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Recall: Mechanism Design Problem in Quasi-linear Settings
Public (common knowledge) inputs describes

Set Ω of allocations.
Typespace Ti for each player i.

T = T1 × T2 × . . .× Tn
Valuation map vi : Ti × Ω→ R

Bayesian Setting
Supplement with a prior distribution D on T .
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Incentive-Compatibility

Incentive-compatibility (Dominant Strategy)
A mechanism (f, p) is dominant-strategy truthful if, for every player i,
true type ti, possible mis-report t̃i, and reported types t−i of the
others, we have

E[vi(ti, f(t))− pi(t)] ≥ E[vi(ti, f(t̃i, t−i))− pi(t̃i, t−i)]

where the expectation is over random coins of the mechanism.

Incentive-compatibility (Bayesian)
A mechanism (f, p) is Bayesian incentive compatible if, for every player
i, true type ti, possible mis-report t̃i, the following holds

where the xpectation is over random coins of the mechanism as well
as t−i ∼ D|ti
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Examples

Vickrey Auction
Allocation rule maps b1, . . . , bn to ei∗ for i∗ = argmaxi bi

Payment rule maps b1, . . . , bn to p1, . . . , pn where pi∗ = b(2), and
pi = 0 for i 6= i∗.

Dominant-strategy truthful.

First Price Auction
Allocation rule maps b1, . . . , bn to ei∗ for i∗ = argmaxi bi

Payment rule maps b1, . . . , bn to p1, . . . , pn where pi∗ = b(1), and
pi = 0 for i 6= i∗.

For two players i.i.d U [0, 1], players bidding half their value is a BNE.
Not Bayesian incentive compatible.

Modified First Price Auction
Allocation rule maps b1, . . . , bn to ei∗ for i∗ = argmaxi bi

Payment rule maps b1, . . . , bn to p1, . . . , pn where pi∗ = b(1)/2, and
pi = 0 for i 6= i∗.

For two players i.i.d U [0, 1], Bayesian incentive compatible.
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Bayesian vs Worst case

A priori, Bayesian AMD seems easier than prior-free
Expand space of mechanisms: BIC weaker guarantee than IC
Relax to average case guarantees: e.g. a mechanism that
α-approximates welfare in expectation may be easier than
worst-case
Provides unambiguous notion of “the best algorithm/mechanism”,
since inputs are weighted. Serves as a benchmark.

So What does it Buy us?
Today: Non-trivial mechanisms for new objectives that were
(arguably) hopeless in prior-free (like revenue).
Tomorrow: Enables better polytime BIC approximate mechanisms
for welfare (and other objectives)

Disadvantages of relaxing to BIC / average case guarantees
May be non-robust to discrepancies between the environment for
which it was designed, and that in which it is deployed (overfitting)

Bayesian Incentive Compatibility contingent on prior and common
knowledge assumption.
Average case approximation gurantee hinges on prior
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Today

We begin examining mechanism design in Bayesian settings, like
we did in prior-free settings. We focus on additional design power
afforded.
First, we look at mechanisms that optimize revenue in single
parameter settings.

Mechanisms with worst-case guarantees on revenue are not
possible in prior-free settings (at least for uncontroversial
benchmarks).

Today: Myerson’s revenue-optimal single item auction (2007
Nobel Prize)
Later lectures: Revenue/Welfare in NP-hard single-parameter
problems, multi-parameter problems.
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Single-parameter Problems

Informally
There is a single homogenous resource (items, bandwidth, clicks,
spots in a knapsack, etc).
There are constraints on how the resource may be divided up.
Each player’s private data is his “value (or cost) per unit resource.”

Formally
Set Ω of allocations is common knowledge.
Each player i’s type is a single real number ti. Player i’s
type-space Ti is an interval in R.
Each allocation x ∈ Ω is a vector in Rn.
A player’s utility for allocation x and payment pi is tixi − pi.
Bayesian assumption: Common prior D on T

Bayesian Mechanism Design 7/31



Single-parameter Problems

Informally
There is a single homogenous resource (items, bandwidth, clicks,
spots in a knapsack, etc).
There are constraints on how the resource may be divided up.
Each player’s private data is his “value (or cost) per unit resource.”

Formally
Set Ω of allocations is common knowledge.
Each player i’s type is a single real number ti. Player i’s
type-space Ti is an interval in R.
Each allocation x ∈ Ω is a vector in Rn.
A player’s utility for allocation x and payment pi is tixi − pi.
Bayesian assumption: Common prior D on T

Bayesian Mechanism Design 7/31



Recall: Single-item Allocation

Allocations: choice of player who wins the item
Ω = {e1, . . . , en}

Type: private value vi ∈ R+ for the item. Typespace Ti is R+ or
some closed interval in R+.
For x ∈ Ω and p ∈ Rn

+, utility is ui(x) = vixi − pi
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Why a Prior?

For social welfare, input-by-input optimum achievable via a truthful
mechanism (Vickrey)

Uncontroversial benchmark, matched in the worst case.
For revenue, no longer the case.

