
CS599: Algorithm Design in Strategic Settings
Fall 2012

Lecture 12: Approximate Mechanism Design in
Multi-Parameter Bayesian Settings

Instructor: Shaddin Dughmi



Administrivia

HW1 graded, solutions on website
Short lecture today
Project presentations next week, discuss after lecture



Outline

1 Recap of Last Two Lectures

2 A Reduction to Approximation Algorithm Design for Welfare

3 Conclusion



Outline

1 Recap of Last Two Lectures

2 A Reduction to Approximation Algorithm Design for Welfare

3 Conclusion



Single-parameter Problems in Bayesian Setting

We considered Single-parameter problems in a Bayesian setting.

Bayesian Assumption
We assume each player’s value is drawn independently from some
distribution Fi.

We saught BIC mechanisms.

Examples
Single-item Auction
k-item Auction
Position Auctions
Matching
Knapsack
Single-minded CA

Recap of Last Two Lectures 2/20



Revenue-optimal Mehcanisms

First, we considered the revenue objective,

Lemma (Myerson’s Virtual Surplus Lemma)
Fix a single-parameter problem, and let M = (A, p) be a BIC
mechanism where a player bidding zero pays nothing in expectation.
The expected revenue of M is equal to the expected ironed virtual
welfare served by A.

Theorem
For any single-parameter problem, where player’s private parameters
are drawn independently, the revenue-maximizing auction is that which
maximizes ironed virtual welfare.

Implication
Enables optimal auction implementation when the
welfare-maximization problem is tractable, such as in the single-item
auction, k-item auction, matching, etc.

Recap of Last Two Lectures 3/20



Revenue-optimal Mehcanisms

First, we considered the revenue objective,

Lemma (Myerson’s Virtual Surplus Lemma)
Fix a single-parameter problem, and let M = (A, p) be a BIC
mechanism where a player bidding zero pays nothing in expectation.
The expected revenue of M is equal to the expected ironed virtual
welfare served by A.

Theorem
For any single-parameter problem, where player’s private parameters
are drawn independently, the revenue-maximizing auction is that which
maximizes ironed virtual welfare.

Implication
Enables optimal auction implementation when the
welfare-maximization problem is tractable, such as in the single-item
auction, k-item auction, matching, etc.

Recap of Last Two Lectures 3/20



Approximately Revenue-Optimal Mechanisms

We have identified the revenue optimal mechanism for arbitrary
single-parameter problems, however this is not helpful for problems
where [virtual] welfare maximization is NP-hard

e.g. Single-minded CA, Knapsack

Corollary
If a single parameter problem admits a polynomial time DSIC
α-approximation (worst case) mechanism for welfare, then it also
admits a polynomial-time DSIC α-approximation (average case)
mechanism for revenue.

e.g. we saw
√
m for Single-minded CA, 2 for Knapsack

Recap of Last Two Lectures 4/20



BIC Approximate Mechanisms for Single-Parameter
Problems

For DSIC, when approximation was necessary, we have designed
IC mechanisms carefully catered to the problem.
In the Bayesian setting, requiring only BIC, we showed a generic
reduction.

Used the ironing idea used for revenue maximization

Theorem (Hartline, Lucier 10)
For any single-parameter problem where player values are drawn
independently from a product distribution F supported on [0, 1]n, any
allocation algorithm A, any parameter ε, there is a BIC algorithm Aε
that preserves the average case welfare of A up to an additive ε, and
moreover can be implemented in time polynomial in n and 1

ε .

Recap of Last Two Lectures 5/20



BIC Approximate Mechanisms for Single-Parameter
Problems

For DSIC, when approximation was necessary, we have designed
IC mechanisms carefully catered to the problem.
In the Bayesian setting, requiring only BIC, we showed a generic
reduction.

Used the ironing idea used for revenue maximization

Theorem (Hartline, Lucier 10)
For any single-parameter problem where player values are drawn
independently from a product distribution F supported on [0, 1]n, any
allocation algorithm A, any parameter ε, there is a BIC algorithm Aε
that preserves the average case welfare of A up to an additive ε, and
moreover can be implemented in time polynomial in n and 1

ε .

Recap of Last Two Lectures 5/20



Coming Up

A (weak) generalization of the HL10 result to multi-parameter
problems: a reduction from BIC approximate welfare maximization
to non-IC welfare-maximization approximation algorithms.
A brief overview of current/future trends in bayesian AMD.
Course recap

Recap of Last Two Lectures 6/20



Outline

1 Recap of Last Two Lectures

2 A Reduction to Approximation Algorithm Design for Welfare

3 Conclusion



Setup and Assumptions

Bayesian Mechanism Design Problem in Quasi-linear Settings
Public (common knowledge) inputs describes

Set Ω of allocations.
Typespace Ti for each player i.

