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Recall: Single Parameter Problems

Single-parameter Problem
A homogenous good or service is being allocated (possibly under
constraints).
Player utilities linear in amount of good/service received.
Player’s private type is his value per unit good/service.

The special structure of these problems enables a simple
characterization of dominant-strategy truthful mechanisms.

Myerson’s Lemma
An allocation rule (i.e. algorithm) for a single-parameter problem is
implementable in dominant-strategies if and only if it is monotone.
Moroever, the truth-telling payment rule is unique up to a
bid-independent pivot term for each player.
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Single-Parameter Problems are Permissive

Monotonicity is not too difficult to satisfy
For most natural objectives that depend only on the allocation
rule, such as welfare and various notions of “fairness” (e.g.
makespan), the optimal algorithm is monotone.
In most cases where the optimal algorithm is monotone,
researchers were able to match the best polynomial-time
approximation algorithm’s ratio by a monotone algorithm.

Related machine scheduling
Single-minded combinatorial auctions
Knapsack allocation
. . .

Caveat
Some objectives are incompatible with truthfulness, polytime or not.

E.g. single-item allocation with goal of minimizing the winning
player’s value.
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Open Research Question
Consider an NP-hard single-parameter problem with an objective that
depends only on the allocation rule. If there is truthful mechanism with
approximation ratio α, and a polynomial-time algorithm with
approximation ratio α, must there be a truthful polynomial-time
mechanism with approximation ratio α?

In other words
For single-parameter problems, is truthfulness in polynomial time any
“harder” than either truthfulness or polynomial time alone?

So far as current research shows, the answer is conceivably yes,
though some work has ruled out the most viable approaches to a
positive answer (a black box reduction).
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Beyond Single-parameter Problems

Empirically, there appears to be a “phase transition” in the difficulty of
designing truthful mechanisms as we go beyond single-parameter
problems.

Little success, and impossibility results, for the design of
approximate mechanisms (polynomial-time or not) for
non-welfare-maximization problems.
For problems where player typespaces allow the expression of too
many valuations on Ω, characterizations that essentially limit
truthful mechanisms to exact welfare maximization over a subset
of Ω.

Next Up
Examples of Multi-parameter problems, the welfare-maximizing VCG
mechanism, maximal-in-range algorithms, and characeterizations of
dominant-strategy truthfulness.

Multi-Parameter Problems and Examples 4/32



Beyond Single-parameter Problems

Empirically, there appears to be a “phase transition” in the difficulty of
designing truthful mechanisms as we go beyond single-parameter
problems.

Little success, and impossibility results, for the design of
approximate mechanisms (polynomial-time or not) for
non-welfare-maximization problems.
For problems where player typespaces allow the expression of too
many valuations on Ω, characterizations that essentially limit
truthful mechanisms to exact welfare maximization over a subset
of Ω.

Next Up
Examples of Multi-parameter problems, the welfare-maximizing VCG
mechanism, maximal-in-range algorithms, and characeterizations of
dominant-strategy truthfulness.

Multi-Parameter Problems and Examples 4/32



Example: Matching

10 5

7

11

n self-interested agents (the players), m items.
Each player may receive at most one item.
vi(j) is player i’s value for item j (private)

Goal
Matching of items to players, at most one per player, maximizing total
value of players (welfare).

Note: Generalization of adwords problem from HW1.
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Example: Generalized Assignment

size=80
value=10

capacity=100

capacity=150

n self-interested agents (the players), m machines.
si(j) is the size of player i’s task on machine j. (public)
Cj is machine j’s capacity. (public)
vi(j) is player i’s value for his task going on machine j. (private)

Goal
Partial assignment of jobs to machines, respecting machine budgets,
and maximizing total value of agents (welfare).

Note: When single machine, this is knapsack allocation.
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Example: Unrelated Machine Scheduling

n self-interested machines (the players), m tasks
ti(j) is the time machine i takes to process task j. (private)

Goal
Schedule tasks on machines, with the goal of minimizing the
completion time of all tasks (makespan).

