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Recall: Mechanism Design Problem in Quasi-linear Settings
Public (common knowledge) inputs describes

Set Ω of allocations.
Typespace Ti for each player i.

T = T1 × T2 × . . .× Tn
Valuation map vi : Ti × Ω→ R

Terminology Note
When convenient, we think of the typespace Ti directly as a set
functions mapping outcomes to the real numbers — i.e. Ti ⊆ RΩ.
In that case, we prefer denoting the typespace of player i by
Vi ⊆ RΩ. Analogously, the set of valuation profiles is
V = V1 × . . .× Vn.
We refer to Vi also as the “valuation space” of player i, and each
vi ∈ Vi as a “private valuation” of player i.
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Example: Generalized Assignment

size=80
value=10

capacity=100

capacity=150

n self-interested agents (the players), m machines.
sij is the size of player i’s task on machine j. (public)
Cj is machine j’s capacity. (public)
vi(j) is player i’s value for his task going on machine j. (private)

Goal
Partial assignment of jobs to machines, respecting machine budgets,
and maximizing total value of agents (welfare).

Note: When single machine, this is knapsack allocation.
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Example: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

Goal
Partition items into sets S1, S2, . . . , Sn to maximize welfare:
v1(S1) + v2(S2) + . . . vn(Sn)

Note: This is underspecified. We consider families of restricted
valuations with a succinct representation.
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Recall: Mechanisms and Truthfulness

Recall: Mechanism
A protocol of the following form, described by allocation rule f : V → Ω,
and payment rule p : V → Rn, mapping private data to an allocation
and payment for each player.

1 Solicit report vi ∈ Vi from each player i
2 Allocate according to f(v1, . . . , vn)

3 Charge each player i payment pi(v1, . . . , vn)

Incentive-compatibility (Dominant Strategy)
A mechanism (f, p) is dominant-strategy truthful if, for every player i,
valuation vi, possible mis-report v̂i, and reported valuations v−i of the
others, we have

E[vi(f(~v))− pi(~v)] ≥ E[vi(f(v̂i, v−i))− pi(v̂i, v−i)]

The expectation is over the randomness in the mechanism.
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Recall: Design Goals

For each of the problems we described, we want a mechanism
(allocation rule and payment rule) satisfying the following properties:

1 Dominant strategy Truthfulness
2 Individual rationality: payment from [to] player should be less than

[greater than] his reported value [cost] for the allocation.
3 Polynomial time: The allocation algorithm must run in time

polynomial in the number of bits used to describe the input.
4 Worst-case approximation ratio: As small as possible, given

computational complexity assumptions.
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Recall: Vickrey Clarke Groves (VCG) Mechanism with Clarke
Pivot

1 Solicit report vi ∈ Vi from each player i
2 Choose welfare maximizing allocation ω∗ ∈ argmaxω∈Ω

∑
i vi(ω)

3 Charge each player i his externality payment
maxω∈Ω

∑
j 6=i vj(ω)−

∑
j 6=i vj(ω

∗)

Theorem
VCG is dominant-strategy truthful. Moreover, when using the Clarke
pivot, it is individually rational for problems with nonnegative valuations
and payments are nonnegative.

Applications: matching, sponsored search, routing, and many more.

Bad News
Requires exact solution of welfare maximization problem, which is
infeasible in many settings.

E.g. Combinatorial allocation, Generalized assignment, . . .
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Recall: Maximal in Range Allocation Rules

Maximal-in-Range
Al allocation rule f : V1 × . . .× Vn → Ω is maximal in range if there
exists a set R ⊆ Ω, known as the range of f , such that

f(v1, . . . , vn) ∈ argmax
ω∈R

∑
i

vi(ω)

Motivation
Such an allocation rule maximizes welfare over some set of allocations
R, so remains compatible with the VCG mechanism. However, welfare
maximization over R may be possible in polynomial time if R chosen
properly.

