CS599: Algorithm Design in Strategic Settings
Fall 2012

Lecture 9: Prior-Free Multi-Parameter Mechanism
Design (Continued)

Instructor: Shaddin Dughmi



@ HW2 Out, due in two weeks
@ Projects

o Meetings
o Partners

@ Mini Homeworks graded. Pick up.



ﬂ Review

e Rounding Anticipation

e Characterizations of Incentive Comapatibility
@ Direct Characterization
@ Characterizing the Allocation rule

e Lower Bounds in Prior Free AMD



ﬂ Review



Recall: Mechanism Design Problem in Quasi-linear Settings
Public (common knowledge) inputs describes

@ Set ) of allocations.

@ Typespace T; for each player i.
e I'=T, xT5 x...xT,

@ Valuationmapv; : T; x Q — R
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Recall: Mechanism Design Problem in Quasi-linear Settings
Public (common knowledge) inputs describes

@ Set Q of allocations.
@ Typespace T; for each player i.
e I'=T, xT5 x...xT,

@ Valuationmapv; : T; x Q — R

v

Terminology Note

@ When convenient, we think of the typespace T; directly as a set
functions mapping outcomes to the real numbers — i.e. T; C R*.
@ In that case, we prefer denoting the typespace of player i by
V; € R®. Analogously, the set of valuation profiles is
V=V X...xV,.
@ We refer to V; also as the “valuation space” of player ¢, and each
v; € V; as a “private valuation” of player i.
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Example: Generalized Assignment

capacity=100

capacity=150

@ n self-interested agents (the players), m machines.

@ s;; is the size of player i's task on machine j. (public)

@ () is machine j’s capacity. (public)

@ v;(j) is player i’s value for his task going on machine j. (private)

Partial assignment of jobs to machines, respecting machine budgets,
and maximizing total value of agents (welfare).
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Example: Combinatorial Allocation
\ A N

@ n players, m items.
@ Private valuation v; : set of items — R.
e v;(5) is player i’s value for bundle S.
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Example: Combinatorial Allocation

@ n players, m items.
@ Private valuation v; : set of items — R.
e v;(5) is player i’s value for bundle S.

Partition items into sets S, .5, ..., S, to maximize welfare:
U1 (Sl) -+ UQ(SQ) =+ ... Un(Sn)

Note: This is underspecified. We consider families of restricted

valuations with a succinct representation.
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Recall: Maximal in Distributional Range

Maximal-in- -Range (MIDR)

Al allocation rule f: V1 x ... x V, — Qis maximal in distributional
range if there exists a set R C A(Q2), known as the distributional range
of f, such that

f(vy,...,vy) ~argmax E v
ot g B >l
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Recall: Maximal in Distributional Range

Maximal-in- -Range (MIDR)

Al allocation rule f: V1 x ... x V, — Qis maximal in distributional
range if there exists a set R C A(Q2), known as the distributional range
of f, such that

f(vy,...,vy) ~argmax E v
ot g B >l

In Other Words

Such an allocation rule samples a distribution in R maximizing
expected social welfare. Maximal in range allocation rules are the
special case of MIDR when R is a family of point distributions.
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Recall: Maximal in Distributional Range

Maximal in Distributional Range

@ Fix subset R of distributions over allocations up-front, called the
distributional range.

e Independent of player valuations
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Recall: Maximal in Distributional Range

Output

AR & ¢

Maximal in Distributional Range

@ Fix subset R of distributions over allocations up-front, called the
distributional range.

e Independent of player valuations

© Given player values, find the distribution in R maximizing
expected social welfare.

Review
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Recall: Maximal in Distributional Range

Maximal in Distributional Range

@ Fix subset R of distributions over allocations up-front, called the
distributional range.
o Independent of player valuations
© Given player values, find the distribution in R maximizing
expected social welfare.

© Sample this distribution
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Recall: Maximal in Distributional Range

Maximal in Distributional Range

@ Fix subset R of distributions over allocations up-front, called the
distributional range.
o Independent of player valuations
© Given player values, find the distribution in R maximizing
expected social welfare.

© Sample this distribution

Special case with R C 2 called Maximal-in-Range.