Note: When ti(j)/ti(j′) = ti′(j)/ti′(j
′) for all machines i,i′, and tasks

j,j′, this is related machine scheduling which we studied last lecture.
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Example: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

Goal
Partition items into sets S1, S2, . . . , Sn to maximize welfare:
v1(S1) + v2(S2) + . . . vn(Sn)

Note: This is underspecified. We will in restrict valuations and assume
a succinct representation.
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Mechanism Design Problem in Quasi-linear Settings

Recall: Mechanism Design Problem
Public (common knowledge) inputs describes

Set Ω of allocations.
Typespace Ti for each player i.

T = T1 × T2 × . . .× Tn
Valuation map vi : Ti × Ω→ R

Terminology Note
When convenient, we think of the typespace Ti directly as a set
functions mapping outcomes to the real numbers — i.e. Ti ⊆ RΩ.
In that case, we prefer denoting the typespace of player i by
Vi ⊆ RΩ. Analogously, the set of valuation profiles is
V = V1 × . . .× Vn.
We refer to Vi also as the “valuation space” of player i, and each
vi ∈ Vi as a “private valuation” of player i.
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Recall: Mechanisms and Truthfulness

Recall: Mechanism
A protocol of the following form, described by allocation rule f : V → Ω,
and payment rule p : V → Rn, mapping private data to an allocation
and payment for each player.

1 Solicit report vi ∈ Vi from each player i
2 Allocate according to f(v1, . . . , vn)

3 Charge each player i payment pi(v1, . . . , vn)

Incentive-compatibility (Dominant Strategy)
A mechanism (f, p) is dominant-strategy truthful if, for every player i,
valuation vi, possible mis-report v̂i, and reported valuations v−i of the
others, we have

E[vi(f(~v))− pi(~v)] ≥ E[vi(f(v̂i, v−i))− pi(v̂i, v−i)]

The expectation is over the randomness in the mechanism.
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Belated Note on Public vs Private Inputs
In problems we consider, each legal input has a public portion
(e.g. sizes of jobs in GAP), and a private portion (e.g. values of
jobs in GAP).
Public portion defines Ω, Ti, and vi : Ti × Ω→ Rn; i.e. defines the
mechanism design setting.
Technically, every “mechanism” we defined was a bunch of
mechanisms, one for each legal choice of public data.
However, as is traditional, we loosly refer to the entire algorithm
that reads public and private data, and computes allocation and
payments, as the “mechanism.”

When we say such a “mechanism” is truthful, we mean the
mechanism induced for each choice of public data is truthful.
When we say such a “mechanism” runs in polynomial time, we
mean the algorithm that computes the allocation and payments
from both the public and private data runs in polynomial time.
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Design Goals

For each of the problems we described, we want a mechanism
(allocation rule and payment rule) satisfying the following properties:

1 Dominant strategy Truthfulness
2 Individual rationality: payment from [to] player should be less than

[greater than] his reported value [cost] for the allocation.
3 Polynomial time: The allocation algorithm must run in time

polynomial in the number of bits used to describe the input.
4 Worst-case approximation ratio: As small as possible, given

computational complexity assumptions.
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Vickrey Clarke Groves (VCG) Mechanism
1 Solicit report vi ∈ Vi from each player i
2 Choose allocation ω∗ ∈ argmaxω∈Ω

∑
i vi(ω)

3 Charge each player i payment hi(v−i)−
∑

j 6=i vj(ω
∗)

Allocation rule maximizes welfare exactly over Ω

Player i is paid the reported value of others for the chosen
allocation, less a pivot term hi(v−i) independent of his own bid.
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VCG is Truthful

Theorem
VCG is dominant-strategy truthful.
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Proof
Fix reports v−i of players other than i.
Assume player i’s true valuation is vi
Player i’s utility when reporting v̂i is given by

ui(v̂i) = vi(ω
∗) +

∑
j 6=i

vj(ω
∗)− hi(v−i),

where ω∗ ∈ argmaxω∈Ω

(
v̂i(ω) +

∑
j 6=i vj(ω)

)
Since the pivot term is independent of player i’s bid, maximizing
ui(v̂i) is equivalent to maximizing

vi(ω
∗) +

∑
j 6=i

vj(ω
∗)

Setting v̂i = vi then maximizes the above expression.
Interpretation: allow the mechanism to optimize player i’s utility on
his behalf
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The Clarke Pivot Rule

For problems with non-negative valuations, there is a canonical choice
for the pivot term that enforces individual rationality and non-negative
transfers.

