CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 12: Approximate Mechanism Design in Multi-Parameter Bayesian Settings

Instructor: Shaddin Dughmi

- HW1 graded, solutions on website
- Short lecture today
- Project presentations next week, discuss after lecture

2 A Reduction to Approximation Algorithm Design for Welfare

A Reduction to Approximation Algorithm Design for Welfare

Single-parameter Problems in Bayesian Setting

We considered Single-parameter problems in a Bayesian setting.

Bayesian Assumption

We assume each player's value is drawn independently from some distribution F_i .

We saught BIC mechanisms.

Examples

- Single-item Auction
- k-item Auction
- Position Auctions
- Matching
- Knapsack
- Single-minded CA

Revenue-optimal Mehcanisms

First, we considered the revenue objective,

Lemma (Myerson's Virtual Surplus Lemma)

Fix a single-parameter problem, and let M = (A, p) be a BIC mechanism where a player bidding zero pays nothing in expectation. The expected revenue of M is equal to the expected ironed virtual welfare served by A.

Theorem

For any single-parameter problem, where player's private parameters are drawn independently, the revenue-maximizing auction is that which maximizes ironed virtual welfare.

Revenue-optimal Mehcanisms

First, we considered the revenue objective,

Lemma (Myerson's Virtual Surplus Lemma)

Fix a single-parameter problem, and let M = (A, p) be a BIC mechanism where a player bidding zero pays nothing in expectation. The expected revenue of M is equal to the expected ironed virtual welfare served by A.

Theorem

For any single-parameter problem, where player's private parameters are drawn independently, the revenue-maximizing auction is that which maximizes ironed virtual welfare.

Implication

Enables optimal auction implementation when the welfare-maximization problem is tractable, such as in the single-item auction, k-item auction, matching, etc.

We have identified the revenue optimal mechanism for arbitrary single-parameter problems, however this is not helpful for problems where [virtual] welfare maximization is NP-hard

• e.g. Single-minded CA, Knapsack

Corollary

If a single parameter problem admits a polynomial time DSIC α -approximation (worst case) mechanism for welfare, then it also admits a polynomial-time DSIC α -approximation (average case) mechanism for revenue.

• e.g. we saw \sqrt{m} for Single-minded CA, 2 for Knapsack

BIC Approximate Mechanisms for Single-Parameter Problems

- For DSIC, when approximation was necessary, we have designed IC mechanisms carefully catered to the problem.
- In the Bayesian setting, requiring only BIC, we showed a generic reduction.
 - Used the ironing idea used for revenue maximization

BIC Approximate Mechanisms for Single-Parameter Problems

- For DSIC, when approximation was necessary, we have designed IC mechanisms carefully catered to the problem.
- In the Bayesian setting, requiring only BIC, we showed a generic reduction.
 - Used the ironing idea used for revenue maximization

Theorem (Hartline, Lucier 10)

For any single-parameter problem where player values are drawn independently from a product distribution *F* supported on $[0,1]^n$, any allocation algorithm \mathcal{A} , any parameter ϵ , there is a BIC algorithm $\overline{\mathcal{A}}_{\epsilon}$ that preserves the average case welfare of \mathcal{A} up to an additive ϵ , and moreover can be implemented in time polynomial in *n* and $\frac{1}{\epsilon}$.

- A (weak) generalization of the HL10 result to multi-parameter problems: a reduction from BIC approximate welfare maximization to non-IC welfare-maximization approximation algorithms.
- A brief overview of current/future trends in bayesian AMD.
- Course recap

Recap of Last Two Lectures

2 A Reduction to Approximation Algorithm Design for Welfare

Setup and Assumptions

Bayesian Mechanism Design Problem in Quasi-linear Settings

Public (common knowledge) inputs describes

- Set Ω of allocations.
- Typespace T_i for each player *i*.

• $T = T_1 \times T_2 \times \ldots \times T_n$

• Valuation map $v_i : T_i \times \Omega \to \mathbb{R}$ fo reach player *i*.