Maximal in Range

1 Fix subset R of allocations up-front, called the range.
Independent of player valuations

2 Read player valuations.
3 Output the allocation in R maximizing social welfare.
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Recall: Maximal in Range Allocation Rules

Output

V1 V2 V3

Maximal in Range
1 Fix subset R of allocations up-front, called the range.

Independent of player valuations
2 Read player valuations.
3 Output the allocation in R maximizing social welfare.
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Recall: Maximal in Range Allocation Rules

Fact
For any mechanism design problem, every maximal in range allocation
rule is implementable in dominant-strategies by plugging into VCG.
Moreover, if the maximal in range algorithm runs in polynomial time,
then so does the resulting dominant-strategy truthful mechanism.

Upshot
For NP-hard welfare maximization mechanism design problems (such
as GAP, CA, and others), this reduces the design of dominant-strategy
truthful, polynomial-time mechanisms to the design of a
polynomial-time maximal-in-range allocation algorithms with the
desired approximation ratio.
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Last Time: Maximal-in-Range Mechanism for
Combinatorial Allocation

We considered combinatorial allocation with coverage valuations.
We saw the all-or-one allocation rule for this problem

Polynomial time
O(
√
m) approximation algorithm for maximizing welfare

Concluded: There is a O(
√
m)-approximate, polynomial-time,

dominant-strategy truthful mechanism for welfare maximization in
this problem.

The maximal-in-range approach has only taken researchers so far.
More general ideas were necessary to obtain improved results for
more multi-parameter problems.
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Coming Up Today

Maximal in Distributional Range Algorithms
Tha Lavi-Swamy Linear-programming technique
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Recall: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

Goal
Partition items into sets S1, S2, . . . , Sn to maximize welfare:
v1(S1) + v2(S2) + . . . vn(Sn)

Note: This is underspecified. We will in restrict valuations and assume
a succinct representation.
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Recall: The VCG Mechanism

Vickrey Clarke Groves (VCG) Mechanism for CA
1 Solicit report vi ∈ Vi from each player i
2 Choose allocation (S1, S2, . . . , Sn) maximizing

∑
i vi(Si).

3 Charge each player i his externality

Recall
Using a maximal in range allocation algorithm in lieu of an optimal
allocation algorithm preserves truthfulness, and can in some cases
recover polynomial time.

The same is true for a randomized generalization of MIR, which
appears more powerful.

Maximal in Distributional Range Algorithms 12/28
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Maximal in Distributional Range Allocation Rules

Maximal-in-Distributional-Range (MIDR)
Al allocation rule f : V1 × . . .× Vn → Ω is maximal in distributional
range if there exists a set R ⊆ ∆(Ω), known as the distributional range
of f , such that

f(v1, . . . , vn) ∼ argmax
D∈R

E
ω∼D

∑
i

vi(ω)

In Other Words
Such an allocation rule samples a distribution in R maximizing
expected social welfare. Maximal in range allocation rules are the
special case of MIDR when R is a family of point distributions.

Maximal in Distributional Range

1 Fix subset R of distributions over allocations up-front, called the
distributional range.

Independent of player valuations
2 Given player values, find the distribution in R maximizing

expected social welfare.
3 Sample this distribution

Maximal in Distributional Range Algorithms 13/28
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Maximal in Distributional Range Allocation Rules

Output

V1 V2 V3
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Example of MIDR

Independent lottery:
Associates with each player i and item j probability xij that i gets j
Each item j assigned independently with those probabilities.

Each set of fractions xij defines a different independent lottery
The set of independent lotteries is a distributional range.
Easy Fact: MIDR over all independent lotteries is as
computationally hard as exact optimization over all allocations.

Next lecture, we use range of independent lotteries where each
xij ≤ 0.63 to improve last lecture’s result of

√
m approximation to a

0.63 approximation.
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Maximal-in-Distributional-Range Mechanism
Al mechanism (f, p) is maximal in distributional range if f is maximal in
distributional range for some range R, and

E[pi(v)] = hi(v−i)−E

∑
j 6=i

vj(f(v))

 .
Fact

Every maximal in distributional range mechanism is truthful.
When hi(v−i) = maxD∈REω∼D[

∑
j 6=i vj(ω)] is the Clarke pivot

relative to R, the mechanism is individually rational in expectation
(when valuations are nonnegative), and expected payments are
nonnegative.

