CS599: Algorithm Design in Strategic Settings Fall 2012

Lecture 4: Prior-Free Single-Parameter Mechanism Design

Instructor: Shaddin Dughmi

Administrivia

- HW out, due Friday 10/5
 - Very hard (I think)
 - Discuss together and with me (but write up independently)

Outline

- Recap
- Objectives and Constraints in Mechanism Design
- Single-Parameter Problems
 - Example Problems
 - General Definition
- Characterization of Incentive-compatible Mechanisms
- 5 Exercises

Outline

- Recap
- Objectives and Constraints in Mechanism Design
- Single-Parameter Problems
 - Example Problems
 - General Definition
- 4 Characterization of Incentive-compatible Mechanisms
- 5 Exercises

Motivated by impossibilities, we agreed to focus on settings where monetary payments can be used to align incentives.

The Quasi-linear Setting

Formally, $\mathcal{X} = \Omega \times \mathbb{R}^n$.

- Ω is the set of allocations
- For $(\omega, p_1, \dots, p_n) \in \mathcal{X}$, p_i is the payment from (or to) player i.

and player i's utility function $u_i:T_i\times\mathcal{X}\to\mathbb{R}$ takes the following form

$$u_i(t_i,(\omega,p_1,\ldots,p_n))=v_i(t_i,\omega)-p_i$$

for some valuation function $v_i: T_i \times \Omega \to \mathbb{R}$.

We say players have quasilinear utilities.

Example: Single-item Allocation

- $u_i(t_i, (\omega, p_1, \dots, p_n)) = t_i \omega_i p_i$

Recap 2/25

The Mechanism Design Problem

Task of Mechanism Design in Quasilinear settings

Find a "good" allocation rule $f: T \to \Omega$ and payment rule $p: T \to \mathbb{R}^n$ such that the following mechanism is incentive-compatible:

- Solicit reports $\widetilde{t_i} \in T_i$ from each player i (simultaneous, sealed bid)
- Choose allocation $f(\tilde{t})$
- Charge player i payment $p_i(\tilde{t})$

We think of the mechanism as the pair (f, p).

Recap 3/

Incentive Compatibility

Incentive-compatibility (Dominant Strategy)

A mechanism (f,p) is dominant-strategy truthful if, for every player i, true type t_i , possible mis-report \widetilde{t}_i , and reported types t_{-i} of the others, we have

$$\mathbf{E}[v_i(t_i, f(t)) - p_i(t)] \ge \mathbf{E}[v_i(t_i, f(\widetilde{t}_i, t_{-i})) - p_i(\widetilde{t}_i, t_{-i})]$$

The expectation is over the randomness in the mechanism.

Recap 4/2

Incentive Compatibility

Incentive-compatibility (Dominant Strategy)

A mechanism (f,p) is dominant-strategy truthful if, for every player i, true type t_i , possible mis-report \widetilde{t}_i , and reported types t_{-i} of the others, we have

$$\mathbf{E}[v_i(t_i, f(t)) - p_i(t)] \ge \mathbf{E}[v_i(t_i, f(\widetilde{t}_i, t_{-i})) - p_i(\widetilde{t}_i, t_{-i})]$$

The expectation is over the randomness in the mechanism.

Incentive-compatibility (Bayesian)

A mechanism (f,p) is Bayesian incentive compatible if, for every player i, true type t_i , possible mis-report \widetilde{t}_i , the following holds in expectation over $t_{-i} \sim D|t_i$

$$\mathbf{E}[v_i(t_i, f(t)) - p_i(t)] \ge \mathbf{E}[v_i(t_i, f(\widetilde{t}_i, t_{-i})) - p_i(\widetilde{t}_i, t_{-i})]$$

The expectation is over randomness in both the mechanism and the other players' types.

Outline

- Recap
- Objectives and Constraints in Mechanism Design
- Single-Parameter Problems
 - Example Problems
 - General Definition
- Characterization of Incentive-compatible Mechanisms
- Exercises

Question

What is a "good" mechanism?

Answer

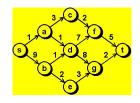
Depends what you are looking for.