• For type $t \in T_i$, denote by $v_i^t : \Omega \to \mathbb{R}$

• Distribution \mathcal{D} on T

Setup and Assumptions

Bayesian Mechanism Design Problem in Quasi-linear Settings

Public (common knowledge) inputs describes

- Set Ω of allocations.
- Typespace T_i for each player *i*.

• $T = T_1 \times T_2 \times \ldots \times T_n$

• Valuation map $v_i: T_i \times \Omega \to \mathbb{R}$ fo reach player *i*.

• For type $t \in T_i$, denote by $v_i^t : \Omega \to \mathbb{R}$

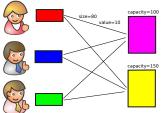
• Distribution \mathcal{D} on T

Additional Assumptions

- $\mathcal{D} = F_1 \times \ldots \times F_n$, where F_i is distribution of player *i*'s type
- Each type-space T_i is finite and given explicitly. Same for the associated prior F_i .
- The objective is Social welfare
- Bounded valuations $v_i^t(\omega) \in [0,1]$

A Reduction to Approximation Algorithm Design for Welfare

Example: Generalized Assignment



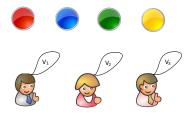
- *n* self-interested agents (the players), *m* machines.
- $s_i(j)$ is the size of player *i*'s task on machine *j*. (public)
- C_j is machine *j*'s capacity. (public)
- $v_i(j)$ is player *i*'s value for his task going on machine *j*. (private)

Goal

Partial assignment of jobs to machines, respecting machine budgets, and maximizing total value of agents (welfare).

```
T_i listed explicitly, each t \in T_i gives v_i^t : j \to \mathbb{R}
```

Example: Combinatorial Allocation



- n players, m items.
- Private valuation v_i : set of items $\rightarrow \mathbb{R}$.
 - $v_i(S)$ is player *i*'s value for bundle *S*.

Goal

Partition items into sets S_1, S_2, \ldots, S_n to maximize welfare: $v_1(S_1) + v_2(S_2) + \ldots + v_n(S_n)$

 T_i listed explicitly, each $t \in T_i$ gives $v_i^t : 2^{[m]} \to \mathbb{R}$, either written explicitly as code, logical formulae, or an oracle.

A Reduction to Approximation Algorithm Design for Welfare

A simplified version of a result of Bei/Huang '11 and Hartline/Kleinberg/Malekian '11.

Theorem

For any multi-parameter problem where player values are drawn independently from a product distribution *F* supported on $[0,1]^n$, any allocation algorithm *A*, any parameter ϵ , there is an ϵ -BIC algorithm $\overline{\mathcal{A}}_{\epsilon}$ that preserves the average case welfare of *A* up to an additive ϵ , and moreover can be implemented in time polynomial in n, $\frac{1}{\epsilon}$, and total number of player types. A simplified version of a result of Bei/Huang '11 and Hartline/Kleinberg/Malekian '11.

Theorem

For any multi-parameter problem where player values are drawn independently from a product distribution *F* supported on $[0,1]^n$, any allocation algorithm *A*, any parameter ϵ , there is an ϵ -BIC algorithm $\overline{\mathcal{A}}_{\epsilon}$ that preserves the average case welfare of *A* up to an additive ϵ , and moreover can be implemented in time polynomial in n, $\frac{1}{\epsilon}$, and total number of player types.

The ϵ loss is due to random sampling technicalities which we will ignore...

Recall: The Matching Property

For each player *i*, define a bipartite graph G_i with types T_i on either side, and weights $w(t_i, t'_i) = \mathop{\mathbf{E}}_{t} [v_i^{t_i}(\mathcal{A}(t'_i, t_{-i}))],$

namely the expected value of a player of type t_i for "pretending" to be of type t'_i .

Matching Property (Bayesian Setting, Finite typespaces.)