Easy exercise: Given black-box access to f , can sample payments
satisfying both desiderata using n+ 1 calls to f .
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Designing MIDR Algorithms

A good MIDR allocation algorithm achieves a good “trade-off”
between approximation ratio, and runtime

At one extreme: R = all distributions
Approximation ratio = 1
NP-hard if the problem is NP-hard

At another extreme: R = {x} a singleton
Definitely polytime
Approximation ratio is terrible

Is there a “sweet spot”?
Large enough for good approximation
Small/well-structured enough for polytime optimization
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Intuition: Why Randomness Helps

Limited successes using Maximal in Range
For some problems, researchers showed that any set of discrete
allocations large enough for a good approximation is “complex”
enough to be NP-hard.

Discrete problems tend to be computationally hard!

Intuition from linear programming and convex optimization
suggests that optimization over convex/smooth sets is easier. . .
Distributional ranges can be both “large” and “nice”
(smooth/convex).
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Overview

Considers welfare maximization mechanism design problems.
Reduces the design of polynomial-time MIDR mechanisms to the
design of linear programming relaxations satisfying certain
conditions.

Theorem (Lavi and Swamy)
Consider a welfare-maximization mechanism design problem. If

the problem can be written as a packing integer linear program
with integrality gap at most α,
the relaxation of the PILP can be solved in polynomial time,
and there is an algorithm that shows integrality gap α,

then an α-approximate MIDR algorithm can be generically derived in
polynomial time.
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Recall: Generalized Assignment

size=80
value=10

capacity=100

capacity=150

n self-interested agents (the players), m machines.
sij is the size of player i’s task on machine j. (public)
Cj is machine j’s capacity. (public)
vi(j) is player i’s value for his task going on machine j. (private)

Goal
Partial assignment of jobs to machines, respecting machine budgets,
and maximizing total value of agents (welfare).
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Packing Linear Integer Programs

Generic PILP
(A, b, v ≥ 0)

max
∑

i v
T
i x

s.t. Ax ≤ b
x ≥ 0
x ∈ Zm

Example: GAP PILP

max
∑

ij vi(j)xij
s.t.

∑
i sijxij ≤ Cj , for j ∈ [m].

xij ≤ 1, for i ∈ [n], j ∈ [m].
xij ≥ 0, for i ∈ [n], j ∈ [m].
xij ∈ {0, 1} , for i ∈ [n], j ∈ [m].

Removing the integrality constraint gives a linear programming
relaxation of the problem.
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Packing Linear Integer Programs

Definition (Integrality Gap)
A PILP has integrality gap at most α if, for every objective v ∈ Rm+ , the
ratio of the welfare of the best fractional solution and the best integer
solution is at most α.
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Packing Linear Integer Programs

Definition (Integrality Gap)
A PILP has integrality gap at most α if, for every objective v ∈ Rm+ , the
ratio of the welfare of the best fractional solution and the best integer
solution is at most α.

Theorem [Shmoys/Tardos ’93, Chekuri/Khanna ’05]
GAP PILP has integrality gap at most 2.
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Packing Linear Integer Programs

Definition
An algorithm for a PILP shows an integrality gap of α if, for every
objective v ∈ Rm+ , it always outputs an integer solution with objective
value at least 1/α of that of the best fractional solution, in expectation.
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Packing Linear Integer Programs

X

Definition
An algorithm for a PILP shows an integrality gap of α if, for every
objective v ∈ Rm+ , it always outputs an integer solution with objective
value at least 1/α of that of the best fractional solution, in expectation.

Commonly, such an algorithm “rounds” the optimal fractional solution
of the LP, but this is not necessary.
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Packing Linear Integer Programs

X

Definition
An algorithm for a PILP shows an integrality gap of α if, for every
objective v ∈ Rm+ , it always outputs an integer solution with objective
value at least 1/α of that of the best fractional solution, in expectation.

