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Administrivia

Recall: HW1 due Friday 10/5
Office hours next Tuesday rescheduled to noon-2pm.
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Informally
There is a single homogenous resource (items, bandwidth, clicks,
spots in a knapsack, etc).
There are constraints on how the resource may be divided up.
Each player’s private data is his “value (or cost) per unit resource.”

Formally
Set Ω of allocations is common knowledge.
Each player i’s type is a single real number ti. Player i’s
type-space Ti is an interval in R.
Each allocation x ∈ Ω is a vector in Rn.
A player’s utility for allocation x and payment pi is tixi − pi.
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Example: Knapsack Allocation

cost=80
value=10

budget=100

n players, player i with task requiring si time (the task’s size)
Machine has total processing time (capacity) B (public)
Allocation: set of tasks with total size at most the capacity
Player i has (private) value vi for his task being included.

Objective: maximize welfare (sum of values of tasks included in
knapsack).

Modeling
Ω is the set of indicator vectors of players who fit in knapsack, Ti = R+,
and vi ∈ Ti is player i’s value for being included in the knapsack.
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Example: Single-minded Combinatorial Allocation

n players, m non-identical items
For each player, publicly known subset Ai of items the player
desires
Allocations: partitions of items among players
Each player has private value vi ∈ R+, indicating his value for
receiving a bundle including Ai (0 otherwise)

Objective: Maximize welfare (sum of values of players who receive
their desired bundles)

Modeling
Ω is the set of indicator vectors of players who can be jointly satisfied,
Ti = R+, and vi ∈ Ti is player i’s value for receiving his desired set.
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Scheduling

Designer has m jobs, with publicly known sizes p1, . . . , pm
n players, each own a machine
Allocation: schedule mapping jobs onto machines
Player i’s private data ti is his time (cost) per unit job scheduled
on his machine.

Objective: Minimize makespan (the maximum, over machines, of time
spent processing)

Modeling
Ω ⊆ Rn+ is the family of work vectors that can be induced by scheduling
jobs with sizes p1, . . . , pm. Player’s type ti is his cost per unit job, and
Ti ∈ R+. Utility of player i for load vector x is pi − tixi.
(Note we flipped signs)
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Myerson’s Lemma (Dominant Strategy)
A mechanism (x, p) for a single-parameter problem is
dominant-strategy truthful if and only if for every player i and fixed
reports b−i of other players,

xi(bi) is a monotone non-decreasing function of bi
pi(bi) is an integral of bi dxi. Specifically, when pi(0) = 0 then

pi(bi) = bi · xi(bi)−
∫ bi

b=0
xi(b)db

b i

xi(bi)
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Interpretation of Myerson’s Lemma

Single-item Allocation
In the case of a deterministic mechanism.

Monotonicity: If a player wins on certain bids, he remains a winner
by increasing his bid (assuming other bids held fixed)
The player must pay his critical value if he wins: the minimum bid
he needs to win.

Therefore, Vickrey is the unique welfare-maximizing, individually
rational, single-item auction.

Holds for every problem with a binary (win/lose) outcome per player.

General Interpretation
As player increases his reported value per unit of resource, he pays for
each additional chunk of resource at a rate equal to the minimum
report needed to win that chunk.

b i

xi(bi)

Equivalently. . .
As player decreases his reported cost per unit of work, he is paid for
each additional chunk of work at a rate equal to the maximum report at
which he gets that chunk.
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Next Up
We will embark on designing truthul mechanisms that run in polynomial
time, for less trivial problems who’se non-strategic variant is NP-hard.

Knapsack allocation
Single-minded combinatorial allocation
Scheduling

Recap 8/34
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Knapsack Allocation

cost=80
value=10

budget=100

n players, player i with task requiring si time (the task’s size)
Machine has total processing time (capacity) B (public)
Allocation: set of tasks with total size at most the capacity
Player i has (private) value vi for his task being included.

Objective: maximize welfare (sum of values of tasks included in
knapsack).

Modeling
Ω is the set of indicator vectors of players who fit in knapsack, Ti = R+,
and vi ∈ Ti is player i’s value for being included in the knapsack.
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Design Goals

Want a mechanism (allocation rule and payment rule) satisfying the
following properties:

1 Dominant strategy Truthfulness
2 Individual rationality: payment should be less than (reported)

value for allocation

By Myerson’s Lemma, these are satisfied if and only if the allocation
rule is monotone, and the payment rule is the (unique) one indicated
by Myerson’s Lemma.

3 Polynomial time: The allocation algorithm must run in time
polynomial in n, and the maximum number of bits in any of the
real number inputs.