Review
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Recall: Maximal in Distributional Range

Fact

For any mechanism design problem, every maximal in distributional
range allocation rule is implementable in dominant-strategies by
plugging into VCG. Moreover, if the MIDR algorithm runs in polynomial
time, then so does the resulting dominant-strategy truthful mechanism.

| \

Upshot
For NP-hard welfare maximization mechanism design problems (such
as GAP, CA, and others), this reduces the design of dominant-strategy
truthful, polynomial-time mechanisms to the design of a
polynomial-time MIDR allocation algorithms with the desired
approximation ratio.

\
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Last Time: The Lavi Swamy Technique

@ Considers welfare maximization mechanism design problems.

@ Reduces the design of polynomial-time MIDR mechanisms to the
design of linear programming relaxations, and accompanying
approximation algorithms, satisfying certain conditions.

@ Applied to the generalized assignment problem
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Last Time: The Lavi Swamy Technique

@ Considers welfare maximization mechanism design problems.

@ Reduces the design of polynomial-time MIDR mechanisms to the
design of linear programming relaxations, and accompanying
approximation algorithms, satisfying certain conditions.

@ Applied to the generalized assignment problem
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Coming Up Today

@ Rounding anticipation and the convex rounding technique
@ Characterizations of incentive compatibility
@ Overview of lower bounds
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e Rounding Anticipation



Overview

@ Adapts traditional relax-solve-round framework from
approximation algorithms to mechanism design.

@ As discussed, MIDR requires exactly solving a sub-problem.

@ Whereas relaxations can usually be solved exactly, rounding
breaks “maximality-in-range.”
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Overview

@ Adapts traditional relax-solve-round framework from
approximation algorithms to mechanism design.

@ As discussed, MIDR requires exactly solving a sub-problem.

@ Whereas relaxations can usually be solved exactly, rounding
breaks “maximality-in-range.”

Idea: Rounding Anticipation

Anticipate the effect of the rounding algorithm when solving the
relaxation, so that solving the relaxation then rounding is MIDR.
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Running Application: Combinatorial Allocation

- y 4 y

@ n players, m items.
@ Private valuation v; : set of items — R.
e v;(5) is player i’s value for bundle S.

Partition items into sets S, .5, ..., S, to maximize welfare:
U1 (Sl) -+ UQ(SQ) =+ ... Un(Sn)

As before, we will consider CA with coverage valuations.
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Recall: Coverage Valuations
@ @
v A
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Recall: Coverage Valuations

Capablllty Space
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Capablllty Space
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Recall: Coverage Valuations

@ @

Capability Space

Two lectures ago, we used MIR to design a truthful \/m-approximation
mechanism.
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Recall: Coverage Valuations

Capability Space

Recall

Two lectures ago, we used MIR to design a truthful \/m-approximation
mechanism.

This Time

Using MIDR, via this idea of rounding anticipation, we improve this to a
constant, namely 1 — 2 ~ 0.63.
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Relax-Solve-Round Framework

Given an optimization problem over some discrete set Q.
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Example of Relax-Solve-Round: CA

maximize >, ymin(l, >3 z;)
j covers A
subjectto ) x;; <1, for all j.
x5 > 0, for all 7, 5.

\L ‘

Capablllty Space
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Example of Relax-Solve-Round: CA

maximize >, ymin(l, >3 z;)
j covers A
subjectto ) x;; <1, for all j.
x5 > 0, for all 7, 5.

Capablllty Space

The objective is concave, and this is a convex optimization problem
solvable in polynomial time via the ellipsoid method.
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Example of Relax-Solve-Round: CA

maximize >, ymin(l, >3 z;)
j covers A
subjectto ) x;; <1, for all j.
x5 > 0, for all 7, 5.
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Capablllty Space

The resulting optimal solution z* may be fractional, in general. l
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Example of Relax-Solve-Round: CA

maximize >, ymin(l, >3 z;)
j covers A
subjectto ) x;; <1, for all j.
x5 > 0, for all 7, 5.

Capablllty Space

Classical Independent Rounding algorithm
Independently for each item j, give j to player i with probability z7;.
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Example of Relax-Solve-Round: CA

maximize >, ymin(l, >3 z;)
j covers A
subjectto ) x;; <1, for all j.
x5 > 0, for all 7, 5.
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Capablllty Space

Classical Independent Rounding algorithm
Independently for each item j, give j to player i with probability z7;.
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Example of Relax-Solve-Round: CA

maximize >, ymin(l, >3 z;)
j covers A
subjectto ) x;; <1, for all j.
x5 > 0, for all 7, 5.

