
CS599: Algorithm Design in Strategic Settings
Fall 2012

Lecture 6: Prior-Free Single-Parameter Mechanism
Design (Continued)

Instructor: Shaddin Dughmi



Administrivia

Homework 1 due today.
Homework 2 out sometime next week
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Single-parameter Problems

Informally
There is a single homogenous resource (items, bandwidth, clicks,
spots in a knapsack, etc).
There are constraints on how the resource may be divided up.
Each player’s private data is his “value (or cost) per unit resource.”

Formally
Set Ω of allocations is common knowledge.
Each player i’s type is a single real number ti. Player i’s
type-space Ti is an interval in R.
Each allocation x ∈ Ω is a vector in Rn.
A player’s utility for allocation x and payment pi is tixi − pi.
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Myerson’s Lemma (Dominant Strategy)
A mechanism (x, p) for a single-parameter problem is
dominant-strategy truthful if and only if for every player i and fixed
reports b−i of other players,

xi(bi) is a monotone non-decreasing function of bi
pi(bi) is an integral of bi dxi. Specifically, there is some pivot term
hi(b−i) such that

pi(bi) = hi(b−i) + bi · xi(bi)−
∫ bi

b=0
xi(b)db

b i

xi(bi)
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Interpretation of Myerson’s Lemma

General Interpretation
As player increases his reported value per unit of resource, he pays for
each additional chunk of resource at a rate equal to the minimum
report needed to win that chunk.

b i

xi(bi)

Equivalently. . .
As player decreases his reported cost per unit of work, he is paid for
each additional chunk of work at a rate equal to the maximum report at
which he gets that chunk.
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Recap: Knapsack Allocation

cost=80
value=10

budget=100

We Showed
Exact solution of the problem (in exponential time) gives a
monotone algorithm, yielding a truthful mechanism by Myerson’s
Lemma.
The canonical FPTAS is non-monotone, and therefore cannot be
turned into a truthful mechanism.
We showed a monotone, polynomial-time 2-approximation
algorithm, and a corresponding truthful mechanism.
Next HW: A truthful FPTAS.
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Recap: Single-minded Combinatorial Allocation

We Showed
Exact solution of the problem (in exponential time) gives a
monotone algorithm, yielding a truthful mechanism by Myerson’s
Lemma.
We showed a monotone, polynomial-time

√
m-approximation

algorithm, and a corresponding truthful mechanism.
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Next Up
We will embark on designing truthul mechanisms that run in polynomial
time, for less trivial problems who’se non-strategic variant is NP-hard.

Knapsack allocation
Single-minded combinatorial allocation
Scheduling

Non-binary
Mechanism will be randomized
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Scheduling

Designer has m jobs, with publicly known sizes p1, . . . , pm
n players, each own a machine
Allocation: schedule mapping jobs onto machines
Player i’s private data ti is his time (cost) per unit job scheduled
on his machine.

Objective: Minimize makespan (the maximum, over machines, of time
spent processing)

Modeling
Ω ⊆ Rn+ is the family of work vectors that can be induced by
scheduling jobs with sizes p1, . . . , pm.
Player’s type ti is his cost per unit job, and Ti = R+.
Utility of player i for load vector x is pi − tixi. (note flipped signs)
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Design Goals

Want a mechanism (allocation rule and payment rule) satisfying the
following properties:

1 Dominant strategy Truthfulness
2 Payment to a machine receiving no work should be 0

By Myerson’s Lemma, these are satisfied if and only if the allocation
rule is monotone, and the payment rule is the (unique) one indicated
by Myerson’s Lemma.

3 Polynomial time: The allocation algorithm must run in time
polynomial in n, and the maximum number of bits in any of the
real number inputs.

4 Worst-case approximation ratio: close to 1.

Recall: the approximation ratio of an allocation algorithm is the
maximum, over all instances, of the ratio of the makespan of the
schedule out by the algorithm to the optimum makespan.
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Reinterpreting Myerson’s Lemma

Myerson’s Lemma (Cost Version)
A mechanism (x, p) for a single-parameter problem with costs is
dominant-strategy truthful if and only if for every player i and fixed
reports t−i of other players,

The workload xi(ti) of machine i is a non-increasing function of ti.
pi(ti) is an integral of tidxi. Assuming some tmax such that the
machine gets no work, and requiring pi(tmax) = 0, gives

pi(ti) = tixi(ti) +

∫ tmax

t=ti

xi(t)dt.
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Dropping Polynomial Time

Claim
The allocation rule that computes a makespan-minimizing schedule,
breaking ties via some fixed global order on schedules, is monotone.

Computable in time O(mn) (brute force: try all schedules)
The Myerson payment rule can also be computed using brute
force in time O(m)O(n).
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Proof of Monotonicity

Fix reports t−i of machines other than i
For every fixed schedule σ with workloads (w1, . . . , wn), makespan
of σ as a function of ti is

makespanσ(ti) = max
j
wjtj = max(Cσ(t−i), witi)

for Cσ(t−i) = maxj 6=iwjtj

Assume σ with workloads (w1, . . . , wn) is output when machine i
bids ti.
Consider machine i slowing down from ti to t′i = ti + ε, and
algorithm outputting σ′ with loads (w′1, . . . , w

′
n), two cases

1 Machine i is not the “bottleneck” in σ (i.e. Cσ(ti) > witi): makespan
of σ doesn’t change, and makespan of every other schedule gets
no better, so by consistent tie-breaking σ′ = σ

2 Machine i is the “bottleneck” in σ:

wit
′
i = makspanσ(t′i) > makespanσ′(t′i) ≥ w′

it
′
i
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Computing Payments

Observe
As ti changes, schedule (and hence load on machine i) changes only
when two curves makespanσ(ti) and makespanσ′(ti) cross, and any
pair of such curves cross at most once.