4 Worst-case approximation ratio: close to 1.

Recall: the approximation ratio of an allocation algorithm is the
maximum, over all instances, of the ratio of the optimum welfare to that
gotten by the algorithm.
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Dropping Polynomial Time

Claim
A welfare-maximizing allocation rule, i.e. one computing S∗ ∈ Ω
maximizing

∑
i∈S vi is monotone.

Computable in time exponential in n (brute force: try all subsets
S ⊆ [n] of players)
The Myerson payment rule can also be computed using brute
force in time exponential in n.
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Proof of Monotonicity

Assume player i wins when players report (v−i, vi).
Consider bid vector (v−i, v̂i) with v̂i > vi. Does i still win?

Divide Ω into
Ωi: sets including i
Ωi: feasible sets excluding i

S∗ lies in Ωi when player i reports vi
Increasing to v̂i (holding v−i fixed)

Welfare of each S ∈ Ωi strictly increases.
Welfare of each S ∈ Ωi unchanged.

Since optimum was in Ωi before increase, it remains in Ωi.
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Payments

Exercise
Write an expression for the critical payment of player i, as a function of
the reports v−i of other players. Your expression should be computable
in time exponential in number of players.
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Computational Complexity Facts

Assuming the sizes and values are written in binary,

Fact
The Knapsack problem is NP-hard.

i.e. unless P = NP , there is no optimal algorithm that runs in time
polynomial in the length of the description of the input.

Our previous monotone algorithm can not be implemented in
polynomial time, unless P = NP .

Fact
The Knapsack problem admits a fully polynomial-time approximation
scheme.

i.e. A (1 + ε)-approximation algorithm running in time polynomial in
length of the description of the input and 1/ε.

Knapsack FPTAS
1 Input: sizes ~s, budget B, and values ~v.
2 Round down value of each job to nearst multiple of εvmax

3 Dynamic Programming maximizes rounded value:
Subproblems indexed by i ∈ [n] and k ∈ {0, . . . , dn/εe}
Subproblem(i,k): Find the minimum size set S ⊆ {i, . . . , n} with
rounded value at least kεvmax, if any.

4 Polynomial number of subproblems. Of the ones with total size
≤ B, find the subproblem with maximum k.
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Standard FPTAS Non-monotone

Unfortunately
The DP FPTAS for knapsack is non-monotone. . .

Non-monotonicity
Capacity B = 4

Task 1 has value v1 = 30 and size 1 + 3δ

Many tasks have value 20 and size 1− δ
Many tasks have value 22 and size 1.
ε = 1/3

Check: Task 1 is in solution of DP when v1 = 30, but not when v1 = 33.
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Combining Polynomial-time, Truthfulness, and a Good
Approximation

This is part of a general trend. . .

Trend
In many cases we will see in this course, an optimal (and
exponential-time) mechanism is monotone (i.e. amenable to
truthfulness), but traditional polynomial-time approximation algorithms
are not.

This raises the following philosophical question, which has received
much research attention

Question
Are computational tractability and incentive-compatibility in conflict? In
particular can we do nearly as well, in terms of approximation ratio,
with a truthful polynomial-time mechanism as with a non-truthful
polynomial-time algorithm?

Myerson’s monotonicity lemma helps!

Observation
Polynomial-time truthful mechanism design reduces to monotone
polynomial-time approximation algorithm design.

Computing payments for a monotone algorithm is usually the easy
part, due to a bunch of fairly general “tricks”. . . (Next homework)

Upshot
Forget about truthfulness, incentives, etc. Just design a monotone
algorithm for the non-strategic problem, with a good approximation
ratio.
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A Monotone, Polynomial-time 2-Approximation
Algorithm

Algorithm
1 Input: capacity B, sizes s1, . . . , sn, values v1, . . . , vn.
2 Sort jobs by density di = vi/si.
3 Greedily pack jobs in the knapsack in decreasing order of density,

allowing overflow of one job.
Call these the dense jobs, and the least dense of them the overflow
job.

4 Remove either the overflow job or everything else, whichever
leaves the most total value in the knapsack.
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Proof of Approximation

Let OPT denote the maximum value of any feasible set of jobs (i.e. set
of jobs that fits in the knapsack).

Claim
After step 3 (with overflow), the total value of jobs in the knapsack (the
dense jobs) is at least OPT.

Should be obvious, (most bang-per-buck) . . .