An allocation algorithm \mathcal{A} is said to satisfy the matching property if, for every player *i*, the identity matching $\{(t_i, t_i) : t_i \in T_i\}$ is a maximum-weight bipartite matching in G_i .

Recall: The Matching Property

For each player *i*, define a bipartite graph G_i with types T_i on either side, and weights $w(t_i, t'_i) = \mathop{\mathbf{E}}_{t_i} [v_i^{t_i}(\mathcal{A}(t'_i, t_{-i}))],$

namely the expected value of a player of type t_i for "pretending" to be of type t'_i .

Matching Property (Bayesian Setting, Finite typespaces.)

An allocation algorithm \mathcal{A} is said to satisfy the matching property if, for every player *i*, the identity matching $\{(t_i, t_i) : t_i \in T_i\}$ is a maximum-weight bipartite matching in G_i .

Fact (from HW2)

An allocation algorithm \mathcal{A} is implementable in Bayes-Nash equilibrium if and only if it satisfies the matching property.

Truth-telling payments can be calculated as r.h.s dual variables in maximum bipartite matching problem (equivalently, VCG interpretation)

A Reduction to Approximation Algorithm Design for Welfare

Attempt 1: Fixing the Matching Property

We now perform a multi-parameter analogue of ironing

Remapping

Fix a player *i*. Construct \overline{A} which satisfies the matching property for *i* as follows:

- Compute* maximum weight matching in G_i . Let \overline{t}_i denote the r.h.s type matched to t_i , which we refer to as t_i 's "surrogate" type.
- Let $\overline{\mathcal{A}}(t) = \mathcal{A}(\overline{t}_i, t_{-i})$

Attempt 1: Fixing the Matching Property

We now perform a multi-parameter analogue of ironing

Remapping

Fix a player *i*. Construct \overline{A} which satisfies the matching property for *i* as follows:

- Compute* maximum weight matching in G_i . Let \overline{t}_i denote the r.h.s type matched to t_i , which we refer to as t_i 's "surrogate" type.
- Let $\overline{\mathcal{A}}(t) = \mathcal{A}(\overline{t}_i, t_{-i})$

Easy Fact

 $\overline{\mathcal{A}}$ satisfies the matching property for the chosen player *i*.

Computing the dual (equivalently, VCG) prices for the matching gives truth-telling prices for player *i*.

Wrinkle

We showed how to remap a single player's allocation rule to restore incentive compatibility for that player, without decreasing his expected utility. Need to do all players simultaneously...

But mapping player *i*'s type $t_i \sim F_i$ to \overline{t}_i changes the weights for other player *j*'s bipartite graph! This is because \overline{t}_i is not necessarily distributed as F_i .

Wrinkle

We showed how to remap a single player's allocation rule to restore incentive compatibility for that player, without decreasing his expected utility. Need to do all players simultaneously...

But mapping player *i*'s type $t_i \sim F_i$ to \overline{t}_i changes the weights for other player *j*'s bipartite graph! This is because \overline{t}_i is not necessarily distributed as F_i .

Question

How can we remap all players' types simultaneoulsy, restoring the matching property, yet preserving the distribution of each player's type?

Attempt 2: Preserve the Distribution

We need ...

For each player *i* a (possibly random) mapping $M_i : t_i \rightarrow \overline{t}_i$ such that,

- Distribution Preservation: For $t_i \sim F_i$, we are guaranteed $\bar{t}_i \sim F_i$.
- $\overline{\mathcal{A}}(t) = \mathcal{A}(\overline{t}_i, t_{-i})$ satisfies the matching property for i
- $\mathbf{E}[v_i^{t_i}(\mathcal{A}(t))] \leq \mathbf{E}[v_i^{t_i}(\overline{\mathcal{A}}(t))]$

Attempt 2: Preserve the Distribution

We need ...

