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Rationality

Some of you asked for a formalization of rationality. . .

Definition
A utility function on choice set A is a map u : A→ R.

Definition
When choice set A is a family of lotteries over some other choice set
B, a utility function u : A→ R is a Von-Neumann Morgenstern utility
function if there is a utility function v : B → R over B such that
u(a) = Eb∼a[v(b)].

We assume agents are equipped with VNM utility functions over
(distributions over) outcomes of a game / mechanism, and moreover
they act to maximize (expected) utility.

Definition
A rational agent always chooses the element of his choice set
maximizing his (expected) utility.
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Arguments in Favor of Nash Equilibrium

MWG has a nice discussion
Favorite arguments: self-enforcing agreement, stable social
convention
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Single-item Allocation

$4000 $3000 $2000

n players
Player i’s private data (type): vi ∈ R+

Outcome: choice of a winning player, and payment from each
player
Utility of a player for an outcome is his value for the outcome if he
wins, less payment

Objectives: Revenue, welfare.
Examples of Mechanism Design Problems 4/31



Single-item Allocation

$4000 $3000 $2000

First Price Auction
1 Collect bids
2 Give to highest bidder
3 Charge him his bid
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Single-item Allocation

$4000 $3000 $2000

Second-price (Vickrey) Auction
1 Collect bids
2 Give to highest bidder
3 Charge second highest bid
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Example: Public Project

Cost=500

100 250 300

n players
Player i’s private data (type): vi ∈ R+

Outcome: choice of whether or not to build, and payment from
each player covering the cost of the project if built
Utility of a player for an outcome is his value for the project if built,
less his payment

Goal: Build if sum of values exceeds cost
Examples of Mechanism Design Problems 5/31



Shortest Path Procurement

Players are edges in a network, with designated source/sink
Player i’s private data (type): cost ci ∈ R+

Outcome: choice of s-t shortest path to buy, and payment to each
player
Utility of a player for an outcome is his payment, less his cost if
chosen.

Goal: buy path with lowest total cost (welfare), or buy a path subject to
a known budget, . . .

Examples of Mechanism Design Problems 6/31



Example: Voting

n players
m candidates
Player i’s private data (type): total preference order on candidates
Outcome: choice of winning candidate

Goal: ??

Examples of Mechanism Design Problems 7/31
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Recall: Incomplete Information Game

A game of strict incomplete information is a tuple (N,A, T, u), where
N is a finite set of players. Denote n = |N | and N = {1, . . . , n}.
A = A1 × . . . An, where Ai is the set of actions of player i. Each
~a = (a1, . . . , an) ∈ A is called an action profile.
T = T1 × . . . Tn, where Ti is the set of types of player i. Each
~t = (t1, . . . , tn) ∈ T is called an type profile.
u = (u1, . . . un), where ui : Ti ×A→ R is the utility function of
player i.

For a Bayesian game, add a common prior D on types.

Example: Vickrey Auction
Ai = R is the set of possible bids of player i.
Ti = R is the set of possible values for the item.
For vi ∈ Ti and b ∈ A, we have ui(vi, b) = vi − b−i if bi > b−i,
otherwise 0.

Review: Incomplete Information Games 8/31
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Strategies in Incomplete Information Games

Strategies of player i
Pure strategy si : Ti → Ai: a choice of action ai ∈ Ai for every type
ti ∈ Ti.

Example: Truthtelling is a strategy in the Vickrey Auction
Example: Bidding half your value is also a strategy

Mixed strategy: a choice of distribution over actions Ai for each
type ti ∈ Ti

Won’t really use... all our applications will involve pure strategies

Note
In a strategy, player decides how to act based only on his private info
(his type), and NOT on others’ private info nor their actions.
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Equilibria

si : Ti → Ai is a dominant strategy for player i if, for all ti ∈ Ti and
a−i ∈ A−i and a′i ∈ Ai,

ui(ti, (si(ti), a−i)) ≥ ui(ti, (a
′
i, a−i))

Equivalently: si(ti) is a best response to s−i(t−i) for all ti, t−i and s−i.

Review: Incomplete Information Games 10/31



Illustration: Vickrey Auction

Vickrey Auction
Consider a Vickrey Auction with incomplete information.

Claim
The truth-telling strategy is dominant for each player.
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Bayes-Nash Equilibrium

As before, a strategy si for player i is a map from Ti to Ai. Now, we
define the extension of Nash equilibrium to this setting.

A pure Bayes-Nash Equilibrium of a Bayesian Game of incomplete
information is a set of strategies s1, . . . , sn, where si : Ti → Ai, such
that for all i, ti ∈ Ti, a′i ∈ Ai we have

E
t−i∼D|ti

ui(ti, s(t)) ≥ E
t−i∼D|ti

ui(ti, (a
′
i, s−i(t−i)))

where the expectation is over t−i drawn from p after conditioning on ti.