Therefore. . .
Either the overflow job, or the other dense jobs have value at least
OPT/2, so picking the better of the two gives a 2-approximation.
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Proof of Monotonicity

Fix sizes s1, . . . , sn, capacity B, and reports v−i of players other
than i.
Assume i wins when reporting vi. Consider what happens when
reporting v̂i > vi. Two cases:
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Fix sizes s1, . . . , sn, capacity B, and reports v−i of players other
than i.
Assume i wins when reporting vi. Consider what happens when
reporting v̂i > vi. Two cases:

1 On report vi, i was a dense job but not the overflow job, and the
non-overflow dense jobs had greater total value than the overflow
job.

When increasing report to v̂i, job i remains a non-overflow dense
job.
Moreover the non-overflow dense jobs remain better than the
overflow job.
Therefore, i still wins.
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Proof of Monotonicity

Fix sizes s1, . . . , sn, capacity B, and reports v−i of players other
than i.
Assume i wins when reporting vi. Consider what happens when
reporting v̂i > vi. Two cases:

2 On report vi, i was the overflow job, and vi was greater the total
value of other dense jobs combined. When increasing to v̂i, two
cases:
(a) i remains the overflow job, and its value remains greater than the

total value of other jobs combined.
(b) i moves up in the density order, and becomes a non-overflow dense

job.
Need to show that the non-overflow dense jobs are chosen.
New overflow job j was one of the old dense jobs other than i.
Back then, vi > vj .
Value of new dense jobs is at least v̂i > vi > vj , so new overflow job j
is tossed.
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Computing Payments

How do we compute payments for each player i?
Let (v−i, vi) be the reported values.
If i does not win on input (v−i, vi), then we know his payment is
zero.
Otherwise, need to charge him the minimum bi such that i would
have been a winner had the input been (v−i, bi).

Observe
As i increases bi from 0, he can only ever go from winning to not
winning when he moves up in the density order.

Therefore, the critical point must be such that bi/si = vj/sj for some
j 6= i.

Only n− 1 such points, try running our algorithm on all of them!!

Note: this payment computation process requires n− 1 runs of our
allocation algorithm per player!!
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Further Results for Knapsack

Theorem
There exists a monotone FPTAS for the Knapsack problem. The
associated Myerson payments can be computed in polynomial-time,
yielding a dominant-strategy truthful FPTAS.

Part of next homework. . .

Knapsack Allocation 21/34



Outline

1 Recap

2 Knapsack Allocation

3 Combinatorial Allocation

4 Scheduling



Single-minded Combinatorial Allocation

n players, m non-identical items
For each player, publicly known subset Ai of items the player
desires
Allocations: partitions of items among players
Each player has private value vi ∈ R+, indicating his value for
receiving a bundle including Ai (0 otherwise)

Objective: Maximize welfare (sum of values of players who receive
their desired bundles)

Modeling
Ω is the set of indicator vectors of players who can be jointly satisfied,
Ti = R+, and vi ∈ Ti is player i’s value for receiving his desired set.
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Design Goals

Want a mechanism (allocation rule and payment rule) satisfying the
following properties:

1 Dominant strategy Truthfulness
2 Individual rationality: payment should be less than (reported)

value for allocation
3 Polynomial time: The allocation algorithm must run in time

polynomial in n,m, and the maximum number of bits in any of the
real number inputs.

4 Worst-case approximation ratio: As small as possible, given
computational complexity assumptions.
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Dropping Polynomial Time

Claim
The welfare-maximizing allocation rule is monotone.

Computable in time exponential in m (brute force: try all
assignments of m items to n players)
The Myerson payment rule can also be computed using brute
force in time exponential in n.

Proof of monotonicity is essentially identical to that for knapsack. In
fact, welfare maximization is always monotone no matter the problem!
(Check this)
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Computational Complexity Facts

Fact
The problem of finding the allocation maximizing welfare is NP-hard.
Moreover, there is no polynomial time approximation algorithm with
ratio O(m1/2−ε) for any constant ε, unless P = NP .

Fact
There is a polynomial-time

√
m-approximation algorithm for welfare

maximization in single-minded combinatorial allocation.

Approximation algorithms known prior to AMD research were based on
linear programming and randomized rounding, and were
non-monotone.

Too complicated/messy to show you non-monotinicity, so let’s not worry
about it and just design a monotone

√
m-approximation algorithm.
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Algorithm Attempt 1
1 Sort players in decreasing order of value vi
2 Go through players in order, awarding i his desired set Ai so long

as it hasn’t been allocated already.
i.e. so long as there is no j with vj > vi with Aj

⋂
Ai 6= ∅.

Clearly Polynomial time. Remains to show monotonicity and
approximation ratio.
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Proof of Monotonicity

Fix desired bundles A1, . . . , An, and reports v−i of players other
than i.
Assume i wins when reporting vi.

For all j with vj > vi, we have Aj

⋂
Ai = ∅.

