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Recall: Mechanism Design Problem in Quasi-linear Settings
Public (common knowledge) inputs describes

Set Ω of allocations.
Typespace Ti for each player i.

T = T1 × T2 × . . .× Tn
Valuation map vi : Ti × Ω→ R

Terminology Note
When convenient, we think of the typespace Ti directly as a set
functions mapping outcomes to the real numbers — i.e. Ti ⊆ RΩ.
In that case, we prefer denoting the typespace of player i by
Vi ⊆ RΩ. Analogously, the set of valuation profiles is
V = V1 × . . .× Vn.
We refer to Vi also as the “valuation space” of player i, and each
vi ∈ Vi as a “private valuation” of player i.

Review 2/33



Recall: Mechanism Design Problem in Quasi-linear Settings
Public (common knowledge) inputs describes

Set Ω of allocations.
Typespace Ti for each player i.

T = T1 × T2 × . . .× Tn
Valuation map vi : Ti × Ω→ R

Terminology Note
When convenient, we think of the typespace Ti directly as a set
functions mapping outcomes to the real numbers — i.e. Ti ⊆ RΩ.
In that case, we prefer denoting the typespace of player i by
Vi ⊆ RΩ. Analogously, the set of valuation profiles is
V = V1 × . . .× Vn.
We refer to Vi also as the “valuation space” of player i, and each
vi ∈ Vi as a “private valuation” of player i.

Review 2/33



Example: Generalized Assignment

size=80
value=10

capacity=100

capacity=150

n self-interested agents (the players), m machines.
sij is the size of player i’s task on machine j. (public)
Cj is machine j’s capacity. (public)
vi(j) is player i’s value for his task going on machine j. (private)

Goal
Partial assignment of jobs to machines, respecting machine budgets,
and maximizing total value of agents (welfare).
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Example: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

Goal
Partition items into sets S1, S2, . . . , Sn to maximize welfare:
v1(S1) + v2(S2) + . . . vn(Sn)

Note: This is underspecified. We consider families of restricted
valuations with a succinct representation.
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Recall: Maximal in Distributional Range

Maximal-in-Distributional-Range (MIDR)
Al allocation rule f : V1 × . . .× Vn → Ω is maximal in distributional
range if there exists a set R ⊆ ∆(Ω), known as the distributional range
of f , such that

f(v1, . . . , vn) ∼ argmax
D∈R

E
ω∼D

∑
i

vi(ω)

In Other Words
Such an allocation rule samples a distribution in R maximizing
expected social welfare. Maximal in range allocation rules are the
special case of MIDR when R is a family of point distributions.

Maximal in Distributional Range

1 Fix subset R of distributions over allocations up-front, called the
distributional range.

Independent of player valuations
2 Given player values, find the distribution in R maximizing

expected social welfare.
3 Sample this distribution

Special case with R ⊆ Ω called Maximal-in-Range.
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Recall: Maximal in Distributional Range

Output

V1 V2 V3
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Recall: Maximal in Distributional Range

Fact
For any mechanism design problem, every maximal in distributional
range allocation rule is implementable in dominant-strategies by
plugging into VCG. Moreover, if the MIDR algorithm runs in polynomial
time, then so does the resulting dominant-strategy truthful mechanism.

Upshot
For NP-hard welfare maximization mechanism design problems (such
as GAP, CA, and others), this reduces the design of dominant-strategy
truthful, polynomial-time mechanisms to the design of a
polynomial-time MIDR allocation algorithms with the desired
approximation ratio.
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Last Time: The Lavi Swamy Technique

Considers welfare maximization mechanism design problems.
Reduces the design of polynomial-time MIDR mechanisms to the
design of linear programming relaxations, and accompanying
approximation algorithms, satisfying certain conditions.
Applied to the generalized assignment problem
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Coming Up Today

Rounding anticipation and the convex rounding technique
Characterizations of incentive compatibility
Overview of lower bounds

Review 8/33
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Overview

Adapts traditional relax-solve-round framework from
approximation algorithms to mechanism design.
As discussed, MIDR requires exactly solving a sub-problem.
Whereas relaxations can usually be solved exactly, rounding
breaks “maximality-in-range.”

Idea: Rounding Anticipation
Anticipate the effect of the rounding algorithm when solving the
relaxation, so that solving the relaxation then rounding is MIDR.

Rounding Anticipation 9/33
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Running Application: Combinatorial Allocation

V1 V2 V3

n players, m items.
Private valuation vi : set of items→ R.

vi(S) is player i’s value for bundle S.