- Researchers and practitioners have considered many objectives and hard constraints on desirable mechanisms.
- The task of mechanism design is then to find a mechanism maximizing the objective subject to the constraints.

Example: Single-minded Combinatorial Allocation

- n players, m non-identical items
- ullet For each player, publicly known subset A_i of items the player desires
- Allocations: partitions of items among players
- Each player has type $v_i \in \mathbb{R}_+$, indicating his value for receiving a bundle including A_i (0 otherwise)
- Goal: Social welfare (sum of values of players who receive their desired bundles)

Shortest Path Procurement



- Players are edges in a network, with designated source/sink
- Player *i*'s private data (type): cost $c_i \in \mathbb{R}_+$
- Outcome: choice of s-t shortest path to buy, and payment to each player
- Utility of a player for an outcome is his payment, less his cost if chosen.

Goal: buy path with lowest total cost (welfare), or buy a path subject to a known budget, . . .

Example: Public Project

- Designer considering whether to build a project which costs designer C (public)
- n players, each with private type $v_i \in \mathbb{R}_+$, indicating value for project
- Outcome: Choice of whether or not to build project, and how much to charge each player.
- Possible goal: Build if $\sum_i v_i > C$, charging players enough to cover cost C

Constraints

- Incentive compatibility
- Polynomial-time
- Individual Rationality: never charge a player more than his (reported) value for an allocation.
- Nonnegative [Non-positive] Transfers: never pay [get paid by] a player
 - e.g. Combinatorial allocation, Shortest path procurement
- Budget constraints: sum of total payments to agents must respect budget
 - e.g. reverse (procurement) auctions
- Budget balance: sum of total payments must exceed cost of allocation
 - e.g. public project

Objectives: Prior-free

Given an instance of a mechanism design problem,

- An objective is a map from outcome (allocation and payments) to the real numbers.
- A benchmark is a real number "goalpost"

Single-item auction

- Objective: welfare, i.e. the value of the winning player.
- Benchmark: the maximum welfare over all allocations.

Objectives: Prior-free

Given an instance of a mechanism design problem,

- An objective is a map from outcome (allocation and payments) to the real numbers.
- A benchmark is a real number "goalpost"

Single-item auction

- Objective: welfare, i.e. the value of the winning player.
- Benchmark: the maximum welfare over all allocations.

In prior-free settings, we traditionally judge an algorithm by the worst-case ratio between the performance of the mechanism and the benchmark.

The worst-case approximation ratio of a mechanism is the maximum, over all inputs, of the benchmark divided by the objective of the outcome output by the mechanism.

Objectives: Bayesian

In the presence of a distribution over inputs, no need for a benchmark.

Judge a mechanism by the expected objective over the various inputs.

Outline

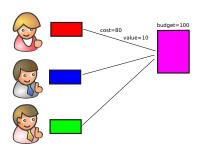
- Recap
- Objectives and Constraints in Mechanism Design
- Single-Parameter Problems
 - Example Problems
 - General Definition
- Characterization of Incentive-compatible Mechanisms
- 5 Exercises

Next Up

We will begin our exploration of the space of mechanism design problems by restricting attention to

- Prior-free settings, with the goal of designing dominant-strategy truthful mechanisms
- Quasi-linear utilities, so our mechanisms will use payments
- Problems that are single-parameter

Example: Knapsack Allocation



- ullet n players, each player i with a task requiring c_i time
- Machine has total processing time B (public)
- Player i has (private) value v_i for his task

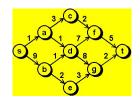
Must choose a welfare-maximizing feasible subset $S\subseteq [n]$ of the tasks to process, possibly charging players

Single-Parameter Problems 13/25

Example: Single-minded Combinatorial Allocation

- n players, m non-identical items
- ullet For each player, publicly known subset A_i of items the player desires
- Allocations: partitions of items among players
- Each player has type $v_i \in \mathbb{R}_+$, indicating his value for receiving a bundle including A_i (0 otherwise)
- Goal: Social welfare (sum of values of players who receive their desired bundles)

Shortest Path Procurement



- Players are edges in a network, with designated source/sink
- Player *i*'s private data (type): cost $c_i \in \mathbb{R}_+$
- Outcome: choice of s-t shortest path to buy, and payment to each player
- Utility of a player for an outcome is his payment, less his cost if chosen.

