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Motivated by impossibilities, we agreed to focus on settings where
monetary payments can be used to align incentives.

The Quasi-linear Setting
Formally, X = Ω× Rn.

Ω is the set of allocations
For (ω, p1, . . . , pn) ∈ X , pi is the payment from (or to) player i.

and player i′s utility function ui : Ti ×X → R takes the following form

ui(ti, (ω, p1, . . . , pn)) = vi(ti, ω)− pi

for some valuation function vi : Ti × Ω→ R.

We say players have quasilinear utilities.

Example: Single-item Allocation
Ω = {e1, . . . , en}
ui(ti, (ω, p1, . . . , pn)) = tiωi − pi
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The Mechanism Design Problem

Task of Mechanism Design in Quasilinear settings
Find a “good” allocation rule f : T → Ω and payment rule p : T → Rn

such that the following mechanism is incentive-compatible:
Solicit reports t̃i ∈ Ti from each player i (simultaneous, sealed bid)
Choose allocation f(t̃)

Charge player i payment pi(t̃)

We think of the mechanism as the pair (f, p).
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Incentive Compatibility

Incentive-compatibility (Dominant Strategy)
A mechanism (f, p) is dominant-strategy truthful if, for every player i,
true type ti, possible mis-report t̃i, and reported types t−i of the
others, we have

E[vi(ti, f(t))− pi(t)] ≥ E[vi(ti, f(t̃i, t−i))− pi(t̃i, t−i)]

The expectation is over the randomness in the mechanism.

Incentive-compatibility (Bayesian)
A mechanism (f, p) is Bayesian incentive compatible if, for every player
i, true type ti, possible mis-report t̃i, the following holds in expectation
over t−i ∼ D|ti

E[vi(ti, f(t))− pi(t)] ≥ E[vi(ti, f(t̃i, t−i))− pi(t̃i, t−i)]

The expectation is over randomness in both the mechanism and the
other players’ types.
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Question
What is a “good” mechanism?

Answer
Depends what you are looking for.

Researchers and practitioners have considered many objectives
and hard constraints on desirable mechanisms.
The task of mechanism design is then to find a mechanism
maximizing the objective subject to the constraints.
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Example: Single-minded Combinatorial Allocation

n players, m non-identical items
For each player, publicly known subset Ai of items the player
desires
Allocations: partitions of items among players
Each player has type vi ∈ R+, indicating his value for receiving a
bundle including Ai (0 otherwise)
Goal: Social welfare (sum of values of players who receive their
desired bundles)
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Shortest Path Procurement

Players are edges in a network, with designated source/sink
Player i’s private data (type): cost ci ∈ R+

Outcome: choice of s-t shortest path to buy, and payment to each
player
Utility of a player for an outcome is his payment, less his cost if
chosen.

Goal: buy path with lowest total cost (welfare), or buy a path subject to
a known budget, . . .
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Example: Public Project

Designer considering whether to build a project which costs
designer C (public)
n players, each with private type vi ∈ R+, indicating value for
project
Outcome: Choice of whether or not to build project, and how much
to charge each player.
Possible goal: Build if

∑
i vi > C, charging players enough to

cover cost C
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Constraints

Incentive compatibility
Polynomial-time
Individual Rationality: never charge a player more than his
(reported) value for an allocation.
Nonnegative [Non-positive] Transfers: never pay [get paid by] a
player

e.g. Combinatorial allocation, Shortest path procurement
Budget constraints: sum of total payments to agents must respect
budget

e.g. reverse (procurement) auctions
Budget balance: sum of total payments must exceed cost of
allocation

e.g. public project
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Objectives: Prior-free

Given an instance of a mechanism design problem,
An objective is a map from outcome (allocation and payments) to
the real numbers.
A benchmark is a real number “goalpost”

Single-item auction
Objective: welfare, i.e. the value of the winning player.
Benchmark: the maximum welfare over all allocations.

In prior-free settings, we traditionally judge an algorithm by the
worst-case ratio between the performance of the mechanism and the
benchmark.

The worst-case approximation ratio of a mechanism is the maximum,
over all inputs, of the benchmark divided by the objective of the
outcome output by the mechanism.
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Objectives: Bayesian

In the presence of a distribution over inputs, no need for a benchmark.

Judge a mechanism by the expected objective over the various inputs.
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Next Up

We will begin our exploration of the space of mechanism design
problems by restricting attention to

Prior-free settings, with the goal of designing dominant-strategy
truthful mechanisms
Quasi-linear utilities, so our mechanisms will use payments
Problems that are single-parameter
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Example: Knapsack Allocation

cost=80
value=10

budget=100

n players, each player i with a task requiring ci time
Machine has total processing time B (public)
Player i has (private) value vi for his task

Must choose a welfare-maximizing feasible subset S ⊆ [n] of the tasks
to process, possibly charging players
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Example: Single-minded Combinatorial Allocation
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Shortest Path Procurement

Players are edges in a network, with designated source/sink
Player i’s private data (type): cost ci ∈ R+

Outcome: choice of s-t shortest path to buy, and payment to each
player
Utility of a player for an outcome is his payment, less his cost if
chosen.