Goal
Partition items into sets S1, S2, . . . , Sn to maximize welfare:
v1(S1) + v2(S2) + . . . vn(Sn)

As before, we will consider CA with coverage valuations.
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Recall: Coverage Valuations

Recall
Two lectures ago, we used MIR to design a truthful

√
m-approximation

mechanism.

This Time
Using MIDR, via this idea of rounding anticipation, we improve this to a
constant, namely 1− 1

e ≈ 0.63.
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Relax-Solve-Round Framework

Given an optimization problem over some discrete set Ω.

v

Approximation Algorithm

1 Relax to a linear or convex program over polytope P.
2 Solve the relaxed problem
3 Round the fractional solution to an integral one

(Randomized) Rounding scheme r : P → Ω.
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Example of Relax-Solve-Round: CA

maximize
∑

i,A min(1,
∑

j covers A
xij)

subject to
∑

i xij ≤ 1, for all j.
xij ≥ 0, for all i, j.

0.50.25

0.25
0

0.5 0.5

Capability Space

A B
C
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subject to
∑

i xij ≤ 1, for all j.
xij ≥ 0, for all i, j.

0.50.25

0.25
0

0.5 0.5

Capability Space

A B
C

Observe
The objective is concave, and this is a convex optimization problem
solvable in polynomial time via the ellipsoid method.
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Example of Relax-Solve-Round: CA

maximize
∑

i,A min(1,
∑

j covers A
xij)

subject to
∑

i xij ≤ 1, for all j.
xij ≥ 0, for all i, j.

0.50.25
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C

But. . .
The resulting optimal solution x∗ may be fractional, in general.
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Classical Independent Rounding algorithm
Independently for each item j, give j to player i with probability x∗ij .
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Fact
classical independent rounding of the optimal fractional solution gives
a (1− 1/e)-approximation algorithm for welfare maximization.

Fraction: x1 x2

Capability Space

Fix solution x and player i

Suffices to show that each
capability A covered with
probability at least

(1−1/e) min(1,
∑

j covers A
xij)

Pr[cover A] = 1−
∏

j covers A
(1− xj) ≥ 1−

∏
j covers A

e−xj

= 1− exp(−
∑

j covers A
xj) ≥ (1− 1/e)

∑
j covers A

xj
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Approximation and Truthfulness

Difficulty
Most approximation algorithms in this framework not MIDR, and hence
cannot be made truthful.

Due to “lack of structure” in rounding step.

Another Difficulty
The Lavi-Swamy approach does not seem to apply here.

Welfare is non-linear in encoding of solutions
Interpreting a fractional solution as a distribution over integer
solutions (i.e. rounding) is no longer loss-less

Optimize over a set of P of fractional solutions is no longer
equivalent to optimizing over corresponding distributions
{Dx : x ∈ P}.
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Proposal: Anticipate the Rounding

Algorithm
1 Relax: maximize welfare(x)

E[

welfare(r(x))

]

subject to x ∈ P

2 Solve: Let x∗ be the optimal solution of relaxation.
3 Round: Output r(x∗)

Usually, we solve the relaxation then round the fractional solution
As we discussed, the rounding “disconnects” the fractional
optimization problem over P from the MIDR optimization problem
over {r(x) : x ∈ P}

Instead, incorporate rounding into the objective
Find fractional solution with best rounded image
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X

Lemma
For any rounding scheme r, this algorithm is maximal in distributional
range.

Maximizing over the range of rounding scheme r.

Difficulty
For most traditional rounding schemes r, this is NP-hard.
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NP-Hardness of Anticipating classical independent
rounding

r(x) = x for every integer solution x

The distributional range {r(x) : x ∈ P} includes integer solutions
The MIDR allocation rule is NP-hard

Next Up
A rounding algorithm which is easier to anticipate!!!

Rounding Anticipation 18/33
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Rounding Algorithms for CA

0.50.25

0.25
0

0.5 0.5

Classical Independent
Rounding (x)
Independently for each item
j, give j to player i with
probability xij .

Optimizing welfare(r(x))
over all x ∈ P is NP-hard.

Poisson Rounding (x)
Independently for each item
j, give j to player i with
probability 1− e−xij .

Can optimize welfare(r(x))
over x ∈ P in polynomial
time!
Note: (1− 1

e )x ≤ 1− e−x ≤ x
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Proof Overview

Theorem (Dughmi, Roughgarden, and Yan ’11)

There is a polynomial time, 1− 1
e approximate, MIDR algorithm for

combinatorial auctions with coverage valuations.

Lemma (Polynomial-time solvability)
The expected welfare of rounding x ∈ P is a concave function of x.