Note: Every dominant strategy equilibrium is also a Bayes-Nash
Equilibrium
But, unlike DSE, BNE is guaranteed to exist.
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Example: First Price Auction

Example: First Price Auction
Ai = Ti = [0, 1]

ui(vi, b) = vi − bi if bi > bj for all j 6= i, otherwise 0.
D draws each vi ∈ Ti independently from [0, 1].

Show that the strategies bi(vi) = vi/2 form a Bayes-Nash equilibrium.

Review: Incomplete Information Games 13/31
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General Form

Mechanism Design Setting (Prior-free)
Given by a tuple (N,X , T, u), where

N is a finite set of players. Denote n = |N | and N = {1, . . . , n}.
X is a set of outcomes.
T = T1 × . . . Tn, where Ti is the set of types of player i. Each
~t = (t1, . . . , tn) ∈ T is called an type profile.
u = (u1, . . . un), where ui : Ti ×X → R is the utility function of
player i.

In a Bayesian setting, supplement with a distribution D over T

Example: Single-item Allocation
Outcome: choice x ∈ {e1, . . . , en} of winning player, and payment
p1, . . . , pn from each
Type of player i: value vi ∈ R+.
ui(vi, x) = vixi − pi.

The General Mechanism Design Problem 14/31
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Social Choice Functions

A principal wants to communicate with players and aggregate their
private data (types) into a choice of outcome. Such aggregation
captured by

A social choice function f : T → X is a map from type profiles to
outcomes.

Choosing a Social Choice Function
A particular social choice function in mind (e.g. majority voting,
utilitarian allocation of a single item, etc).
An objective function o : T ×X → R, and want f(T ) to
(approximately) maximize o(T, f(T ))

Either worst case over T (Prior-free) or in expectation (Bayesian)

Example: Single-item Allocation
Welfare objective: welfare(v, (x, p)) =

∑
i vixi

Revenue objective: revenue(v, (x, p)) =
∑

i pi

The General Mechanism Design Problem 15/31
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Mechanisms

To perform such aggregation, the principal runs a protocol, known as a
mechanism. Formally,

A mechanism is a pair (A,g), where
A = A1 × . . . An, where Ai is the set of possible actions (think
messages, or bids) of player i in the protocol. A is the set of
action profiles.
g : A→ X is an outcome function

The resulting game of mechanism design is a game of incomplete
information where when players play a ∈ A, player i’s utility is
ui(ti, g(a)) when his type is ti.

Example: First price auction
Ai = R
g(b1, . . . , bn) = (x, p) where xi∗ = 1, pi∗ = bi∗ for i∗ = argmaxi bi,
and xi = pi = 0 for i 6= i∗.

The General Mechanism Design Problem 16/31
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Implementation of Social Choice Functions

We say a mechanism (A, g) implements social choice function
f : T → X in dominant-strategy [Bayes-Nash] equilibrium if there is a
strategy profile s = (s1, . . . , sn) with si : Ti → Ai such that

si : Ti → Ai is a dominant-strategy [Bayes-Nash] equilibrium in the
resulting incomplete information game
g(s1(t1), s2(t2), . . . , sn(tn)) = f(t1, t2, ..., tn) for all t ∈ T

Example: First price, two players, i.i.d U [0, 1]

Implements in BNE the following social choice function: give the item
to the player with the highest value and charges him half his value.

Example: Vickrey Auction
Implements in DSE the following social choice function: give the item
to the player with the highest value and charges him the second
highest value.

The General Mechanism Design Problem 17/31



The Task of Mechanism Design

Task of Mechanism Design (Take 1)
Given a notion of a “good” social choice function from T to X, find

A mechanism
An action space A = (A1, . . . , An),
an outcome function g : A→ X ,

an equilibrium (s1, . . . , sn) of the resulting game of mechanism
design

such that the social choice function f(t1, . . . , tn) = g(s1(t1), . . . , sn(tn))
is “good.”

Problem
This seems like a complicated, multivariate search problem.

Luckily
The revelation principle reduces the search space to just g : T → X .

The General Mechanism Design Problem 18/31
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Incentive-Compatibility

Direct Revelation
A mechanism (A, g) is a direct revelation mechanism if Ai = Ti for all i.

i.e. in a direct revelation mechanism, players simultaneously report
types (not necessarily truthfully) to the mechanism. Such mechanisms
can simply be described via the function g : T → X .

Incentive-Compatibility
A direct-revelation mechanism is dominant-strategy [Bayesian]
incentive-compatible (aka truthful) if the truth-telling is a
dominant-strategy [Bayes-Nash] equilibrium in the resulting
incomplete-information game.