For each player *i* a (possibly random) mapping $M_i : t_i \rightarrow \overline{t}_i$ such that,

- Distribution Preservation: For $t_i \sim F_i$, we are guaranteed $\overline{t}_i \sim F_i$.
- $\overline{\mathcal{A}}(t) = \mathcal{A}(\overline{t}_i, t_{-i})$ satisfies the matching property for i
- $\mathbf{E}[v_i^{t_i}(\mathcal{A}(t))] \leq \mathbf{E}[v_i^{t_i}(\overline{\mathcal{A}}(t))]$

Remapping with Duplication

• Construct a bipartite graph with a multiset of types T_i on each side

- Number of copies of t_i on l.h.s proportional to $f_i(t_i)$
- Number of copies of s_i on r.h.s proportional to $f_i(s_i)$
- Weight $w(t_i, s_i)$ is expected utility of player with type t_i for pretending to be s_i
- Ocmpute* maximum weight matching.
- Solution Let $M_i(t_i)$ be a type \overline{t}_i matched to one of the copies of t_i chosen randomly.

Attempt 2: Preserve the Distribution

We need ...

For each player *i* a (possibly random) mapping $M_i : t_i \rightarrow \overline{t}_i$ such that,

- Distribution Preservation: For $t_i \sim F_i$, we are guaranteed $\overline{t}_i \sim F_i$.
- $\overline{\mathcal{A}}(t) = \mathcal{A}(\overline{t}_i, t_{-i})$ satisfies the matching property for i
- $\mathbf{E}[v_i^{t_i}(\mathcal{A}(t))] \leq \mathbf{E}[v_i^{t_i}(\overline{\mathcal{A}}(t))]$

Equivalently: Remapping Probability Mass

- Construct a bipartite graph with types T_i on each side
 - Demand of t_i on l.h.s is $f_i(t_i)$
 - Supply of s_i on r.h.s is $f_i(s_i)$
 - Weight $w(t_i, s_i)$ is expected utility of player with type t_i for pretending to be s_i

Compute* maximum weight flow, subject to demand and supply.

• Let $M_i(t_i)$ be a type \overline{t}_i chosen according to the flows as probabilities.

- Fix a player *i*, suffices to show the existence of a truth-telling payment rule for *i*.
- Intuition behind approach came from restoring matching property, but a simpler proof follows from VCG interpretation of remapping procedure

- Fix a player *i*, suffices to show the existence of a truth-telling payment rule for *i*.
- Intuition behind approach came from restoring matching property, but a simpler proof follows from VCG interpretation of remapping procedure
- A player of type t_i faces an auction for "probability events", each associated with a surrogate bid s_i of value $w(t_i, s_i)$

- Fix a player *i*, suffices to show the existence of a truth-telling payment rule for *i*.
- Intuition behind approach came from restoring matching property, but a simpler proof follows from VCG interpretation of remapping procedure
- A player of type t_i faces an auction for "probability events", each associated with a surrogate bid s_i of value w(t_i, s_i)
- Other players in the auction: fake "replicas" of player *i*, with types given by the l.h.s types

- Fix a player *i*, suffices to show the existence of a truth-telling payment rule for *i*.
- Intuition behind approach came from restoring matching property, but a simpler proof follows from VCG interpretation of remapping procedure
- A player of type t_i faces an auction for "probability events", each associated with a surrogate bid s_i of value $w(t_i, s_i)$
- Other players in the auction: fake "replicas" of player *i*, with types given by the l.h.s types
- The auction is constrained to allocating each event to at most one of the replicas

- Fix a player *i*, suffices to show the existence of a truth-telling payment rule for *i*.
- Intuition behind approach came from restoring matching property, but a simpler proof follows from VCG interpretation of remapping procedure
- A player of type t_i faces an auction for "probability events", each associated with a surrogate bid s_i of value w(t_i, s_i)
- Other players in the auction: fake "replicas" of player *i*, with types given by the l.h.s types
- The auction is constrained to allocating each event to at most one of the replicas
- The assignment of events to replicas is welfare maximizing, and therefore admits VCG truth-telling payments.