To integrate the curve, simply enumerate the crossing points and vary
ti over all of them.
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Computational Complexity Facts

Fact
Scheduling on related machines is strongly NP-hard. (Reduction from
3D Matching)

i.e. unless P = NP , there is no optimal algorithm, or even an FPTAS,
that runs in time polynomial in the length of the description of the input.

Our previous monotone algorithm can not be implemented in
polynomial time, unless P = NP .

Theorem (Hochbaum and Shmoys)
Scheduling on related machines admits a polynomial-time
approximation scheme (PTAS).

i.e. A (1 + ε)-approximation algorithm running in time polynomial in
length of the description of the input, though possibly super-polynomial
in 1/ε.

But, as usual, the original PTAS was non-monotone!
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Next Up
A randomized, monotone, polynomial-time, 3-approximation algorithm.

But first, a note about randomized mechanisms.
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A Note about Randomized Mechanisms

So far, we have implicitly only spoken of deterministic mechanisms
(x, p). In general, since player utility is linear in amount of work, the
following analogues of Myerson’s lemma hold by immediately the
same analysis.

Myerson’s Lemma (Value Version)
A randomized mechanism (x, p) for a single-parameter problem is
dominant-strategy truthful if and only if for every player i and fixed
reports b−i of other players

x̃i(bi) is a monotone non-decreasing function of bi
p̃i(bi) is an integral of bi dx̃i.

Where x̃i(bi) and p̃i(bi) are the expectations of xi(bi) and pi(bi)
respectively.
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Fractional Schedules

A fractional schedule is one that assigns jobs to machines fractionally.

We will discuss later how to interpret a fractional schedule as a “real”
schedule via randomized rounding.

Valid fractional schedule
Given reports t1, . . . , tn (times per unit job), we say a fractional
schedule σ is T -valid if the makespan of σ is at most T , and moreover
whenever part of job j is assigned to machine i, we have pjtj ≥ T .

In other words, machine i has time to process job j in its entirety within
the makespan time.
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Greedy Fractional Scheduling

Fix job sizes and machine reports. Given a target makespan of T , the
following is the “obvious” way to construct a fractional schedule
satisfying the target

Algorithm Greedy-Fractional(T )
1 Sort jobs in decreasing order of size, and sort machines in

increasing order of time per unit job
2 Think of machine i as a bin of capacity ci = T/ti. Bins are sorted

in decreasing order of size.
3 Greedily place jobs, in order, in bins, also in order. Fractionally cut

jobs when a bin overflows and continue.

Proof
Assume it doesn’t find one.
If total capacity of bins is insufficient, then there is no fractional
schedule of makespan T.
Otherwise, a job j is partially assigned to a machine i on which it
does not fit whole — i.e. ci < pj .
By greedy nature of algorithm, total size of jobs pj or larger
exceeds total capacity of bins pj or larger.
Therefore, no T -valid fractional schedule exists.
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A Monotone, Polynomial-time 2-Approximation
Algorithm

Algorithm
1 Input: job sizes p1, . . . , pm, costs per unit load t1, . . . , tn
2 Calculate T ∗: the minimum time T such that a T -valid fractional

schedule exists. (Will see how later)
3 Compute σfrac = Greedy-fractional(T ∗).
4 Randomized Rounding: Assign each job j to machines randomly,

with probability proportional to the fractions of the job on each
machine in σfrac. Let σ be the resulting (integral) schedule.

5 Output σ
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Proof of Approximation

Claim
T ∗ ≤ OPT

The optimal integral schedule is OPT-valid.

Claim
There are at most two jobs partially to each machine.

In particular, the first job and the last job assigned to the machine.

Therefore,
Fix any machine. Since each partial job fits on the machine whole (i.e.
in time T ∗), then even if both partial jobs end up on the machine whole,
the total time spent processing is at most 3T ∗ ≤ 3OPT .
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Proof of Monotonicity

Observe
The expected load on each machine is the fractional load in the
chosen fractional schedule.

For all but possibly the slowest machine, this is ci = T ∗/ti.

We are now ready to prove monotonicity of load. We will do it for
non-slowest machines (slowest is an easy exercise).

Fix t−i. Let T ∗ be the fractional makespan on report ti, and T ′ be
fractional makespan on report t′i = (1 + ε)ti.
Expected load before slowing down was T ∗/ti
Observe T ′ ≥ T ∗ because a machine slowed down.
T ′ ≤ (1 + ε)T ∗: Slowing down one machine by a factor of (1 + ε)
increases makespan of any schedule by at most (1 + ε) factor.
New load on machine i after slowing down is at most
T ′/t′i ≤ (1 + ε)T ∗/(1 + ε)ti = T ∗/ti
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Loose End: Computing T ∗

We still need to show that we can calculate T ∗, the minimum time such
that a T ∗-valid fractional schedule exists.

Lemma
Let jobs be sorted such that p1 ≥ . . . ≥ pn, and machines sorted such
that t1 ≤ . . . ≤ tm.

T ∗ =
n

max
j=1

m
min
i=1

max

{
pjti,

∑j
k=1 pk∑i
`=1

1
ti

}

Exercise: Prove this!
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Computing Payments

Part of next homework...
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Further Results for Related Scheduling

Theorem (Dhangwatnotai, Dobzinski, Dughmi, Roughgarden
’08)
There exists a monotone PTAS for the related scheduling. The
associated Myerson payments can be computed in polynomial-time,
yielding a dominant-strategy truthful PTAS.

HW: Improve 3 to 2.
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