homogenous resource to be allocated.
An allocation defines an amount of the resource for each player

Ω ⊆ Rn
+

A player’s value is linear in the amount of resource received
Player i’s valuation summarized by vi ∈ R
Value for ω ∈ Ω is vi · ωi

Myerson’s Lemma
Consider a bayesian single-parameter setting where vi are
independently drawn from distributions Di. The revenue-optimal BIC
mechanism is the welfare-optimal BIC mechanism for “virtual”
valuations φi(vi).

Upshot: in single-parameter settings, revenue maximization reduces to
welfare maximization, which we know how to do using VCG in many
contexts.

Weeks 8-12: Bayesian Mechanism Design 54/56

Recent: Revenue-optimal Mechanisms in
Multi-paramter Bayesian Settings

Very recently, there has been work extending Myerson’s results to
some multi-parameter settings

Multi-item auctions with additive valuations
“Single-service” settings

We will spend some time trying to understand these very exciting new
developments, and examining research directions thereof.

Weeks 8-12: Bayesian Mechanism Design 55/56

Recent: Revenue-optimal Mechanisms in
Multi-paramter Bayesian Settings

Very recently, there has been work extending Myerson’s results to
some multi-parameter settings

Multi-item auctions with additive valuations
“Single-service” settings

We will spend some time trying to understand these very exciting new
developments, and examining research directions thereof.

Weeks 8-12: Bayesian Mechanism Design 55/56

Outline

1 Teaser

2 Course Goals and Administrivia

3 Algorithmic Mechanism Design Overview

4 Weeks 1-2: Preliminaries

5 Weeks 3-4: Prior-free single-parameter mechanism design

6 Weeks 5-7: Prior-free Multi-parameter mechanism design

7 Weeks 8-12: Bayesian Mechanism Design

8 Weeks 13-15: Student Presentations and/or additional Topics

Student Presentations

Research papers and ideas for projects will be posted on the
course webpage.
Students will study a research direction (2-4 papers) after
discussing with instructor.
Goal: Presentation to the class, and a summary report.

Best case scenario: original research!

You can pair up, but standards will be raised (prove new stuff!)

Weeks 13-15: Student Presentations and/or additional Topics 56/56

Thank You for Listening

	Teaser
	Course Goals and Administrivia
	Algorithmic Mechanism Design Overview
	Weeks 1-2: Preliminaries
	Weeks 3-4: Prior-free single-parameter mechanism design
	Weeks 5-7: Prior-free Multi-parameter mechanism design
	Weeks 8-12: Bayesian Mechanism Design
	Weeks 13-15: Student Presentations and/or additional Topics