(D @

Capablllty Space

Classical Independent Rounding algorithm
Independently for each item j, give j to player i with probability z7;.
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classical independent rounding of the optimal fractional solution gives
a (1 — 1/e)-approximation algorithm for welfare maximization.

Fraction: 1 T2 @ Fix solution = and player i

Capability Space
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classical independent rounding of the optimal fractional solution gives
a (1 — 1/e)-approximation algorithm for welfare maximization.

Fraction: 1 T2 @ Fix solution = and player i

‘ ‘ @ Suffices to show that each
capability A covered with

probability at least

(1-1/e)min(l, > ;)

j covers A
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classical independent rounding of the optimal fractional solution gives
a (1 — 1/e)-approximation algorithm for welfare maximization.

Fraction: 1 T2 @ Fix solution = and player i

‘ ‘; @ Suffices to show that each
4 capability A covered with

probability at least

(1-1/e)min(l, > ;)

j covers A

“)b \\ @ 0 Q (((( ,/

Capab‘.-i"iriréi;r Space

Pricover Al =1 — H (1—=z;)>1- H e v
j covers A j covers A

=1—exp(— Z .7:])2 (1-1/e) Z T

j covers A j covers A
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Approximation and Truthfulness

Most approximation algorithms in this framework not MIDR, and hence
cannot be made truthful.

@ Due to “lack of structure” in rounding step.
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Approximation and Truthfulness

Most approximation algorithms in this framework not MIDR, and hence
cannot be made truthful.

@ Due to “lack of structure” in rounding step.

Another Difficulty

The Lavi-Swamy approach does not seem to apply here.
@ Welfare is non-linear in encoding of solutions
@ Interpreting a fractional solution as a distribution over integer
solutions (i.e. rounding) is no longer loss-less

e Optimize over a set of P of fractional solutions is no longer
equivalent to optimizing over corresponding distributions
{D, : x € P}.
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Proposal: Anticipate the Rounding

Algorithm

Q Relax: maximize wel fare(z)
subjectto z € P

@ Solve: Let z* be the optimal solution of relaxation.
© Round: Output r(z*)

@ Usually, we solve the relaxation then round the fractional solution

@ As we discussed, the rounding “disconnects” the fractional
optimization problem over P from the MIDR optimization problem
over {r(z) : x € P}
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Proposal: Anticipate the Rounding

Q Relax: maximize welfare(z) Elwel fare(r(x))]
subjectto z € P

@ Solve: Let z* be the optimal solution of relaxation.

© Round: Output r(z*)

@ Usually, we solve the relaxation then round the fractional solution

@ As we discussed, the rounding “disconnects” the fractional
optimization problem over P from the MIDR optimization problem
over {r(z) : x € P}
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For any rounding scheme r, this algorithm is maximal in distributional
range.

Maximizing over the range of rounding scheme r.
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For any rounding scheme r, this algorithm is maximal in distributional
range.

Maximizing over the range of rounding scheme r.

For most traditional rounding schemes r, this is NP-hard.
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NP-Hardness of Anticipating classical independent

rounding

@ r(z) = x for every integer solution x
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NP-Hardness of Anticipating classical independent

rounding

@ r(x) = x for every integer solution x
@ The distributional range {r(z) : € P} includes integer solutions
@ The MIDR allocation rule is NP-hard
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NP-Hardness of Anticipating classical independent

rounding

@ r(x) = x for every integer solution x
@ The distributional range {r(z) : € P} includes integer solutions
@ The MIDR allocation rule is NP-hard

A rounding algorithm which is easier to anticipate!!! l
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Rounding Algorithms for CA

Classical Independent
Rounding (z)

Independently for each item
j, give j to player i with
probability z;;.
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Rounding Algorithms for CA

Classical Independent
Rounding (z)

Independently for each item
j, give j to player i with
probability z;;.

Optimizing wel fare(r(x))
over all z € P is NP-hard.
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Rounding Algorithms for CA

Classical Independent

Rounding (z)

Independently for each item
j, give j to player i with
probability z;;.