T = T1 × T2 × . . .× Tn
Valuation map vi : Ti × Ω→ R fo reach player i.

For type t ∈ Ti, denote by vti : Ω→ R
Distribution D on T

Additional Assumptions
D = F1 × . . .× Fn, where Fi is distribution of player i’s type
Each type-space Ti is finite and given explicitly. Same for the
associated prior Fi.
The objective is Social welfare
Bounded valuations vti(ω) ∈ [0, 1]

A Reduction to Approximation Algorithm Design for Welfare 7/20



Setup and Assumptions

Bayesian Mechanism Design Problem in Quasi-linear Settings
Public (common knowledge) inputs describes

Set Ω of allocations.
Typespace Ti for each player i.

T = T1 × T2 × . . .× Tn
Valuation map vi : Ti × Ω→ R fo reach player i.

For type t ∈ Ti, denote by vti : Ω→ R
Distribution D on T

Additional Assumptions
D = F1 × . . .× Fn, where Fi is distribution of player i’s type
Each type-space Ti is finite and given explicitly. Same for the
associated prior Fi.
The objective is Social welfare
Bounded valuations vti(ω) ∈ [0, 1]

A Reduction to Approximation Algorithm Design for Welfare 7/20



Example: Generalized Assignment

size=80
value=10

capacity=100

capacity=150

n self-interested agents (the players), m machines.
si(j) is the size of player i’s task on machine j. (public)
Cj is machine j’s capacity. (public)
vi(j) is player i’s value for his task going on machine j. (private)

Goal
Partial assignment of jobs to machines, respecting machine budgets,
and maximizing total value of agents (welfare).

Ti listed explicitly, each t ∈ Ti gives vti : j → R

A Reduction to Approximation Algorithm Design for Welfare 8/20



Example: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

Goal
Partition items into sets S1, S2, . . . , Sn to maximize welfare:
v1(S1) + v2(S2) + . . . vn(Sn)

Ti listed explicitly, each t ∈ Ti gives vti : 2[m] → R, either written
explicitly as code, logical formulae, or an oracle.

A Reduction to Approximation Algorithm Design for Welfare 9/20



Result Statement

A simplified version of a result of Bei/Huang ’11 and
Hartline/Kleinberg/Malekian ’11.

Theorem
For any multi-parameter problem where player values are drawn
independently from a product distribution F supported on [0, 1]n, any
allocation algorithm A, any parameter ε, there is an ε-BIC algorithm Aε
that preserves the average case welfare of A up to an additive ε, and
moreover can be implemented in time polynomial in n, 1

ε , and total
number of player types.

The ε loss is due to random sampling technicalities which we will
ignore. . .

A Reduction to Approximation Algorithm Design for Welfare 10/20



Result Statement

A simplified version of a result of Bei/Huang ’11 and
Hartline/Kleinberg/Malekian ’11.

Theorem
For any multi-parameter problem where player values are drawn
independently from a product distribution F supported on [0, 1]n, any
allocation algorithm A, any parameter ε, there is an ε-BIC algorithm Aε
that preserves the average case welfare of A up to an additive ε, and
moreover can be implemented in time polynomial in n, 1

ε , and total
number of player types.

The ε loss is due to random sampling technicalities which we will
ignore. . .

A Reduction to Approximation Algorithm Design for Welfare 10/20



Recall: The Matching Property

For each player i, define a bipartite graph Gi with types Ti on either
side, and weights

w(ti, t
′
i) = E

t−i

[vtii (A(t′i, t−i))],

namely the expected value of a player of type ti for “pretending” to be
of type t′i.

Matching Property (Bayesian Setting, Finite typespaces.)
An allocation algorithm A is said to satisfy the matching property if, for
every player i, the identity matching {(ti, ti) : ti ∈ Ti} is a
maximum-weight bipartite matching in Gi.

Fact (from HW2)
An allocation algorithm A is implementable in Bayes-Nash equilibrium
if and only if it satisfies the matching property.

Truth-telling payments can be calculated as r.h.s dual variables in
maximum bipartite matching problem (equivalently, VCG interpretation)

A Reduction to Approximation Algorithm Design for Welfare 11/20



Recall: The Matching Property

For each player i, define a bipartite graph Gi with types Ti on either
side, and weights

w(ti, t
′
i) = E

t−i

[vtii (A(t′i, t−i))],

namely the expected value of a player of type ti for “pretending” to be
of type t′i.