Clarke Pivot Rule
hi(v−i) = maxω∈Ω

∑
j 6=i vj(ω)

Interpretation
In VCG with the Clarke Pivot Rule, each player i pays the
difference between hi(vi) — the maximum welfare of players other
than i — and the realized welfare of other players.
In other words, player i pays the externality he imposes on others
through participating in the mechanism.
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Individual Rationality

Fact
Assume Vi ⊆ RΩ

+ for all players i. VCG with the Clarke Pivot Rule is
individually rational — i.e. a truth-telling player’s utility is always
non-negative.

Proof
Utility of player when reporting his true valuation vi, and others report
v−i, is

ui(v) = vi(ω
∗) +

∑
j 6=i

vj(ω
∗)−max

ω∈Ω

∑
j 6=i

vj(ω)

=

n∑
j=1

vj(ω
∗)−max

ω∈Ω

∑
j 6=i

vj(ω)

Since the mechanism choses ω∗ to maximize reported welfare, we
have

ui(v) = max
ω∈Ω

n∑
j=1

vj(ω)−max
ω∈Ω

∑
j 6=i

vj(ω)

By non-negativity of vi(ω) for each ω ∈ Ω, this is non-negative.
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Non-negative Transfers

Fact
VCG with the Clarke pivot rule does not pay players.

Proof
Payment of player i is, by definition

pi(v) = max
ω∈Ω

∑
j 6=i

vj(ω)−
∑
j 6=i

vj(ω
∗)

This is clearly non-negative.
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Applying VCG

Good News
In a sense, VCG is the best a utilitarian mechanism designer with
unlimited computational power could hope for.

Optimal for the welfare objective.
Applies generally to any mechanism design problem (absent
additional constraints on payments, e.g. budgets)
If the algorithmic problem of finding a welfare maximizing
allocation is polynomial-time solvable, then VCG can be
implemented in polynomial time.

n+ 1 calls to the algorithm, one for computing the allocation, and
one per player to compute the Clarke pivot.

Applications: matching, routing, and many more.

Bad News
Specific to the welfare objective

As we will see later, this is unavoidable at this level of generality.

Requires an exact algorithm for finding a welfare maximizing
allocation, which is NP-hard for many problems.

Next Up
A modification of the VCG mechanism that preserves truthfulness,
relaxes exact optimization, and therefore sometimes recovers
polynomial time implementability. Will illustrate through combinatorial
allocation.
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Recall: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

Goal
Partition items into sets S1, S2, . . . , Sn to maximize welfare:
v1(S1) + v2(S2) + . . . vn(Sn)

Note: This is underspecified. We will in restrict valuations and assume
a succinct representation.

Maximal in Range Algorithms 19/32



Recall: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

Goal
Partition items into sets S1, S2, . . . , Sn to maximize welfare:
v1(S1) + v2(S2) + . . . vn(Sn)

Note: This is underspecified. We will in restrict valuations and assume
a succinct representation.

Maximal in Range Algorithms 19/32



Recall: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

Goal
Partition items into sets S1, S2, . . . , Sn to maximize welfare:
v1(S1) + v2(S2) + . . . vn(Sn)

Note: This is underspecified. We will in restrict valuations and assume
a succinct representation.