Note: A direct revelation incentive-compatible mechanism implements
its outcome function g : T → X , by definition.

The social choice function IS the mechanism!!
The Revelation Principle and Incentive Compatibility 19/31



Examples

Vickrey Auction
Direct revelation mechanism, dominant-strategy incentive-compatible.

First Price Auction
Direct revelation mechanism, not Bayesian incentive compatible.

Example: Posted price
The auction that simply posts a fixed price to players in sequence until
one accepts is not direct revelation.

The Revelation Principle and Incentive Compatibility 20/31



Revelation Principle

Revelation Principle
If there is a mechanism implementing social choice function f in
dominant-strategy [Bayes-Nash] equilibrium, then there is a direct
revelation, dominant-strategy [Bayesian] incentive-compatible
mechanism implementing f .

This simplifies the task of mechanism design

Task of Mechanism Design (Take 2)
Given a notion of a “good” social choice function from T to X, find
such a function f : T → X such that truth-telling is an equilibrium in
the following mechanism:

Solicit reports t̃i ∈ Ti from each player i (simultaneous, sealed bid)
Choose outcome f(t̃1, . . . , t̃n)

The Revelation Principle and Incentive Compatibility 21/31
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Example

2 players, with values i.i.d uniform from [0, 1], facing the first-price
auction.

First-price Auction
1 Solicit bids b1, b2
2 Give item to highest bidder, charging him his bid

Recall
The strategies where each player reports half their value are in BNE.
In other words, when player 1 knows his value v1, and faces player 2
who is bidding uniformly from [0, 1/2], he maximizes his expected utility
(v1 − b1).2b1 by bidding b1 = v1/2. And vice versa.

Therefore . . .
the first price auction implements in BNE the social choice function
which gives the item to the highest bidder, and charges him half his bid

The Revelation Principle and Incentive Compatibility 22/31
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Example

Modified First-price Auction
1 Solicit bids b1, b2
2 Give item to highest bidder, charging him half his bid

Equivalently, simulate a first price auction where bidders bid
b1/2, b2/2

Claim
Truth-telling is a BNE in the modified first-price auction.

Therefore, the modified auction implements the same social-choice
function in equilibrium, but is truthful.

Proof
Assume player 2 bids truthfully. Player 1 faces a (simulated) first price
auction where his own bid is halved before participating, and player 2
bids uniformly from [0, 1/2]. To respond optimally in the simulation, he
bids b1 = v1 and lets the mechanism halve his bid on his behalf.

The Revelation Principle and Incentive Compatibility 22/31
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Proof (Bayesian Setting)

Consider mechanism (A, g), with BNE strategies si : Ti → Ai.
Implements f(t1, . . . , tn) = g(s1(t1), . . . , sn(tn)) in BNE
For all i and ti, action si(ti) maximizes player i’s expected utility
when other players are playing s−i(t−i) for t−i ∼ D|ti.

Modified Mechanism
1 Solicit reported types t̃1, . . . , t̃n
2 Choose outcome f(t̃1, . . . , t̃n) = g(s1(t̃1), . . . , sn(t̃n))

Equivalently, simulate (A, g) when players play si(ti)

Assume all players other than i report truthfully
When i’s type is ti, other players playing s−i(t−i) for t−i ∼ D|ti in
simulated mechanism
As stated above, his best response in simulation is si(ti).
Mechanism transforms his bid by applying si, so best to bid ti.

The Revelation Principle and Incentive Compatibility 23/31
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Mechanism Design Impossibilities

The revelation principle reduces mechanism design to the design of
direct-revelation, truthful mechanisms.

Unfortunately...
Absent structure on the outcome space and utility functions, no
reasonably good mechanisms exist even in simple settings.

Examples coming up: single-item allocation without payments, voting

Luckily
The structure that enables much of mechanism design is assuming
that the outcome space incorporates monetary payments, and player
utilities are linear in these payments.

Impossibilities in General Settings 24/31
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Single-item Allocation Without Money

Question
Consider allocating a single item among n players, with private
values (types) v1, . . . , vn ∈ R+ for the item, without access to
monetary payments.
Restricted to mechanisms that implement their social choice
function in dominant strategies.
What is the smallest worst-case approximation ratio for social
welfare of such a mechanism? Prove it.
WLOG by revelation principle: restrict attention to
dominant-strategy truthful mechanisms f : Rn

+ → {1, . . . , n}.