Matching Property (Bayesian Setting, Finite typespaces.)
An allocation algorithm A is said to satisfy the matching property if, for
every player i, the identity matching {(ti, ti) : ti ∈ Ti} is a
maximum-weight bipartite matching in Gi.

Fact (from HW2)
An allocation algorithm A is implementable in Bayes-Nash equilibrium
if and only if it satisfies the matching property.

Truth-telling payments can be calculated as r.h.s dual variables in
maximum bipartite matching problem (equivalently, VCG interpretation)

A Reduction to Approximation Algorithm Design for Welfare 11/20



Attempt 1: Fixing the Matching Property

We now perform a multi-parameter analogue of ironing

Remapping

Fix a player i. Construct A which satisfies the matching property for i
as follows:

Compute* maximum weight matching in Gi. Let ti denote the r.h.s
type matched to ti, which we refer to as ti’s “surrogate” type.
Let A(t) = A(ti, t−i)

Easy Fact

A satisfies the matching property for the chosen player i.

Computing the dual (equivalently, VCG) prices for the matching gives
truth-telling prices for player i.

A Reduction to Approximation Algorithm Design for Welfare 12/20



Attempt 1: Fixing the Matching Property

We now perform a multi-parameter analogue of ironing

Remapping

Fix a player i. Construct A which satisfies the matching property for i
as follows:

Compute* maximum weight matching in Gi. Let ti denote the r.h.s
type matched to ti, which we refer to as ti’s “surrogate” type.
Let A(t) = A(ti, t−i)

Easy Fact

A satisfies the matching property for the chosen player i.

Computing the dual (equivalently, VCG) prices for the matching gives
truth-telling prices for player i.

A Reduction to Approximation Algorithm Design for Welfare 12/20



Are we done?

Wrinkle
We showed how to remap a single player’s allocation rule to restore
incentive compatibility for that player, without decreasing his expected
utility. Need to do all players simultaneously...
But mapping player i’s type ti ∼ Fi to ti changes the weights for other
player j’s bipartite graph! This is because ti is not necessarily
distributed as Fi.

Question
How can we remap all players’ types simultaneoulsy, restoring the
matching property, yet preserving the distribution of each player’s
type?

A Reduction to Approximation Algorithm Design for Welfare 13/20



Are we done?

Wrinkle
We showed how to remap a single player’s allocation rule to restore
incentive compatibility for that player, without decreasing his expected
utility. Need to do all players simultaneously...
But mapping player i’s type ti ∼ Fi to ti changes the weights for other
player j’s bipartite graph! This is because ti is not necessarily
distributed as Fi.

Question
How can we remap all players’ types simultaneoulsy, restoring the
matching property, yet preserving the distribution of each player’s
type?

A Reduction to Approximation Algorithm Design for Welfare 13/20



Attempt 2: Preserve the Distribution

We need . . .
For each player i a (possibly random) mapping Mi : ti → ti such that,

Distribution Preservation: For ti ∼ Fi, we are guaranteed ti ∼ Fi.
A(t) = A(ti, t−i) satisfies the matching property for i
E[vtii (A(t))] ≤ E[vtii (A(t))]

A Reduction to Approximation Algorithm Design for Welfare 14/20



Attempt 2: Preserve the Distribution

We need . . .
For each player i a (possibly random) mapping Mi : ti → ti such that,

Distribution Preservation: For ti ∼ Fi, we are guaranteed ti ∼ Fi.
A(t) = A(ti, t−i) satisfies the matching property for i
E[vtii (A(t))] ≤ E[vtii (A(t))]

Remapping with Duplication
1 Construct a bipartite graph with a multiset of types Ti on each side

Number of copies of ti on l.h.s proportional to fi(ti)
Number of copies of si on r.h.s proportional to fi(si)
Weight w(ti, si) is expected utility of player with type ti for
pretending to be si

2 Compute* maximum weight matching.
3 Let Mi(ti) be a type ti matched to one of the copies of ti chosen

randomly.
A Reduction to Approximation Algorithm Design for Welfare 14/20



Attempt 2: Preserve the Distribution

We need . . .
For each player i a (possibly random) mapping Mi : ti → ti such that,

Distribution Preservation: For ti ∼ Fi, we are guaranteed ti ∼ Fi.
A(t) = A(ti, t−i) satisfies the matching property for i
E[vtii (A(t))] ≤ E[vtii (A(t))]

Equivalently: Remapping Probability Mass
1 Construct a bipartite graph with types Ti on each side