Goal: buy path with lowest total cost (welfare), or buy a path subject to a known budget, ...

Scheduling

- Designer has m jobs, with publicly known sizes p_1, \ldots, p_m
- n players, each own a machine
- Player *i*'s type $t_i \in \mathcal{R}$ is time (cost) per unit job
- Outcome: schedule mapping jobs onto machines, and payment to each player
- Utility of a player for a schedule is his payment, less the total time spent processing assigned jobs

Goal: Find schedule minimizing makespan: the time at which all jobs are complete

Single-parameter Problems

Informally

- There is a single homogenous resource (items, bandwidth, clicks, spots in a knapsack, etc).
- There are constraints on how the resource may be divided up.
- Each player's private data is his "value (or cost) per unit resource."

Single-parameter Problems

Formally

- Each player i's type is a single real number t_i . Player i's type-space T_i is an interval in \mathbb{R} .
- Each outcome $\omega \in \Omega$ is a vector in \mathbb{R}^n .
- Player *i*'s valuation function is $v_i(t_i, x) = t_i x_i$

Single-parameter Problems

Formally

- Each player i's type is a single real number t_i . Player i's type-space T_i is an interval in \mathbb{R} .
- Each outcome $\omega \in \Omega$ is a vector in \mathbb{R}^n .
- Player *i*'s valuation function is $v_i(t_i, x) = t_i x_i$

Examples

- Single-item allocation: Ω is set of standard basis vectors, t_i is player i's value for an item.
- Knapsack allocation: Ω is the set of indicator vectors of players who fit in the knapsack, t_i is player i's value for being included.
- Scheduling: Ω is the set of possible load vectors, $-t_i$ is player i's time per unit load.

Interpretation and Importance

- Models win/lose situations, and situations where a homogeneous resource is to be divided.
- Simple and pervasive
- Incentive-compatible mechanisms admit a simple and permissive characterization.

Outline

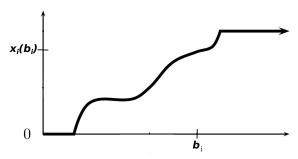
- Recap
- Objectives and Constraints in Mechanism Design
- Single-Parameter Problems
 - Example Problems
 - General Definition
- 4 Characterization of Incentive-compatible Mechanisms
- Exercises

Myerson's Lemma (Dominant Strategy)

A mechanism (x,p) for a single-parameter problem is dominant-strategy truthful if and only if for every player i and fixed reports b_{-i} of other players,

- ullet $x_i(b_i)$ is a monotone non-decreasing function of b_i
- $p_i(b_i)$ is an integral of $b_i dx_i$. Specifically, when $p_i(0) = 0$ then

$$p_i(b_i) = b_i \cdot x_i(b_i) - \int_{b=0}^{b_i} x_i(b)db$$

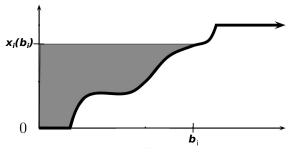


Myerson's Lemma (Dominant Strategy)

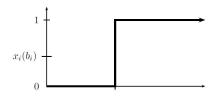
A mechanism (x,p) for a single-parameter problem is dominant-strategy truthful if and only if for every player i and fixed reports b_{-i} of other players,

- ullet $x_i(b_i)$ is a monotone non-decreasing function of b_i
- $p_i(b_i)$ is an integral of $b_i dx_i$. Specifically, when $p_i(0) = 0$ then

$$p_i(b_i) = b_i \cdot x_i(b_i) - \int_{b=0}^{b_i} x_i(b)db$$



Interpretation of Myerson's Lemma



Utilitarian Single-item Allocation

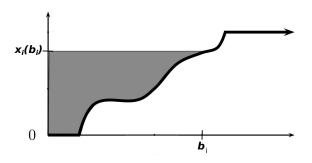
- Once a player wins, he remains a winner by increasing his bid (assuming other bids held fixed)
- The player must pay his critical value if he wins: the minimum bid he needs to win.
- Therefore, Vickrey is the <u>unique</u> welfare-maximizing, individually rational, single-item auction.