Optimizing wel fare(r(x))
over all z € P is NP-hard.

Rounding Anticipation

Poisson Rounding (x)
Independently for each item
J, give j to player i with
probability 1 — e~%is.
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Rounding Algorithms for CA

Classical Independent Poisson Rounding (x)
Rounding () Independently for each item
Independently for each item Jj, give j to player i with

j, give j to player i with probability 1 — e=%ii.

robability z;;.
P Y T Can optimize wel fare(r(x))

Optimizing wel fare(r(x)) over z € P in polynomial
over all x € P is NP-hard. time!
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Rounding Algorithms for CA

Classical Independent Poisson Rounding (x)
Rounding () Independently for each item
Independently for each item Jj, give j to player i with

j, give j to player i with probability 1 — e=%ii.

JERENY Can optimize wel fare(r(x))
Optimizing wel fare(r(x)) over z € P in polynomial
over all z € P is NP-hard. time!

Note: (1 — %)x <l—-e%*<zx

Rounding Anticipation 19/33




Proof Overview

Theorem (Dughmi, Roughgarden, and Yan '11)

There is a polynomial time, 1 — % approximate, MIDR algorithm for
combinatorial auctions with coverage valuations.
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Proof Overview

Theorem (Dughmi, Roughgarden, and Yan '11)

There is a polynomial time, 1 — % approximate, MIDR algorithm for
combinatorial auctions with coverage valuations.

Lemma (Polynomial-time solvability)
The expected welfare of rounding x € P is a concave function of x.

Implies that finding the rounding-optimal fractional solution is a convex
optimization problem, solvable in polynomial time*.
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Proof Overview

Theorem (Dughmi, Roughgarden, and Yan '11)

There is a polynomial time, 1 — % approximate, MIDR algorithm for
combinatorial auctions with coverage valuations.

Lemma (Polynomial-time solvability)
The expected welfare of rounding x € P is a concave function of x.

Implies that finding the rounding-optimal fractional solution is a convex
optimization problem, solvable in polynomial time*.

Lemma (Approximation)
For every set of coverage valuations and integer solution y € P,

wel fare(r(y)) > (1 — é)welfare(y)

Implies that optimizing welfare of rounded solution over P gives a
(1-— %)—approximation algorithm.
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Proof: Polynomial-time Solvability

o Fix fractional solution {z;;},;
e z;; is fraction of item j given to player .
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Proof: Polynomial-time Solvability

o Fix fractional solution {z;;},;
e z;; is fraction of item j given to player .
@ Poisson rounding gives j to ¢ with probability 1 — e~
@ Let random variable S; denote set given to i.
@ Want to show that E[) . v;(S;)] is concave in variables ;.
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Proof: Polynomial-time Solvability

o Fix fractional solution {z;;},;
e z;; is fraction of item j given to player .
@ Poisson rounding gives j to ¢ with probability 1 — e~
@ Let random variable S; denote set given to i.
@ Want to show that E[) . v;(S;)] is concave in variables ;.

@ By linearity of expectations and the fact concavity is preserved by
sum, suffices to show E[v;(S;)] is concave for fixed player i.

Ol

v
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Proof: Polynomial-time Solvability

Fraction: T T9
Probability: 1 —e™*t 1—e ™

Capablllty Space
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Proof: Polynomial-time Solvability

Fraction: r1 9
Probability: 1 —e™*t 1—e ™

‘ 0 @ Value=
\ 4 - Pr[Cover A] +

Pr[Cover B] + Pr[Cover C]

@ Suffices to show each term
concave

Capablllty Space
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Proof: Polynomial-time Solvability

Fraction: r1 9
Probability: 1 —e ™t 1—e ™2

‘ 0 @ Value=
L4 4 Pr[Cover A] +

Pr[Cover B] + Pr[Cover C]

@ Suffices to show each term
concave

Capablllty Space

Pr[Cover A]=1—-¢ ™
Pr[Cover B] =1 — ¢ "2
Pr[Cover C] = 1 — ¢~ (@1+72)
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Proof: Polynomial-time Solvability

Fraction: T To
Probability: 1 —e ™t 1—e ™2

@ @ '
- y - y

Pr[Cover A] +
Pr[Cover B] + Pr[Cover C]