Demand of ti on l.h.s is fi(ti)
Supply of si on r.h.s is fi(si)
Weight w(ti, si) is expected utility of player with type ti for
pretending to be si

2 Compute* maximum weight flow, subject to demand and supply.
3 Let Mi(ti) be a type ti chosen according to the flows as

probabilities.
A Reduction to Approximation Algorithm Design for Welfare 14/20



Proof: Matching Property

Fix a player i, suffices to show the existence of a truth-telling
payment rule for i.
Intuition behind approach came from restoring matching property,
but a simpler proof follows from VCG interpretation of remapping
procedure

A player of type ti faces an auction for “probability events”, each
associated with a surrogate bid si of value w(ti, si)
Other players in the auction: fake “replicas” of player i, with types
given by the l.h.s types
The auction is constrained to allocating each event to at most one
of the replicas
The assignment of events to replicas is welfare maximizing, and
therefore admits VCG truth-telling payments.

Lemma
Applying the remapping procedure to a player i results in an allocation
rule that satisfies the matching property for player i.

A Reduction to Approximation Algorithm Design for Welfare 15/20



Proof: Matching Property

Fix a player i, suffices to show the existence of a truth-telling
payment rule for i.
Intuition behind approach came from restoring matching property,
but a simpler proof follows from VCG interpretation of remapping
procedure
A player of type ti faces an auction for “probability events”, each
associated with a surrogate bid si of value w(ti, si)

Other players in the auction: fake “replicas” of player i, with types
given by the l.h.s types
The auction is constrained to allocating each event to at most one
of the replicas
The assignment of events to replicas is welfare maximizing, and
therefore admits VCG truth-telling payments.

Lemma
Applying the remapping procedure to a player i results in an allocation
rule that satisfies the matching property for player i.

A Reduction to Approximation Algorithm Design for Welfare 15/20



Proof: Matching Property

Fix a player i, suffices to show the existence of a truth-telling
payment rule for i.
Intuition behind approach came from restoring matching property,
but a simpler proof follows from VCG interpretation of remapping
procedure
A player of type ti faces an auction for “probability events”, each
associated with a surrogate bid si of value w(ti, si)
Other players in the auction: fake “replicas” of player i, with types
given by the l.h.s types

The auction is constrained to allocating each event to at most one
of the replicas
The assignment of events to replicas is welfare maximizing, and
therefore admits VCG truth-telling payments.

Lemma
Applying the remapping procedure to a player i results in an allocation
rule that satisfies the matching property for player i.

A Reduction to Approximation Algorithm Design for Welfare 15/20



Proof: Matching Property

Fix a player i, suffices to show the existence of a truth-telling
payment rule for i.
Intuition behind approach came from restoring matching property,
but a simpler proof follows from VCG interpretation of remapping
procedure
A player of type ti faces an auction for “probability events”, each
associated with a surrogate bid si of value w(ti, si)
Other players in the auction: fake “replicas” of player i, with types
given by the l.h.s types
The auction is constrained to allocating each event to at most one
of the replicas

The assignment of events to replicas is welfare maximizing, and
therefore admits VCG truth-telling payments.

Lemma
Applying the remapping procedure to a player i results in an allocation
rule that satisfies the matching property for player i.

A Reduction to Approximation Algorithm Design for Welfare 15/20



Proof: Matching Property

Fix a player i, suffices to show the existence of a truth-telling
payment rule for i.
Intuition behind approach came from restoring matching property,
but a simpler proof follows from VCG interpretation of remapping
procedure
A player of type ti faces an auction for “probability events”, each
associated with a surrogate bid si of value w(ti, si)
Other players in the auction: fake “replicas” of player i, with types
given by the l.h.s types
The auction is constrained to allocating each event to at most one
of the replicas
The assignment of events to replicas is welfare maximizing, and
therefore admits VCG truth-telling payments.

Lemma
Applying the remapping procedure to a player i results in an allocation
rule that satisfies the matching property for player i.

A Reduction to Approximation Algorithm Design for Welfare 15/20



Proof: Matching Property

Fix a player i, suffices to show the existence of a truth-telling
payment rule for i.
Intuition behind approach came from restoring matching property,
but a simpler proof follows from VCG interpretation of remapping
procedure
A player of type ti faces an auction for “probability events”, each
associated with a surrogate bid si of value w(ti, si)
Other players in the auction: fake “replicas” of player i, with types
given by the l.h.s types
The auction is constrained to allocating each event to at most one
of the replicas
The assignment of events to replicas is welfare maximizing, and
therefore admits VCG truth-telling payments.