Maximal in Range Algorithms 19/32



Specifying Typespaces in Combinatorial Allocation

Combinatorial Allocation (aka combinatorial auctions) is a family of
problems, rather than one problem. A variant of CA is described by two
things:

1 A class of valuations Vi : 2[m] → R; Typically, better positive results
possible for restricted classes.

Note overload of notation.
2 One of the following:

A choice of representation, or language, to describe valuations in
input, or more minimally
An oracle model, specifying each valuation vi ∈ Vi is presented as
black boxes that can answer certain questions about vi. This often
serves to quantify over many representations.
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To introduce and illustrate the maximal-in-range technique, we will
show a truthful

√
m approximation mechanism for combinatorial

allocation with subadditive valuations, in the value oracle model. The
mechanism will run in time poly(n,m).

Subadditivity: vi(S
⋃
T ) ≤ vi(S) + vi(T ) for all S, T ⊆ [m]

Value Oracle: vi presented as a black-box which returns vi(S) on
input S. Or, less generally, vi is represented in some language
such that vi(S) can be computed in poly(m) time.

For concreteness, we fix a class of valuations that is subadditive,
admits a succint representation, and for which value oracles are
implementable efficiently.
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Coverage Valuations
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Coverage Valuations

Capability Space
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Coverage Valuations
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Coverage Valuations

Customers

Alice
BobEve
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Recall: The VCG Mechanism

Vickrey Clarke Groves (VCG) Mechanism for CA
1 Solicit report vi ∈ Vi from each player i
2 Choose allocation (S1, S2, . . . , Sn) maximizing

∑
i vi(Si).

3 Charge each player i his externality

The allocation rule can not be implemented poly(n,m) time, since
finding a welfare maximizing allocation is NP-hard.

Reduction from MAX-3-COLORING [Khot et al ’08]

Luckily, other allocation rules can be “plugged in” to VCG while
preserving truthfulness.
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Maximal in Range Allocation Rules

Maximal-in-Range
Al allocation rule f : V1 × . . .× Vn → Ω is maximal in range if there
exists a set R ⊆ Ω, known as the range of f , such that

f(v1, . . . , vn) ∈ argmax
ω∈R

∑
i

vi(ω)

Motivation
Such an allocation rule maximizes welfare over some set of allocations
R, so remains compatible with the VCG mechanism. However, welfare
maximization over R may be possible in polynomial time if R chosen
properly.

Maximal in Range

1 Fix subset R of allocations up-front, called the range.
Independent of player valuations

2 Read player valuations.
3 Output the allocation in R maximizing social welfare.
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All-or-One Allocation Rule for CA

Consider the maximal in range
allocation rule with the following
range [Dobzinski et al ’05].

Range
Allocations that either allocate
all items to a single player, or
each player at most one item.
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Maximal in Range Mechanisms

Maximal-in-Range
Al mechanism (f, p) is maximal in range if f is maximal in range for
some range R, and

pi(v) = hi(v−i)−
∑
j 6=i

vj(f(v)).

Letting hi(v−i) = maxω∈R
∑

j 6=i vj(ω) be the Clarke pivot relative to R
gives the same properties as the Clarke pivot in the VCG mechanism.

Maximal in Range Mechanism for CA
For a fixed range R ⊆ Ω, chosen independently of vi’s

1 Solicit report vi ∈ Vi from each player i
2 Choose allocation (S1, S2, . . . , Sn) ∈ R maximizing

∑
i vi(Si).

3 Charge each player i his externality relative to R
pi(v) = max(T1,...,Tn)∈R

∑
j 6=i vj(ω)−

∑
j 6=i vj(Sj)
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Maximal in Range Mechanisms

Maximal in Range Mechanism for CA
For a fixed range R ⊆ Ω, chosen independently of vi’s

1 Solicit report vi ∈ Vi from each player i
2 Choose allocation (S1, S2, . . . , Sn) ∈ R maximizing

∑
i vi(Si).