Goal: buy path with lowest total cost (welfare), or buy a path subject to
a known budget, . . .
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Scheduling

Designer has m jobs, with publicly known sizes p1, . . . , pm

n players, each own a machine
Player i’s type ti ∈ R is time (cost) per unit job
Outcome: schedule mapping jobs onto machines, and payment to
each player
Utility of a player for a schedule is his payment, less the total time
spent processing assigned jobs

Goal: Find schedule minimizing makespan: the time at which all jobs
are complete
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Single-parameter Problems

Informally
There is a single homogenous resource (items, bandwidth, clicks,
spots in a knapsack, etc).
There are constraints on how the resource may be divided up.
Each player’s private data is his “value (or cost) per unit resource.”

Formally
Each player i’s type is a single real number ti. Player i’s
type-space Ti is an interval in R.
Each outcome ω ∈ Ω is a vector in Rn.
Player i’s valuation function is vi(ti, x) = tixi

Examples
Single-item allocation: Ω is set of standard basis vectors, ti is
player i’s value for an item.
Knapsack allocation: Ω is the set of indicator vectors of players
who fit in the knapsack, ti is player i’s value for being included.
Scheduling: Ω is the set of possible load vectors, −ti is player i’s
time per unit load.
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Interpretation and Importance

Models win/lose situations, and situations where a homogeneous
resource is to be divided.
Simple and pervasive
Incentive-compatible mechanisms admit a simple and permissive
characterization.
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Myerson’s Lemma (Dominant Strategy)
A mechanism (x, p) for a single-parameter problem is
dominant-strategy truthful if and only if for every player i and fixed
reports b−i of other players,

xi(bi) is a monotone non-decreasing function of bi
pi(bi) is an integral of bi dxi. Specifically, when pi(0) = 0 then

pi(bi) = bi · xi(bi)−
∫ bi

b=0
xi(b)db

b i

xi(bi)
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Interpretation of Myerson’s Lemma

Utilitarian Single-item Allocation
Once a player wins, he remains a winner by increasing his bid
(assuming other bids held fixed)
The player must pay his critical value if he wins: the minimum bid
he needs to win.
Therefore, Vickrey is the unique welfare-maximizing, individually
rational, single-item auction.

Same holds for every problem with a binary (win/lose) outcome per
player.

More Generally
As player increases his bid, he pays for each additional chunk of
resource at a rate equal to the minimum bid needed to win that chunk.

b i

xi(bi)
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Proof: Necessity

Figure

Monotonicity
Assume for a contradiction that xi is non-monotone. Let b′i > bi
with xi(b

′
i) < xi(bi).

Two cases:
1 bi · (xi(bi)− xi(b

′
i)) < pi(bi)− pi(b

′
i)

Extra “value” gotten by reporting bi truthfully is dominated by
increase in price.

2 bi · (xi(bi)− xi(b
′
i)) ≥ pi(bi)− pi(b

′
i)

Then also b′i · (xi(bi)− xi(b
′
i)) > pi(bi)− pi(b

′
i), and a player with

true value b′i prefers to mis-report bi.
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Proof: Necessity

Payments
Consider the utility of a player with type bi reporting b′i

bixi(b
′
i)− pi(b

′
i)

For truthfulness, this expression must be maximized by setting
b′i = bi

This implies that the partial derivative w.r.t b′i, evaluated at b′i = bi,
is zero

bi
dxi
dbi

(bi)−
dpi
dbi

(bi) = 0

Multiplying by dbi gives that pi integrates bidxi, as needed.
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Proof: Sufficiency

Consider a player with true type vi, and a possible mis-report bi < vi.
(Exercise: consider bi > vi)
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Example: Dijkstra Shortest Path

Monotonicity: If an edge in the shortest path decreases its cost, it
remains in the shortest path
Critical Payments: We pay each edge the maximum possible cost
it could report and still remain in the shortest path.

Figure
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Bilateral Trade

A seller (player 1) and buyer (player 2) are looking to trade a single
item initially held by the seller.

Type of each player i is his value vi for the item
Two outcomes:

No trade: (1, 0)
Trade: (0, 1)

Welfare maximizing allocation rule:

trade if v2 > v1

Question
Assuming no payments in the event of no-trade, describe the payment
rule of the welfare-maximizing mechanism.
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Next Lecture

We finally begin designing “interesting” mechanisms, specifically for
problems that are NP-hard. The tricky part will be combining
incentive-compatibility and polynomial-time.
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