Lemma
Applying the remapping procedure to a player i results in an allocation
rule that satisfies the matching property for player i.

A Reduction to Approximation Algorithm Design for Welfare 15/20



Proof: Distribution Preservation

Demand and supply constraints are such that remapping preserves
the probability of each type.

Lemma
Let ti = Mi(ti), for ti ∼ Fi. It is the case that ti ∼ Fi.

A Reduction to Approximation Algorithm Design for Welfare 16/20



Proof: Welfare Preservation

The remapping procedure weakly increases welfare

Lemma
E[vtii (A(t))] ≤ E[vtii (A(t))].

This follows from the fact that the remapping computes a maximum
welfare remapping of types to surrogate types, as compared to original
identity mapping.

A Reduction to Approximation Algorithm Design for Welfare 17/20



Wrapup

The three lemmas together imply the main theorem, after accounting
for ε error due to samping the weights of the edges.

Theorem
For any multi-parameter problem where player values are drawn
independently from a product distribution F supported on [0, 1]n, any
allocation algorithm A, any parameter ε, there is an ε-BIC algorithm Aε
that preserves the average case welfare of A up to an additive ε, and
moreover can be implemented in time polynomial in n, 1

ε , and total
number of player types.

A Reduction to Approximation Algorithm Design for Welfare 18/20



Wrapup

The three lemmas together imply the main theorem, after accounting
for ε error due to samping the weights of the edges.

Theorem
For any multi-parameter problem where player values are drawn
independently from a product distribution F supported on [0, 1]n, any
allocation algorithm A, any parameter ε, there is an ε-BIC algorithm Aε
that preserves the average case welfare of A up to an additive ε, and
moreover can be implemented in time polynomial in n, 1

ε , and total
number of player types.

A Reduction to Approximation Algorithm Design for Welfare 18/20



Outline

1 Recap of Last Two Lectures

2 A Reduction to Approximation Algorithm Design for Welfare

3 Conclusion



Status of Bayesian Algorithmic Mechanism Design

In single-parameter settings, we saw that we have a mature
theory

A general reduction of BIC revenue maximization to BIC welfare
maximization, approximation preserving.
A general reduction of BIC welfare maximization to algorithm
design, approximation preserving.

In Multi-parameter, the picture is still in flux
We saw a reduction from BIC welfare maximization to algorithm
design, approximation preserving, only when type space is small

explicitly given, or constant parameters, etc
Revenue-optimal mechanisms, and their computational complexity,
remain poorly understood

Even in very simple settings, such as matching with i.i.d values,
Recent work tries to make progress on these questions.

Conclusion 19/20



Status of Bayesian Algorithmic Mechanism Design

In single-parameter settings, we saw that we have a mature
theory

A general reduction of BIC revenue maximization to BIC welfare
maximization, approximation preserving.
A general reduction of BIC welfare maximization to algorithm
design, approximation preserving.

In Multi-parameter, the picture is still in flux
We saw a reduction from BIC welfare maximization to algorithm
design, approximation preserving, only when type space is small

explicitly given, or constant parameters, etc
Revenue-optimal mechanisms, and their computational complexity,
remain poorly understood

Even in very simple settings, such as matching with i.i.d values,
Recent work tries to make progress on these questions.

Conclusion 19/20



Course Wrapup

1 Game theory and mechanism design basics
Games of complete and incomplete information, equilibrium
concepts such as Nash equilibria, dominant strategy equilibria,
Bayes-Nash equilibria
The mechanism design problem, the revelation principle, incentive
compatibility

Conclusion 20/20



Course Wrapup

2 Prior-free Mechanism Design
Single-parameter: monotonicity characterization, application to
approximation mechanism design for combinatorial auctions,
knapsack, and scheduling
Multi-parameter problems: VCG, characterization of IC, MIR/MIDR
as a paradigm for approximation mechanism design, techniques
such as Lavi/Swamy LP technique and Rounding anticipation, and
application to assignment problems and combinatorial auctions

Conclusion 20/20



Course Wrapup

3 Bayesian Mechanism Design
Single-parameter: Myerson’s characterization of optimality,
reduction from IC revenue maximization to IC welfare maximization,
reduction from IC welfare maximization to non-IC welfare
maximization.
Multi-parameter: A conditional reduction from IC welfare
maximization to non-IC welfare maximization, approximation
preserving.

Conclusion 20/20



Course Wrapup

Next week: Project Presentations!!

Conclusion 20/20


	Recap of Last Two Lectures
	A Reduction to Approximation Algorithm Design for Welfare
	Conclusion