3 Charge each player i his externality relative to R
pi(v) = max(T1,...,Tn)∈R

∑
j 6=i vj(ω)−

∑
j 6=i vj(Sj)

Fact
Every maximal in range algorithm is truthful.

proof
Simply VCG applied to a “smaller” mechanism design problem, namely
that where the set of allocations is R rather than Ω.
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Maximal in Range Mechanisms

Maximal in Range Mechanism for CA
For a fixed range R ⊆ Ω, chosen independently of vi’s

1 Solicit report vi ∈ Vi from each player i
2 Choose allocation (S1, S2, . . . , Sn) ∈ R maximizing

∑
i vi(Si).

3 Charge each player i his externality relative to R
pi(v) = max(T1,...,Tn)∈R

∑
j 6=i vj(ω)−

∑
j 6=i vj(Sj)

Upshot
We have reduced design of a truthful polynomial-time mechanism to
designing an polynomial-time allocation rule (i.e. approximation
algorithm) that is maximal-in-range.
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Designing MIR Algorithms

A good MIR allocation rule achieves a good “trade-off” between
approximation ratio, and runtime

At one extreme: R = all allocations.
Approximation ratio = 1
NP-hard if the problem is NP-hard

At another extreme: R = {x} a singleton
Definitely polytime
Approximation ratio is terrible

Is there a “sweet spot”?
Large enough for good approximation
Small/well-structured enough for polytime optimization

The design of a maximal in range algorithm is akin to algorithm design
in a restricted computational model.
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Recall: All-or-One Allocation Rule for CA

Consider the maximal in range
allocation rule with the following
range [Dobzinski et al ’05].

Range
Allocations that either allocate
all items to a single player, or
each player at most one item.
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Proof of Polynomial-time Implementability

Lemma
The all-or-one allocation rule can be implemented in poly(n,m) time.

Proof
Find the best allocation of all items to one player by evaluating the
welfare of n allocations.
Find the best allocation of at most one item per player by solving a
bipartite maximum matching problem with the n players on one
side, and the m items on the other.
Output the better of the two.
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Proof of Approximation

Lemma
The all-or-one allocation rule is a O(

√
m) approximation when players

have coverage valuations.

Proof
Fix coverage valuations v1, . . . , vn.
Let (S∗1 , . . . , S

∗
n) be welfare-maximizing allocation, with welfare

OPT =
∑

i vi(S
∗
i )

Suffices to show that there is an all-or-one allocation with welfare
at least 1

O(
√
m)
OPT .

Two cases:
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∗
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OPT =
∑

i vi(S
∗
i )

Suffices to show that there is an all-or-one allocation with welfare
at least 1

O(
√
m)
OPT .

Two cases:
1 Players i with |S∗i | ≥

√
m account for at least half the welfare of S∗:

Since there are at most
√
m such players, at least one player accounts

for 1
2
√
m
OPT . The allocation awarding all items to this player has welfare

at least that much.
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Lemma
The all-or-one allocation rule is a O(

√
m) approximation when players

have coverage valuations.

Proof
Fix coverage valuations v1, . . . , vn.
Let (S∗1 , . . . , S

∗
n) be welfare-maximizing allocation, with welfare

OPT =
∑

i vi(S
∗
i )

Suffices to show that there is an all-or-one allocation with welfare
at least 1

O(
√
m)
OPT .

Two cases:
2 Players i with |S∗i | ≤

√
m account for at least half the welfare of S∗: For

each such player i, there is a single item ji ∈ S∗i with
vi({ji}) ≥ vi(S∗i )/

√
m. Namely, let ji be the item in S∗i covering the most

capabilities. The allocation awarding only ji to each such player i has
value at least OPT

2
√
m

.
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The maximal-in-range mechanism with the all-or-one allocation rule is
a O(

√
m) approximation, and runs in time poly(n,m).

Theorem
There is a truthful, O(

√
m)-approximate mechanism for combinatorial

allocation with coverage valuatoins, which runs in poly(n,m) time.

Note: Applies more generally to subadditive valuations that admit a
value oracle.
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Next Time

Characterizations of Dominant-Strategy Incentive Compatibility
Maximal in Distributional Range Algorithms
Tha Lavi-Swamy Linear-programming technique
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