Same holds for every problem with a binary (win/lose) outcome per player.

Interpretation of Myerson's Lemma

More Generally

As player increases his bid, he pays for each additional chunk of resource at a rate equal to the minimum bid needed to win that chunk.



Proof: Necessity

Figure

Monotonicity

- Assume for a contradiction that x_i is non-monotone. Let $b_i' > b_i$ with $x_i(b_i') < x_i(b_i)$.
- Two cases:
 - $b_i \cdot (x_i(b_i) x_i(b_i')) < p_i(b_i) p_i(b_i')$ Extra "value" gotten by reporting b_i truthfully is dominated by increase in price.
 - 2 $b_i \cdot (x_i(b_i) x_i(b_i')) \ge p_i(b_i) p_i(b_i')$ Then also $b_i' \cdot (x_i(b_i) - x_i(b_i')) > p_i(b_i) - p_i(b_i')$, and a player with true value b_i' prefers to mis-report b_i .

Proof: Necessity

Payments

ullet Consider the utility of a player with type b_i reporting b_i'

$$b_i x_i(b_i') - p_i(b_i')$$

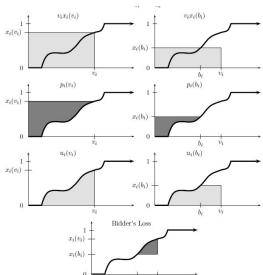
- For truthfulness, this expression must be maximized by setting $b_i' = b_i$
- ullet This implies that the partial derivative w.r.t b_i' , evaluated at $b_i'=b_i$, is zero

$$b_i \frac{dx_i}{db_i}(b_i) - \frac{dp_i}{db_i}(b_i) = 0$$

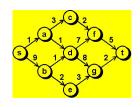
• Multiplying by db_i gives that p_i integrates $b_i dx_i$, as needed.

Proof: Sufficiency

Consider a player with true type v_i , and a possible mis-report $b_i < v_i$. (Exercise: consider $b_i > v_i$)



Example: Dijkstra Shortest Path



- Monotonicity: If an edge in the shortest path decreases its cost, it remains in the shortest path
- Critical Payments: We pay each edge the maximum possible cost it could report and still remain in the shortest path.

Figure

Outline

- Recap
- Objectives and Constraints in Mechanism Design
- Single-Parameter Problems
 - Example Problems
 - General Definition
- 4 Characterization of Incentive-compatible Mechanisms
- Exercises

Bilateral Trade

A seller (player 1) and buyer (player 2) are looking to trade a single item initially held by the seller.

- Type of each player i is his value v_i for the item
- Two outcomes:
 - No trade: (1,0)
 - Trade: (0,1)
- Welfare maximizing allocation rule:

Exercises 24/25

Bilateral Trade

A seller (player 1) and buyer (player 2) are looking to trade a single item initially held by the seller.

- Type of each player i is his value v_i for the item
- Two outcomes:
 - No trade: (1,0)
 - Trade: (0,1)
- Welfare maximizing allocation rule: trade if $v_2 > v_1$

Exercises 24/25

Bilateral Trade

A seller (player 1) and buyer (player 2) are looking to trade a single item initially held by the seller.

- Type of each player i is his value v_i for the item
- Two outcomes:
 - No trade: (1,0)
 - Trade: (0, 1)
- Welfare maximizing allocation rule: trade if $v_2 > v_1$

Question

Assuming no payments in the event of no-trade, describe the payment rule of the welfare-maximizing mechanism.

Exercises 24/25

Next Lecture

We finally begin designing "interesting" mechanisms, specifically for problems that are NP-hard. The tricky part will be combining incentive-compatibility and polynomial-time.

Exercises 25/25