Consider the analogous input-by-input optimum as a benchmark:
give item to highest bidder and charge him his bid.
No incentive compatible mechanism achieves a constant factor
approximation for every such input.

Easiest to see: deterministic. Must be posted price take-it-or-leave-it
offer.

With priors, can do better.
Single player, uniform [0, 1]
Posting a price of 1/2 gets revenue 1/4 in expectation, which is half
the expected welfare.
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The Prior

We make several assumptions on the prior distribution of player types
to simplify/obtain results

Player types drawn independently.
Let Fi denote the c.d.f of player i’s value for the item.
Let fi denote p.d.f, and Si = 1− Fi.
Let F = F1 × . . .× Fn denote the distribution over type profiles.

Assume fi(v) > 0 for v ∈ Ti.
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Optimal Single-player Deterministic Auction

In order to build intuition, we examine the single player case
For a single player, BIC = DSIC
Recall: A mechanism is DSIC if its allocation rule is monotone
For a deterministic mechanism, this is a posted price mechanism.

Question
Find the revenue maximizing posted price for a player with value drawn
from U([0, 1]). How about U([1, 2])? How about Exp(1)?

More generally, for a distribution F , Find price v maximizing vS(v).
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Quantiles

We will perform a convenient change of variables.

Definition
Fix a c.d.f F with S = 1− F . We define the quantile of v in the support
of F as

q(v) = S(v).

Observations
Examples: U([0, 1]), Exp(1)

The quantile of v is the probability of sale when we post price v.
The quantile of v, for v ∼ F , is always uniformly distributed in [0, 1].

For mathematical convenience, we will parametrize valuations by
their quantiles, as we will see next.
For notational convenience, we also use v(q) to denote the value v
with quantile q. Note that v(q) = S−1(q).
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Revenue Curves

Definition
Fix a c.d.f F . The revenue curve R(.) specifices the posted-price
revenue as a function of probability of sale (i.e. quantile). Specifically,
R(q) = v(q) · q.

For U [0, 1] it is q(1− q)
For Exp(1) it is −q ln q.

We can find the optimal sale price / sale probability by finding the
maximum of R.
In the above examples, since the curves are concave it suffices to
sell at the price corresponding to the point where R has zero
derivative.
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Marginal Revenue and Virtual Value

Definition
The Marginal Revenue at q is R′(q). Specifically, this is the rate of
increase of revenue as a function of probability of sale.

R′(q) =
d

dq
(v(q) · q) = v(q)− q

f(v(q))

In other words: R′(q)dq is the additional revenue generated by lowering
the price so as to sell to dq additional customers in expectation.

Definition
The virtual value φ(v) of a player with value v at quantile q is R′(q), or
equivalently:

φ(v) = v − S(v)

f(v)
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Interpretation when Revenue is Concave

Observe
When revenue curve is concave, optimal auction lowers the
posted price so long as marginal revenue at the price is
nonnegative.
Equivalently: Allocation rule awards item to player so long as his
virtual value is positive, and then uses the threshold payment rule
suggested by myseron’s lemma!

Because of truthfulness, the posted price is uniquely determined
by the allocation rule.
The allocation rule inducing the optimal mechanism is the one that
sells to the player if and only if his virtual value is nonnegative.

Upshot
The allocation rule of the revenue maximizing single-player, single item
auction is the one that maximizes virtual welfare!
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Regular Distributions

Definition
A distribution is regular if the corresponding revenue curve R(q) is
concave.
Equivalently, if R′(q) is monotone non-increasing.
Equivalently, if φ(v) is monotone non-decreasing.

We restrict our attention to regular distributions in this lecture, as they
guarantee that virtual welfare maximization is monotone. Moreover,
they include most natural distributions: uniform, normal, exponential,
and more...
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Coming Up

We generalize the intuition from the previous section. We consider a
single-item allocation setting where players’ values are drawn from
independent regular distributions.

Lemma (Myerson’s Virtual Surplus Lemma)
Let M = (A, p) be a BIC mechanism where a player bidding zero pays
nothing in expectation. The expected revenue of M is equal to the
expected virtual welfare served by A.

Theorem
The revenue optimal BIC mechanism for selling a single item is that
which, on each valuation profile, awards the item to the player with the
highest nonnegative virtual value, and discards the item if all virtual
values are negative.
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Stages of a Bayesian Game

For terminology, it will be helpful to formalize the “stages” of a
Bayesian game of mechanism design.

Ex-ante: Before players learn their types
Interim: A player learns his type, but not the types of others.
Ex-post All player types are revealed.

Of particular interest to us is the interim stage, because it is the stage
when players make decisions.

The interim allocation rule for player i is a function xi(vi) of player
i’s type, evaluating to the probability (in equilibrium) of player i
receiving the item in expectation over draws of other players’ types
and the randomness of the mechanism.
Similarly, the interim payment rule.
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Assume two players drawn independently from U [0, 1].

Vickrey Auction
xi(vi) = vi

pi(vi) = vi/2.