@ Suffices to show each term

concave
Capablllty Space
In general,
PricoverD] =1 — H e % =1—exp (— Z xj)
j covers D j covers D
which is a concave function of z. )
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Proof: Approximation

Fraction: Y1 Y2 @ Fix player i, and integer
Probability: 1 —e™ % 1—e¥2 solution y

€ c
@ 4

Capability Space
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Proof: Approximation

Fraction: Y1 Y2 @ Fix player i, and integer
Probability: 1 —e % 1—e¥2 solution y
@ Suffices to show that each
‘ 0 capability A covered in y is
_4 _4 covered with with
probability at least (1 —1/¢)
inr(y)

Capability Space
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N @ There is an item j covering
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Proof: Approximation

Fraction: Y1 Y2 @ Fix player i, and integer
Probability: 1 —e™ % 1—e™¥ solution y

@ Suffices to show that each
‘ ‘; capability A covered in y is
_4 _4 covered with with
probability at least (1 —1/¢)
inr(y)

N @ There is an item j covering
/’ A with Yij = 1

>Capability Space o Player Z getSj W|th
probability 1 — 1/e in r(y)
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Proof Overview

Theorem (Dughmi, Roughgarden, and Yan '11)

There is a polynomial time, 1 — % approximate, MIDR algorithm for
combinatorial auctions with coverage valuations.

Lemma (Polynomial-time solvability)
The expected welfare of rounding x € P is a concave function of x.

Implies that finding the rounding-optimal fractional solution is a convex
optimization problem, solvable in polynomial time*.

Lemma (Approximation)
For every set of coverage valuations and integer solution y € P,

wel fare(r(y)) > (1 — é)welfare(y)

Implies that optimizing welfare of rounded solution over P gives a
(1-— %)—approximation algorithm.
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Relation to Lavi/Swamy

Lavi-Swamy can be interpreted as rounding anticipation for a “simple”
convex rounding algorithm

@ Rounding algorithm r rounds fractional point = of LP to distribution
D, with expectation =.

@ By linearity, the LP objective v” 2 and the welfare of the rounded
solution v*'r(z) = ”%m are the same, up to a universal scaling
factor «.

@ Therefore, solving the LP optimizes over the range of distributions
resulting from rounding algorithm r
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e Characterizations of Incentive Comapatibility
@ Direct Characterization
@ Characterizing the Allocation rule



Characterizing Incentive Compatible Mechanisms

@ Recall: monotonicity characterization of truthful mechanisms for
single parameter problems

@ There are characterizations in general (non-SP) mechanism
design problems

@ However: more complex, and nuanced
@ Nevertheless, useful for lower bounds

Characterizations of Incentive Comapatibility 26/33



Taxation Principle

For each player i and fixed reports v_; of others:
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Taxation Principle
For each player i and fixed reports v_; of others:

@ Truthful mechanism fixes a menu of distributions over allocations,
and associated prices
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Taxation Principle
For each player i and fixed reports v_; of others:
@ Truthful mechanism fixes a menu of distributions over allocations,
and associated prices
@ When player i reports v;, the mechanism:
e Chooses the distribution/price pair (D, p) maximizing

Ey~plvi(w)] = p.
o Allocates a sample w ~ D, and charges player i p

$15
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Cycle Monotonicity

The most general characterization of dominant-strategy implementable
allocation rules.

Cycle Monotonicity

An allocation rule f is cycle monotone if for every player i, every
valuation profile v_; € V_; of other players, every integer £ > 0, and
every sequence v}, ..., v € V; of k valuations for player i, the
following holds

k
Z vi(w;) — vi(wj41)] = 0
Jj=1

where w; denotes f(v/,v_;) forall j € {1,...,k}, and wy1 = wi.

v

For every mechanism design problem, an allocation rule f is
dominant-strategy implementable if and only if it is cycle monotone.
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Weak Monotonicity

The special case of cycle monotonicity for cycles of length 2.

Weak Monotonicity

An allocation rule f is weakly monotone if for every player i, every
valuation profile v_; € V_; of other players, and every pair of valuations
v;, v, € V; of player i, the following holds

vi(w) — vs(W') > vi(w) — vi(w')

where w = f(v;,v_;) and v’ = f(v},v_;)

This is necessary for all mechanism design problems. For problems
with a convex domain, it is also sufficient.