The worst-case approximation ratio of mechanism f for social welfare
is defined as

max
v∈Rn

+

maxi vi
vf(v)
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guarantee better than 1/n fraction of the optimal social welfare in
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Voting

Recall: voting
n players
m candidates
Player i’s private data (type): total preference order on candidates
Outcome: choice of winning candidate

Theorem (Gibbard-Satterthwaite)
Assume the number of candidates C is at last 3. Consider a voting
mechanism implementing allocation rule f : Σn → C in dominant
strategies. Either f is a dictatorship or some candidate can never win
in f .
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Incorporating Payments

To make much of modern mechanism design possible, we assume that
The set of outcomes has a particular structure: every outcome
includes a payment to and from each player.
Player utilities vary linearly with their payment.

Examples: Single-item allocation, public project, shortest path
procurement
Non-examples: Single-item allocation without money, voting.
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Quasilinear Utilities

The Quasi-linear Setting
Formally, X = Ω× Rn.

Ω is the set of allocations
For (ω, p1, . . . , pn) ∈ X , pi is the payment from (or to) player i.

and player i′s utility function ui : Ti ×X → R takes the following form

ui(ti, (ω, p1, . . . , pn)) = vi(ti, ω)− pi

for some valuation function vi : Ti × Ω→ R.

We say players have quasilinear utilities.

Example: Single-item Allocation
Ω = {e1, . . . , en}
ui(ti, (ω, p1, . . . , pn)) = tiωi − pi
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Further simplification

Recall that, using the revelation principle, we got

Task of Mechanism Design (Take 2)
Given a notion of a “good” social choice function from T to X, find
such a function f : T → X such that truth-telling is an equilibrium in
the following mechanism:

Solicit reports t̃i ∈ Ti from each player i (simultaneous, sealed bid)
Choose outcome f(t̃1, . . . , t̃n)

In quasilinear settings this breaks down further

Task of Mechanism Design in Quasilinear settings
Find a “good” allocation rule f : T → Ω and payment rule p : T → Rn

such that the following mechanism is incentive-compatible:
Solicit reports t̃i ∈ Ti from each player i (simultaneous, sealed bid)
Choose allocation f(t̃)

Charge player i payment pi(t̃)

We think of the mechanism as the pair (f, p).
Sometimes, we abuse notation and think of type ti directly as the
valuation vi : Ω→ R.
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Incentive-Compatibility

Incentive compatibility can be stated simply now

Incentive-compatibility (Dominant Strategy)
A mechanism (f, p) is dominant-strategy truthful if, for every player i,
true type ti, possible mis-report t̃i, and reported types t−i of the
others, we have

vi(ti, f(t))− pi(t) ≥ vi(ti, f(t̃i, t−i))− pi(t̃i, t−i)

If (f, p) randomized, add expectation signs.

Incentive-compatibility (Bayesian)
A mechanism (f, p) is Bayesian incentive compatible if, for every player
i, true type ti, possible mis-report t̃i, the following holds in expectation
over t−i ∼ D|ti

E[vi(ti, f(t))− pi(t)] ≥ E[vi(ti, f(t̃i, t−i))− pi(t̃i, t−i)]

Mechanisms with Money: The Quasilinear Utility Model 30/31



Incentive-Compatibility

Incentive compatibility can be stated simply now

Incentive-compatibility (Dominant Strategy)
A mechanism (f, p) is dominant-strategy truthful if, for every player i,
true type ti, possible mis-report t̃i, and reported types t−i of the
others, we have

vi(ti, f(t))− pi(t) ≥ vi(ti, f(t̃i, t−i))− pi(t̃i, t−i)

If (f, p) randomized, add expectation signs.

Incentive-compatibility (Bayesian)
A mechanism (f, p) is Bayesian incentive compatible if, for every player
i, true type ti, possible mis-report t̃i, the following holds in expectation
over t−i ∼ D|ti

E[vi(ti, f(t))− pi(t)] ≥ E[vi(ti, f(t̃i, t−i))− pi(t̃i, t−i)]

Mechanisms with Money: The Quasilinear Utility Model 30/31



Examples

Vickrey Auction
Allocation rule maps b1, . . . , bn to ei∗ for i∗ = argmaxi bi

Payment rule maps b1, . . . , bn to p1, . . . , pn where pi∗ = b(2), and
pi = 0 for i 6= i∗.

Dominant-strategy truthful.

First Price Auction
Allocation rule maps b1, . . . , bn to ei∗ for i∗ = argmaxi bi

Payment rule maps b1, . . . , bn to p1, . . . , pn where pi∗ = b(1), and
pi = 0 for i 6= i∗.

For two players i.i.d U [0, 1], players bidding half their value is a BNE.
Not Bayesian incentive compatible.

Modified First Price Auction
Allocation rule maps b1, . . . , bn to ei∗ for i∗ = argmaxi bi

Payment rule maps b1, . . . , bn to p1, . . . , pn where pi∗ = b(1)/2, and
pi = 0 for i 6= i∗.

For two players i.i.d U [0, 1], Bayesian incentive compatible.
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