Theorem [Shmoys/Tardos ’93, Chekuri/Khanna ’05]
There is an algorithm for GAP that shows an integrality gap of 2 with
respect to GAP PILP.

The algorithm rounds a fractional solution to the LP relaxation.
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Theorem [Shmoys/Tardos ’93, Chekuri/Khanna ’05]
There is an algorithm for GAP that shows an integrality gap of 2 with
respect to GAP PILP.
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Theorem [Shmoys/Tardos ’93, Chekuri/Khanna ’05]
There is an algorithm for GAP that shows an integrality gap of 2 with
respect to GAP PILP.

Observe
The relaxed GAP PILP is simply a linear program with a polynomial
number of constraints, and therefore can be solved in polynomial time
by the ellipsoid method, interior point methods, etc...

Therefore, the conditions for applying the Lavi Swamy framework are
satisfied, yielding a polynomial-time, 2-approximate MIDR algorithm for
GAP, and therefore also a polynomial-time 2-approximate truthful
mechanism.
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Theorem [Shmoys/Tardos ’93, Chekuri/Khanna ’05]
There is an algorithm for GAP that shows an integrality gap of 2 with
respect to GAP PILP.

Proof of a special case
Suffices to show how to convert, in polynomial time, a fractional
assignment to an integral assignment with at least half the welfare. We
will prove this in the special case where sij = sik for all i, j, k. For the
general case, see the papers.

Let x be fractional assignment.
Draw bipartite graph G connecting a task to a machine if assigned
fractionally
G is a union of maximal paths and cycles
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Theorem [Shmoys/Tardos ’93, Chekuri/Khanna ’05]
There is an algorithm for GAP that shows an integrality gap of 2 with
respect to GAP PILP.

Proof of a special case
While G has a cycle C

“Shift” job mass around C in whichever direction does not decrease
welfare of fractional solution, until some job j is entirely removed
from some machine i
Remove edges that no longer correspond to fractional assignments
(must include (j, i))

While G is non-empty
Pick a maximal path P
“Shift” job mass along whichever direction of P does not decrease
welfare of fractional solution, until some job j is entirely removed
from some machine i
Remove edges that no longer correspond to fractional assignments
(must include (j, i))
Note: Machine at end P ( with one fractional job) may overflow
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Theorem [Shmoys/Tardos ’93, Chekuri/Khanna ’05]
There is an algorithm for GAP that shows an integrality gap of 2 with
respect to GAP PILP.

Proof of a special case
At the end of this process, we have an integral assignment with
welfare at least that of the fractional assignment we started with,
though some machines have overflowed by at most one job.
Restore feasibility: For each machine, either toss away the
overflow job or everything else, whichever guarantees half the
value.
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Recall: Theorem Statement

Theorem (Lavi and Swamy)
Consider a welfare-maximization problem. If

the problem can be written as a packing integer linear program
with integrality gap at most α,
the relaxation of the PILP can be solved in polynomial time,
and there is an algorithm that shows integrality gap α,

then an α-approximate MIDR algorithm can be generically derived in
polynomial time.
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Algorithm Outline

MIDR α-approximate Algorithm
1 Scale the feasible region P of the LP relaxation down by the

integrality gap α.
2 Find the optimal solution x of the scaled LP.
3 Let Dx be a distribution over integer solutions with expectation x.
4 Output a sample from Dx.

The Lavi Swamy Linear Programming Approach 23/28



Algorithm Outline

MIDR α-approximate Algorithm
1 Scale the feasible region P of the LP relaxation down by the

integrality gap α.
2 Find the optimal solution x of the scaled LP.
3 Let Dx be a distribution over integer solutions with expectation x.
4 Output a sample from Dx.

The Lavi Swamy Linear Programming Approach 23/28



Algorithm Outline

MIDR α-approximate Algorithm
1 Scale the feasible region P of the LP relaxation down by the

integrality gap α.
2 Find the optimal solution x of the scaled LP.
3 Let Dx be a distribution over integer solutions with expectation x.
4 Output a sample from Dx.