Implies that finding the rounding-optimal fractional solution is a convex
optimization problem, solvable in polynomial time*.

Lemma (Approximation)
For every set of coverage valuations and integer solution y ∈ P,

welfare(r(y)) ≥ (1− 1

e
)welfare(y)

Implies that optimizing welfare of rounded solution over P gives a
(1− 1

e )-approximation algorithm.
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Proof: Polynomial-time Solvability

Proof.
Fix fractional solution {xij}ij

xij is fraction of item j given to player i.

Poisson rounding gives j to i with probability 1− e−xij .
Let random variable Si denote set given to i.
Want to show that E[

∑
i vi(Si)] is concave in variables xij .

By linearity of expectations and the fact concavity is preserved by
sum, suffices to show E[vi(Si)] is concave for fixed player i.

Rounding Anticipation 21/33



Proof: Polynomial-time Solvability

Proof.
Fix fractional solution {xij}ij

xij is fraction of item j given to player i.

Poisson rounding gives j to i with probability 1− e−xij .

Let random variable Si denote set given to i.
Want to show that E[

∑
i vi(Si)] is concave in variables xij .

By linearity of expectations and the fact concavity is preserved by
sum, suffices to show E[vi(Si)] is concave for fixed player i.

Rounding Anticipation 21/33



Proof: Polynomial-time Solvability

Proof.
Fix fractional solution {xij}ij

xij is fraction of item j given to player i.

Poisson rounding gives j to i with probability 1− e−xij .
Let random variable Si denote set given to i.
Want to show that E[

∑
i vi(Si)] is concave in variables xij .

By linearity of expectations and the fact concavity is preserved by
sum, suffices to show E[vi(Si)] is concave for fixed player i.

Rounding Anticipation 21/33



Proof: Polynomial-time Solvability

Proof.
Fix fractional solution {xij}ij

xij is fraction of item j given to player i.

Poisson rounding gives j to i with probability 1− e−xij .
Let random variable Si denote set given to i.
Want to show that E[

∑
i vi(Si)] is concave in variables xij .

By linearity of expectations and the fact concavity is preserved by
sum, suffices to show E[vi(Si)] is concave for fixed player i.

Rounding Anticipation 21/33



Proof: Polynomial-time Solvability

Fraction: x1 x2

Probability: 1− e−x1 1− e−x2

Capability Space

A B
C

Value=
Pr[Cover A] +
Pr[Cover B] + Pr[Cover C]

Suffices to show each term
concave

In general,

Pr[cover D] = 1−
∏

j covers D
e−xj = 1− exp

− ∑
j covers D

xj


which is a concave function of x.
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Proof: Approximation

Fraction: y1 y2

Probability: 1− e−y1 1− e−y2

Capability Space

Fix player i, and integer
solution y

Suffices to show that each
capability A covered in y is
covered with with
probability at least (1− 1/e)
in r(y)

There is an item j covering
A with yij = 1

Player i gets j with
probability 1− 1/e in r(y)
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Proof Overview

Theorem (Dughmi, Roughgarden, and Yan ’11)

There is a polynomial time, 1− 1
e approximate, MIDR algorithm for

combinatorial auctions with coverage valuations.

Lemma (Polynomial-time solvability)
The expected welfare of rounding x ∈ P is a concave function of x.

Implies that finding the rounding-optimal fractional solution is a convex
optimization problem, solvable in polynomial time*.

Lemma (Approximation)
For every set of coverage valuations and integer solution y ∈ P,

welfare(r(y)) ≥ (1− 1

e
)welfare(y)

Implies that optimizing welfare of rounded solution over P gives a
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Relation to Lavi/Swamy

Lavi-Swamy can be interpreted as rounding anticipation for a “simple”
convex rounding algorithm

Rounding algorithm r rounds fractional point x of LP to distribution
Dx with expectation x

α .
By linearity, the LP objective vTx and the welfare of the rounded
solution vT r(x) = vT x

α are the same, up to a universal scaling
factor α.
Therefore, solving the LP optimizes over the range of distributions
resulting from rounding algorithm r

X

X
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Characterizing Incentive Compatible Mechanisms

Recall: monotonicity characterization of truthful mechanisms for
single parameter problems
There are characterizations in general (non-SP) mechanism
design problems
However: more complex, and nuanced
Nevertheless, useful for lower bounds
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Taxation Principle
For each player i and fixed reports v−i of others:

Truthful mechanism fixes a menu of distributions over allocations,
and associated prices
When player i reports vi, the mechanism:

Chooses the distribution/price pair (D, p) maximizing
Eω∼D[vi(ω)]− p.
Allocates a sample ω ∼ D, and charges player i p
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Cycle Monotonicity

The most general characterization of dominant-strategy implementable
allocation rules.