First Price Auction
xi(vi) = vi

pi(vi) = vi/2

Reducing Revenue Maximization to Welfare Maximization 19/31



Recall: Myerson’s Monotonicity Lemma (Dominant Strategy)
A mechanism (x, p) for a single-parameter problem is
dominant-strategy truthful if and only if for every player i and fixed
reports b−i of other players,

xi(bi) is a monotone non-decreasing function of bi
pi(bi) is an integral of bi dxi.

b i

xi(bi)

The mention of many players, and a dominant strategy, is a red herring.
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Myerson’s Monotonicity Lemma (Single Player)
Consider a 1 player game (i.e. decision problem) of incomplete
information. The player has type v ∈ R, action set b ∈ R, and utility
function vx(b)− p(b) for some allocation rule x and payment rule p.
Truth-telling is a best response (i.e. best decision) iff

x(b) is a monotone non-decreasing function of b
p(b) is an integral of b dx.

b i

xi(bi)

Need x to be independent of v for this to hold
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Myerson’s Monotonicity Lemma (BIC)
Consider a mechanism for a single-parameter problem in a Bayesian
setting where player values are independent. Let xi(bi) and pi(bi) be
the interim allocatin/payment rules faced by player i when other players
play the truth-telling strategy. The mechanism is BIC if and only if:

xi(bi) is a monotone non-decreasing function of bi
pi(bi) is an integral of bi dxi.

b i

xi(bi)

Needed independence of types so xi(bi) does not depend on the
player i’s type.
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Monotonicity Lemma for Quantiles

Let xi and pi be a function of the quantile of the player’s report rather
than the report itself.

Myerson’s Monotonicity Lemma (BIC)
Consider a mechanism for a single-parameter problem in a Bayesian
setting where player values are independent. Let xi(qi) and pi(qi) be
the interim allocation/payment rules faced by player i when other
players play the truth-telling strategy. The mechanism is BIC if and
only if:

xi(qi) is a monotone non-increasing function of qi
pi(qi) is an integral of vi(qi)dxi = vi(qi)x

′
i(qi)dqi. Doing the

integration:

pi(qi) = pi(1)−
∫ 1

r=qi

vi(r)x
′
i(r)dr
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Corollaries of Myerson’s Monotonicity Lemma

Corollaries
The Interim allocation rule uniquely determins the interim payment
rule.
Expected revenue depends only on the allocation rule

Theorem (Revenue Equivalence)
Any two auctions with the same interim allocation rule in BNE have the
same expected revenue in the same BNE.

Reducing Revenue Maximization to Welfare Maximization 24/31



Revenue as Virtual Welfare: Myerson’s Virtual Surplus
Lemma

Lemma (Myerson’s Virtual Surplus Lemma)
Let M = (A, p) be a BIC mechanism where a player bidding zero pays
nothing in expectation. The expected revenue of M is equal to the
expected virtual welfare served by A.
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Proof

We take the expected payment of player i.

E
qi

[pi(qi)] = −
∫ 1

qi=0

∫ 1

r=qi

vi(r)x
′
i(r)drdqi

. . .

=

∫ 1

qi=0
R′i(qi)xi(qi)dqi

=

∫
vi

φi(vi)xi(vi)fi(vi)dvi

Reducing Revenue Maximization to Welfare Maximization 26/31
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Myerson’s Optimal Auction
1 Solicit player values
2 Give the item to the player i with the highest non-negative virtual

value φi(vi)
3 Charge the corresponding critical payment:
φ−1i (max(0, (maxj 6=i φj(vj))))

Observations
The allocation rule maximizes virtual welfare point-wise
Therefore, it maximizes expected virtual welfare over all allocation
rules.
By Myerson’s virtual surplus Lemma, its revenue when combined
with critical payments is at least that of any BIC mechanism (since
any BIC mechanism’s revenue is equal to expected virtual
welfare).

Are we done?

Myerson’s Revenue-Optimal Auction 27/31
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A Wrinkle

Not really... What if the allocation rule of the mechanism we just
defined is non-monotone? It would still have revenue at least that of
the optimal BIC mechanism if players happened to report truthfully, but
it wouldn’t be truthful itself

Fortunately
Virtual welfare maximization is monotone when the distributions are
regular!!
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regular!!
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Regularity

We know that welfare maximization is monotone in value
Similarly, virtual welfare maximization is monotone in virtual value,
which in turn is monotone in value when the distributions are
regular!

Conclude
When distributions are regular, the VV maximizing auction (aka
Myerson’s optimal auction) is the revenue-optimal BIC mechanism!

Regularity is a mild assumption: Includes uniform, gaussian,
exponential, . . .
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Thoughts

Myerson’s optimal auction is noteworth for many reasons
Matches practical experience: when players i.i.d regular, optimal
auction is Vickrey with reserve price φ−1(0).
Applies to single parameter problems more generally (next lecture)
Revenue maximization reduces to welfare maximization for these
problems
The optimal BIC mechanism just so happens to be DSIC and
deterministic!!
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Next time

Beyond regularity (Ironing)
Beyond single item
Approximation of revenue and welfare when welfare maximization
(eq revenue maximization) is NP-hard
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