X

The Lavi Swamy Linear Programming Approach 23/28



Algorithm Outline

MIDR α-approximate Algorithm
1 Scale the feasible region P of the LP relaxation down by the

integrality gap α.
2 Find the optimal solution x of the scaled LP.
3 Let Dx be a distribution over integer solutions with expectation x.
4 Output a sample from Dx.

X

The Lavi Swamy Linear Programming Approach 23/28



Algorithm Outline

MIDR α-approximate Algorithm
1 Scale the feasible region P of the LP relaxation down by the

integrality gap α.
2 Find the optimal solution x of the scaled LP.
3 Let Dx be a distribution over integer solutions with expectation x.
4 Output a sample from Dx.

X

The Lavi Swamy Linear Programming Approach 23/28



Algorithm Outline

MIDR α-approximate Algorithm
1 Scale the feasible region P of the LP relaxation down by the

integrality gap α.
2 Find the optimal solution x of the scaled LP.
3 Let Dx be a distribution over integer solutions with expectation x.
4 Output a sample from Dx.

If scaled LP inside the
convex hull of integer
solutions, then algorithm
is well-defined and MIDR
over R =

{
Dx : x ∈ 1

αP
}

.
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Algorithm Outline

MIDR α-approximate Algorithm
1 Scale the feasible region P of the LP relaxation down by the

integrality gap α.
2 Find the optimal solution x of the scaled LP.
3 Let Dx be a distribution over integer solutions with expectation x.
4 Output a sample from Dx.

X

To be implementable in
polynomial time, must
show how to efficiently
sample from Dx.
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Scaling Lemma and Proof

Lemma
Let P be the polytope from the LP, with integrality gap α. Let I be the
convex hull of its integer points.

1

α
P ⊆ I
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Scaling Lemma and Proof

Lemma
Let P be the polytope from the LP, with integrality gap α. Let I be the
convex hull of its integer points.

1

α
P ⊆ I

Interpretation
Each feasible point of the scaled LP 1

αP can be interpreted as a
distribution over integer solutions.
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Scaling Lemma and Proof

Lemma
Let P be the polytope from the LP, with integrality gap α. Let I be the
convex hull of its integer points.

1

α
P ⊆ I

The Separating Hyperplane Theorem
Let X and Y be two disjoint convex sets in euclidean space. There is a
hyperplane h separating X and Y .
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Scaling Lemma and Proof

Lemma
Let P be the polytope from the LP, with integrality gap α. Let I be the
convex hull of its integer points.

1

α
P ⊆ I

The Separating Hyperplane Theorem
Let X and Y be two disjoint convex sets in euclidean space. There is a
hyperplane h separating X and Y .

X

X
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Scaling Lemma and Proof

Lemma
Let P be the polytope from the LP, with integrality gap α. Let I be the
convex hull of its integer points.

1

α
P ⊆ I

But. . .
This argument breaks if normal to hyperplane points doesn’t point “up”

Can’t happen since P/α is downwards closed

X

X
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Sampling Lemma

Lemma
Assume black-box access to algorithm showing integrality gap α for the
linear program P . For every point x ∈ 1

αP , we can efficiently construct
a polynomial-sized-support distribution Dx on I with Ey∼Dx [y] = x.

X

A distribution Dx with small support exists by Caratheodory’s theorem

Caratheodory’s Theorem
Let X = {x1, . . . , xk} ⊆ Rd and y ∈ Rd. If y ∈ convexhull(X) then
there is X ′ ⊆ X with |X ′| ≤ d+ 1 such that y ∈ convexhull(X ′).
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Intuition behind Sampling Lemma
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Proof of Sampling Lemma
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Applications of this framework

The Lavi/Swamy framework establishes a tight connection
between linear programming and mechanism design.
Since LP is commonly used for the design of approximation
algorithms, it is unsurprising that this framework has many
applications :

Generalized assignment problem: 2
Combinatorial auctions with general valuations:

√
m

Multi-unit auctions: 2
. . .
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