Theorem [Saks, Yu]

For every mechanism design problem where each V; € R® is a convex
set of functions, an allocation rule f is dominant-strategy
implementable if and only if it is weakly monotone.
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Roberts’ Theorem

In the most general mechanism design problem imaginable, we can
say more, at least about deterministic mechanisms.

Unrestricted Mechanism Design Problem

Each player’s valuation is an arbitrary function v; : @ — R. Formally,
V; = RY,
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Roberts’ Theorem

In the most general mechanism design problem imaginable, we can
say more, at least about deterministic mechanisms.

Unrestricted Mechanism Design Problem

Each player’s valuation is an arbitrary function v; : @ — R. Formally,
V; = R%.

Here, cycle monotonicity and weak monotonicity are equivalent to
maximization of a weighted variant of welfare

Theorem (Roberts)

For the unrestricted mechanism design problem, when |Q > 3|, the
allocation rule of every deterministic and dominant-strategy truthful
mechanism is an affine maximizer over some range R C ).

f is an affine maximizer over R if

f(v1,...,v,) € argmax (Bw + Z aivi(w)>

wER P
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Restricted Valuations and/or Randomization

Problems we have seen are special cases of the unrestricted
mechanism design problem

@ Single-parameter problems: linearity in a single variable
@ Combinatorial Auctions: No externality, submodularity, etc
@ GAP: no externality
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Restricted Valuations and/or Randomization

Problems we have seen are special cases of the unrestricted
mechanism design problem

@ Single-parameter problems: linearity in a single variable
@ Combinatorial Auctions: No externality, submodularity, etc
@ GAP: no externality

Even so, all mechanisms we have seen had allocation rules that were
affine maximizers (though some randomized).
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Restricted Valuations and/or Randomization

Does Roberts’ theorem still hold with restricted valuations? What
about when randomization is allowed?

@ Restricted valuations: No in general.
@ Randomization: poorly understood.
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Restricted Valuations and/or Randomization

Does Roberts’ theorem still hold with restricted valuations? What
about when randomization is allowed?

@ Restricted valuations: No in general.
@ Randomization: poorly understood.
@ Space of non-VCG-based mechanisms poorly understood. ..
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Restricted Valuations and/or Randomization

Does Roberts’ theorem still hold with restricted valuations? What
about when randomization is allowed?

@ Restricted valuations: No in general.
@ Randomization: poorly understood.
@ Space of non-VCG-based mechanisms poorly understood. ..

Randomized analogue of Roberts seems to hold “in spirit” so far:

@ Most mechanisms successfully employed are VCG-based (MIR,
MIDR)

@ Where VCG-based failed, a general LB usually followed.
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Negative Results: First approach

Characterize/Embed Approach

@ Show Roberts-like characterization
o Every truthful mechanism essentially optimizes welfare over a
range R
© Show that if R is big enough to guarantee “good” approximation,
then exact optimization over R embeds a hard problem.

@ Direct argument: multi-unit auctions [LMN °03].
e VC-Dimension: combinatorial public projects. [PSS '08]
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Negative Results: First approach

Characterize/Embed Approach

@ Show Roberts-like characterization
o Every truthful mechanism essentially optimizes welfare over a
range R
© Show that if R is big enough to guarantee “good” approximation,
then exact optimization over R embeds a hard problem.

@ Direct argument: multi-unit auctions [LMN °03].
e VC-Dimension: combinatorial public projects. [PSS '08]

@ Successfully applied only to deterministic mechanisms.
@ In some cases, such as combinatorial auctions, only embed part.

@ Applies only to maximal in range mechanisms.
o [DN’07], [BDFKMPSSU ’10]
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Negative Results: Second Approach

Direct Approach [Dobzinski *11]

Using taxation principle, shows that a “good” mechanism must solve
an intractable single-agent utility maximization problem, for some fixed
reports of others.
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Negative Results: Second Approach

Direct Approach [Dobzinski '11]

Using taxation principle, shows that a “good” mechanism must solve
an intractable single-agent utility maximization problem, for some fixed
reports of others.

Applied to combinatorial auctions and public projects [D11, DV11,
DV12]
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