Cycle Monotonicity
An allocation rule f is cycle monotone if for every player i, every
valuation profile v−i ∈ V−i of other players, every integer k ≥ 0, and
every sequence v1

i , . . . , v
k
i ∈ Vi of k valuations for player i, the

following holds
k∑
j=1

[vi(ωj)− vi(ωj+1)] ≥ 0

where ωj denotes f(vji , v−i) for all j ∈ {1, . . . , k}, and ωk+1 = ω1.

Theorem
For every mechanism design problem, an allocation rule f is
dominant-strategy implementable if and only if it is cycle monotone.
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Weak Monotonicity

The special case of cycle monotonicity for cycles of length 2.

Weak Monotonicity
An allocation rule f is weakly monotone if for every player i, every
valuation profile v−i ∈ V−i of other players, and every pair of valuations
vi, v

′
i ∈ Vi of player i, the following holds

vi(ω)− vi(ω′) ≥ v′i(ω)− v′i(ω′)

where ω = f(vi, v−i) and ω′ = f(v′i, v−i)

This is necessary for all mechanism design problems. For problems
with a convex domain, it is also sufficient.

Theorem [Saks,Yu]
For every mechanism design problem where each Vi ⊆ RΩ is a convex
set of functions, an allocation rule f is dominant-strategy
implementable if and only if it is weakly monotone.
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Roberts’ Theorem

In the most general mechanism design problem imaginable, we can
say more, at least about deterministic mechanisms.

Unrestricted Mechanism Design Problem
Each player’s valuation is an arbitrary function vi : Ω→ R. Formally,
Vi = RΩ.

Here, cycle monotonicity and weak monotonicity are equivalent to
maximization of a weighted variant of welfare

Theorem (Roberts)
For the unrestricted mechanism design problem, when |Ω ≥ 3|, the
allocation rule of every deterministic and dominant-strategy truthful
mechanism is an affine maximizer over some range R ⊆ Ω.

f is an affine maximizer over R if

f(v1, . . . , vn) ∈ argmax
ω∈R

(
βω +

∑
i

αivi(ω)

)
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Restricted Valuations and/or Randomization

Problems we have seen are special cases of the unrestricted
mechanism design problem

Single-parameter problems: linearity in a single variable
Combinatorial Auctions: No externality, submodularity, etc
GAP: no externality

Even so, all mechanisms we have seen had allocation rules that were
affine maximizers (though some randomized).
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Restricted Valuations and/or Randomization

Question
Does Roberts’ theorem still hold with restricted valuations? What
about when randomization is allowed?

Restricted valuations: No in general.
Randomization: poorly understood.

Space of non-VCG-based mechanisms poorly understood. . .

Randomized analogue of Roberts seems to hold “in spirit” so far:
Most mechanisms successfully employed are VCG-based (MIR,
MIDR)
Where VCG-based failed, a general LB usually followed.
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Negative Results: First approach

Characterize/Embed Approach
1 Show Roberts-like characterization

Every truthful mechanism essentially optimizes welfare over a
range R

2 Show that if R is big enough to guarantee “good” approximation,
then exact optimization over R embeds a hard problem.

Direct argument: multi-unit auctions [LMN ’03].
VC-Dimension: combinatorial public projects. [PSS ’08]

Successfully applied only to deterministic mechanisms.
In some cases, such as combinatorial auctions, only embed part.

Applies only to maximal in range mechanisms.
[DN ’07], [BDFKMPSSU ’10]

Lower Bounds in Prior Free AMD 32/33



Negative Results: First approach

Characterize/Embed Approach
1 Show Roberts-like characterization

Every truthful mechanism essentially optimizes welfare over a
range R

2 Show that if R is big enough to guarantee “good” approximation,
then exact optimization over R embeds a hard problem.

Direct argument: multi-unit auctions [LMN ’03].
VC-Dimension: combinatorial public projects. [PSS ’08]

Successfully applied only to deterministic mechanisms.
In some cases, such as combinatorial auctions, only embed part.

Applies only to maximal in range mechanisms.
[DN ’07], [BDFKMPSSU ’10]

Lower Bounds in Prior Free AMD 32/33



Negative Results: Second Approach

Direct Approach [Dobzinski ’11]
Using taxation principle, shows that a “good” mechanism must solve
an intractable single-agent utility maximization problem, for some fixed
reports of others.

Applied to combinatorial auctions and public projects [D11, DV11,
DV12]
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