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Recall: Single-item Allocation in Bayesian Setting

We considered Single-item Auctions.

Bayesian Assumption
We assume each player’s value is drawn independently from some
distribution Fi.

We saught the BIC mechanism maximizing expected revenue.
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Virtual Value

Definition
The virtual value φ(v) of a player with value v at quantile q is R′(q), or
equivalently:

φ(v) = v − S(v)

f(v)

e.g. For U[0,1], φ(v) = 2v − 1
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Myerson’s Revenue-Optimal Auction (Regular)

Lemma (Myerson’s Virtual Surplus Lemma)
Let M = (A, p) be a BIC mechanism where a player bidding zero pays
nothing in expectation. The expected revenue of M is equal to the
expected virtual welfare served by A.

Theorem
The revenue optimal BIC single-item auction awards the item to the
player with the highest nonnegative virtual value, and discards the item
if all virtual values are negative.

e.g. For i.i.d U[0,1], vickrey with a reserve price of φ−1(0) = 0.5.

In our proof, we assumed the distribution is regular.
φ(v) monotone non-decreasing in v.
Includes many natural distributions: uniform, normal,
exponential. . .
Does not include everything: bimodal, power-law . . .
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What Goes Wrong Without Regularity?

R(q)

q

R'(q)

q

Revenue non-concave ⇐⇒ virtual value non-monotone in value
Choosing player with highest virtual value not necessarily
monotone allocation rule
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Ironing

R(q)

q

R'(q)

q

Ironing

The ironed revenue curve R is the concave closure of R.
The ironed virtual value φ is the derivative of R.

Intuition
To enforce monotonicity, “lump together” types in a non-concave
region of R.
Ironed VV averages virtual value in each group.
Alternative interpretation: R(q) is the true maximum revenue
possible if constrained to selling probability q.
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Ironed VV vs VV

Lemma
In any monotone allocation rule, expected Ironed VV served ≥
expected VV served.

Because ironed revenue curve is point-wise higher than revenue curve
at every offer price.

Lemma
If a monotone allocation rule does not distinguish types in the same
group, its expected virtual value served (i.e. revenue) is equal to its
expected ironed virtual value served.

Theorem
The allocation rule maximizing ironed virtual value is montone, and
maximizes expected revenue. (when combined with Myerson
payments)
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Myerson’s Revenue-Optimel Auction (General)

Theorem
The revenue optimal BIC single-item auction awards the item to the
player with the highest nonnegative ironed virtual value, breaking ties
independently of value, and discards the item if all ironed virtual values
are negative.
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Revenue-Optimal Mechanisms for Single-Parameter
Problems

Our proof didn’t use any structure particular to the single item auction.

Theorem
For any single-parameter problem, where player’s private parameters
are drawn independently, the revenue-maximizing auction is that which
maximizes ironed virtual welfare. Specifically, with the allocation rule

A(v) = argmax
x∈Ω

∑
i

φi(vi)xi

Examples
k-item Auction
Position Auctions
Matching (binary service, weighted separable)
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Approximately Revenue-Optimal Mechanisms

We have identified the revenue optimal mechanism for arbitrary
single-parameter problems, however this is not helpful for problems
where [virtual] welfare maximization is NP-hard

e.g. Single-minded CA, Knapsack

Corollary
If a single parameter problem admits a polynomial time DSIC
α-approximation (worst case) mechanism for welfare, then it also
admits a polynomial-time DSIC α-approximation (average case)
mechanism for revenue.

e.g. we saw
√
m for Single-minded CA, 2 for Knapsack
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BIC Approximate Mechanisms for Single-Parameter
Problems

So far, when approximation was necessary, we have designed IC
mechanisms carefully catered to the problem. It is unknown how to get
around that for DSIC.

Does relaxing the the Bayesian Setting, and requiring only BIC, buy us
any more?

Theorem (Hartline, Lucier 10)
For any single-parameter problem where player values are drawn
independently from a product distribution F supported on [0, h]n, any
allocation algorithm A, any parameter ε, there is a BIC algorithm Aε
that preserves the average case welfare of A up to an additive ε, and
moreover can be implemented in time polynomial in n, log h, and 1

ε .

Will ignore sampling issues and get rid of ε, just to get the idea.
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Recall: Myerson’s Monotonicity Lemma

Let xi and pi be a function of the quantile of the player’s report rather
than the report itself.

Myerson’s Monotonicity Lemma (BIC)
Consider a mechanism for a single-parameter problem in a Bayesian
setting where player values are independent. Let xi(qi) and pi(qi) be
the interim allocation/payment rules faced by player i when other
players play the truth-telling strategy. The mechanism is BIC if and
only if:

xi(qi) is a monotone non-increasing function of qi
pi(qi) is an integral of vi(qi)dxi = vi(qi)x

′
i(qi)dqi. Doing the

integration:

pi(qi) =

∫ 1

r=qi

vi(r)x
′
i(r)dr
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Ironing A Single-Player Interim Allocation Rule

Non-BIC algorithm A
Interim rule xi(qi) not monotone decreasing as needed.

Ironing Allocation Rule x

Let X(q) =
∫ q
q′=0 x(q) be the cumulative allocation rule.

Expected quantity player bidding above v(q) gets.
Concave iff x monotone decreasing.

Let X be the concave closure of X. Always above X.
The ironed allocation rule x(q) = dX

dq (q) is the derivative of X.

Implement

Allocation rule of the ironed algorithm A simply replaces any bid in an
ironed interval with a random bid drawn from that interval (from that
player’s distribution), before calling A.
Ignoring: sampling issues identifying ironing intervals
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Ironing Allocation Rule increases welfare

Fact
If a function x is such that its cumulative integral exceeds that of x at
every point, then for any decreasing function w we have∫
q x(q)w(q) ≥

∫
q x(q)w(q)

The weighting w(q) = v(q) is decreasing, so expected welfare
increases on average.
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Are we done?

Wrinkle
We showed how to iron a single player’s allocation rule. Need to do all
simultaneously...
But re-drawing a player’s type before calling A changes other player’s
interim allocation rule...

Question
How can we iron all players’ interim allocation rules simultaneously,
preserving monotonicity?

Answer
We already did! From each player i’s perspective, distribution of j’s
bids plugged into the algorithm unchanged!
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Wrapup

Combined with the usual payment computation tricks, plus tricks to
handle sampling issues, yields

Theorem (Hartline, Lucier 10)
For any single-parameter problem where player values are drawn
independently from a product distribution F supported on [0, h]n, any
allocation algorithm A, any parameter ε, there is a BIC algorithm Aε
that preserves the average case welfare of A up to an additive ε, and
moreover can be implemented in time polynomial in n, log h, and 1

ε .

Therefore, ignoring the additive loss of ε,
A worst-case α-approximation algorithm for welfare implies an
average case α-approximation mechanism for welfare or revenue.
An average case α-approximation algorithm for welfare implies an
average case α-approximation mechanism for welfare (not
revenue)
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