- Fix a player *i*, suffices to show the existence of a truth-telling payment rule for *i*.
- Intuition behind approach came from restoring matching property, but a simpler proof follows from VCG interpretation of remapping procedure
- A player of type t_i faces an auction for "probability events", each associated with a surrogate bid s_i of value $w(t_i, s_i)$
- Other players in the auction: fake "replicas" of player *i*, with types given by the l.h.s types
- The auction is constrained to allocating each event to at most one of the replicas
- The assignment of events to replicas is welfare maximizing, and therefore admits VCG truth-telling payments.

Lemma

Applying the remapping procedure to a player *i* results in an allocation rule that satisfies the matching property for player *i*.

15/20

A Reduction to Approximation Algorithm Design for Welfare

Demand and supply constraints are such that remapping preserves the probability of each type.

Lemma

Let $\bar{t}_i = M_i(t_i)$, for $t_i \sim F_i$. It is the case that $\bar{t}_i \sim F_i$.

The remapping procedure weakly increases welfare

Lemma

$\mathbf{E}[v_i^{t_i}(\mathcal{A}(t))] \le \mathbf{E}[v_i^{t_i}(\overline{\mathcal{A}}(t))].$

This follows from the fact that the remapping computes a maximum welfare remapping of types to surrogate types, as compared to original identity mapping. The three lemmas together imply the main theorem, after accounting for ϵ error due to samping the weights of the edges.

The three lemmas together imply the main theorem, after accounting for ϵ error due to samping the weights of the edges.

Theorem

For any multi-parameter problem where player values are drawn independently from a product distribution *F* supported on $[0,1]^n$, any allocation algorithm *A*, any parameter ϵ , there is an ϵ -BIC algorithm $\overline{\mathcal{A}}_{\epsilon}$ that preserves the average case welfare of *A* up to an additive ϵ , and moreover can be implemented in time polynomial in n, $\frac{1}{\epsilon}$, and total number of player types.

Recap of Last Two Lectures

A Reduction to Approximation Algorithm Design for Welfare

Status of Bayesian Algorithmic Mechanism Design

- In single-parameter settings, we saw that we have a mature theory
 - A general reduction of BIC revenue maximization to BIC welfare maximization, approximation preserving.
 - A general reduction of BIC welfare maximization to algorithm design, approximation preserving.

Status of Bayesian Algorithmic Mechanism Design

- In single-parameter settings, we saw that we have a mature theory
 - A general reduction of BIC revenue maximization to BIC welfare maximization, approximation preserving.
 - A general reduction of BIC welfare maximization to algorithm design, approximation preserving.
- In Multi-parameter, the picture is still in flux
 - We saw a reduction from BIC welfare maximization to algorithm design, approximation preserving, only when type space is small
 - explicitly given, or constant parameters, etc
 - Revenue-optimal mechanisms, and their computational complexity, remain poorly understood
 - Even in very simple settings, such as matching with i.i.d values,
 - Recent work tries to make progress on these questions.

Game theory and mechanism design basics

- Games of complete and incomplete information, equilibrium concepts such as Nash equilibria, dominant strategy equilibria, Bayes-Nash equilibria
- The mechanism design problem, the revelation principle, incentive compatibility

Prior-free Mechanism Design

- Single-parameter: monotonicity characterization, application to approximation mechanism design for combinatorial auctions, knapsack, and scheduling
- Multi-parameter problems: VCG, characterization of IC, MIR/MIDR as a paradigm for approximation mechanism design, techniques such as Lavi/Swamy LP technique and Rounding anticipation, and application to assignment problems and combinatorial auctions

Bayesian Mechanism Design

- Single-parameter: Myerson's characterization of optimality, reduction from IC revenue maximization to IC welfare maximization, reduction from IC welfare maximization to non-IC welfare maximization.
- Multi-parameter: A conditional reduction from IC welfare maximization to non-IC welfare maximization, approximation preserving.

Next week: Project Presentations!!