Consider what happens when reporting v̂i > vi.
i moves up in the order.
For all j with vj > v̂i > vi, we have Aj

⋂
Ai = ∅.

Therefore i still wins.
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Approximation: Bad Example 1

n = m+ 1

A1 = [m], v1 = 1 + ε

Aj is a (different) singleton for each j 6= i, and vj = 1.

Our algorithm chooses player 1 as the sole winner, whereas it is
optimal to choose all the others. Ratio is roughly m.

Problem: We didn’t take into account that player 1 wanted too many
items! Lets try to normalize by number of items demanded!
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Algorithm Attempt 2
1 Sort players in decreasing order of value per item desired vi/|Ai|
2 Go through players in order, awarding i his desired set Ai so long

as it hasn’t been allocated already.
i.e. so long as there is no j with vj

|Aj | >
vi
|Ai| with Aj

⋂
Ai 6= ∅.

Clearly Polynomial time. Monotonicity proof identical to Algorithm 1.
What about approximation?
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Approximation: Bad Example 2

n = 2

A1 = 1, v1 = 1 + ε

A2 = [m], v2 = m

Our algorithm chooses player 1 as the sole winner, whereas it is
optimal to choose player 2. Ratio is roughly m.

Problem: We didn’t take into account that player 1’s value was too
small, and he excluded player 2 entirely.
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Attempt 3

A happy medium. . .

Algorithm Attempt 3
1 Sort players in decreasing order of vi/

√
|Ai|

2 Go through players in order, awarding i his desired set Ai so long
as it hasn’t been allocated already.

i.e. so long as there is no j with vj√
|Aj |

> vi√
|Ai|

with Aj

⋂
Ai 6= ∅.

Clearly Polynomial time. Monotonicity proof identical to Algorithms 1
and 2. What about approximation?

Theorem (Lehmann, O’Callahan, Shoham)
Algorithm 3 is a

√
m-approximation algorithm for welfare maximization

in single-minded combinatorial allocation.

Combinatorial Allocation 31/34



Attempt 3

A happy medium. . .

Algorithm Attempt 3
1 Sort players in decreasing order of vi/

√
|Ai|

2 Go through players in order, awarding i his desired set Ai so long
as it hasn’t been allocated already.

i.e. so long as there is no j with vj√
|Aj |

> vi√
|Ai|

with Aj

⋂
Ai 6= ∅.

Clearly Polynomial time. Monotonicity proof identical to Algorithms 1
and 2. What about approximation?

Theorem (Lehmann, O’Callahan, Shoham)
Algorithm 3 is a

√
m-approximation algorithm for welfare maximization

in single-minded combinatorial allocation.

Combinatorial Allocation 31/34



Attempt 3

A happy medium. . .

Algorithm Attempt 3
1 Sort players in decreasing order of vi/

√
|Ai|

2 Go through players in order, awarding i his desired set Ai so long
as it hasn’t been allocated already.

i.e. so long as there is no j with vj√
|Aj |

> vi√
|Ai|

with Aj

⋂
Ai 6= ∅.

Clearly Polynomial time. Monotonicity proof identical to Algorithms 1
and 2. What about approximation?

Theorem (Lehmann, O’Callahan, Shoham)
Algorithm 3 is a

√
m-approximation algorithm for welfare maximization

in single-minded combinatorial allocation.

Combinatorial Allocation 31/34



Proof of Approximation Ratio

Let S∗ be the set of satisfied players in the optimal solution, and
let S be the set of satisfied players in algorithm’s solution.
For each i ∈ S, define the set Bi of players in S∗ blocked by i

For j ∈ S∗, include j ∈ Bi if i is the first player in the order s.t.
Aj

⋂
Ai 6= ∅.

Notice, the sets Bi partition S∗.

Convince Yourself
By a standard charging argument, it is sufficient to show that for each
i ∈ S, ∑

j∈Bi

vj ≤
√
m vi
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Proof of Approximation Ratio (Continued)

Will Show
For each i, ∑

j∈Bi

vj ≤
√
m vi
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Computing Payments

How do we compute payments for each player i?
Let (v−i, vi) be the reported values.
If i does not win on input (v−i, vi), then we know his payment is
zero.
Otherwise, need to charge him the minimum bi such that i would
have been a winner had the input been (v−i, bi).

Observe
As i increases bi from 0, he can only ever go from winning to not
winning when he moves up in the order according to vi/

√
|Ai|.

Therefore, the critical point must be such that bi/
√
|Ai| = vj/

√
|Aj | for

some j 6= i.

Only n− 1 such points, try running our algorithm on all of them!!

Note: this payment computation process requires n− 1 runs of our
allocation algorithm per player!!
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