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ﬂ Course Overview



Mathematical Optimization

The task of selecting the “best” configuration of a set of variables from
a “feasible” set of configurations.

minimize (or maximize) f(x)
subject to reX

@ Terminology: decision variable(s), objective function, feasible set,

optimal solution, optimal value
@ Two main classes: continuous and combinatorial
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Continuous Optimization Problems

Optimization problems where feasible set X" is a connected subset of
Euclidean space, and f is a continuous function.

@ Instances typically formulated as follows.

minimize  f(x)
subjectto g;(z) <b;, forieC.

@ Objective function f : R™ — R.

@ Constraint functions g; : R — R. The inequality g;(x) < b; is the
i’th constraint.

@ In general, intractable to solve efficiently (NP hard)
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Convex Optimization Problem

A continuous optimization problem where f is a convex function on X,
and X is a convex set.

@ Convex function: f(az + (1 —a)y) < af(x) + (1 — a) f(y) for all
z,y € X and a € [0, 1]

@ Convex set: ax + (1 —a)y € X, forall z,y € X and a € [0, 1]

@ Convexity of X implied by convexity of g;'s

@ For maximization problems, f should be concave

@ Typically solvable efficiently (i.e. in polynomial time)

@ Encodes optimization problems from a variety of application areas
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Convex Optimization Example: Least Squares

Regression

Given a set of measurements (a1,b1), ..., (am, by), Where a; € R™ is
the 7’th input and b; € R is the ’th output, find the linear function
f : R™ — R best explaining the relationship between inputs and

outputs.

@ f(a) = zTa for some z € R"
@ Least squares: minimize
mean-square error.

minimize ||Az — b||3
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Convex Optimization Example: Minimum Cost Flow

Given a directed network G = (V, E) with cost ¢, € R per unit of

traffic on edge e, and capacity d., find the minimum cost routing of »
divisible units of traffic from s to ¢.
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Convex Optimization Example: Minimum Cost Flow

Given a directed network G = (V, E) with cost ¢, € R per unit of
traffic on edge e, and capacity d., find the minimum cost routing of »
divisible units of traffic from s to ¢.

minimize ) . cee
subjectto > .. , xe=> ., Te, forveV\{st}.

Zeesx =r
Te < de, foree E.
T > 0, forec E.
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Convex Optimization Example: Minimum Cost Flow

Given a directed network G = (V, E) with cost ¢, € R per unit of
traffic on edge e, and capacity d., find the minimum cost routing of »
divisible units of traffic from s to .

minimize ) . cee
subjectto > .. , xe=> ., Te, forveV\{st}.

Zeesx =r
Te < de, foree E.
T > 0, forec E.

Generalizes to traffic-dependent costs. For example
Ce(Te) = aex? + bexe + co.
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Combinatorial Optimization

Combinatorial Optimization Problem
An optimization problem where the feasible set X’ is finite.

@ e.g. X is the set of paths in a network, assignments of tasks to
workers, etc...

@ Again, NP-hard in general, but many are efficiently solvable (either
exactly or approximately)
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Combinatorial Optimization Example: Shortest Path

Given a directed network G = (V, E) with cost ¢, € R, on edge e, find
the minimum cost path from s to ¢. J
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Combinatorial Optimization Example: Traveling

Salesman Problem

Given a set of cities V, with d(u, v) denoting the distance between
cities v and v, find the minimum length tour that visits all cities. J
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Continuous vs Combinatorial Optimization

@ Some optimization problems are best formulated as one or the
other

@ Many problems, particularly in computer science and operations
research, can be formulated as both

@ This dual perspective can lead to structural insights and better
algorithms
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Example: Shortest Path

The shortest path problem can be encoded as a minimum cost flow

problem, using distances as the edge costs, unit capacities, and
desired flow rate 1

minimize ) _pcete
subjectto > .., ze=> ., T, forveV\{s,t}.

Ze(—s Le = 1
Te < 1, fore ¢ E.
Te > 0, foree E.

The optimum solution of the (linear) convex program above will assign
flow only on a single path — namely the shortest path. J
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Course Goals

@ Recognize and model convex optimization problems, and develop
a general understanding of the relevant algorithms.

@ Formulate combinatorial optimization problems as convex
programs

@ Use both the discrete and continuous perspectives to design
algorithms and gain structural insights for optimization problems
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Who Should Take this Class

@ Anyone planning to do research in the design and analysis of
algorithms
e Convex and combinatorial optimization have become an
indispensible part of every algorithmist’s toolkit
@ Students interested in theoretical machine learning and Al
o Convex optimization underlies much of machine learning
e Submodularity has recently emerged as an important abstraction
for feature selection, active learning, planning, and other
applications
@ Anyone else who solves or reasons about optimization problems:
electrical engineers, control theorists, operations researchers,
economists ...
o If there are applications in your field you would like to hear more
about, let me know.
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Course Outline

@ Weeks 1-4: Convex optimization basics and duality theory
@ Week 5: Algorithms for convex optimization

@ Weeks 6-8: Viewing discrete problems as convex programs;
structural and algorithmic implications.

@ Weeks 9-14: Matroid theory, submodular optimization, and other
applications of convex optimization to combinatorial problems

@ Week 15: Project presentations (or additional topics)
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Basic Information

Lecture time: Tuesdays and Thursdays 2 pm - 3:20 pm

Lecture place: KAP 147
Instructor: Shaddin Dughmi

o Email: shaddin@usc.edu
o Office: SAL 234
e Office Hours: TBD

Course Homepage: www.cs.usc.edu/people/shaddin/cs599fa13

References: Convex Optimization by Boyd and Vandenberghe,
and Combinatorial Optimization by Korte and Vygen. (Will place
on reserve)
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@ Mathematical maturity: Be good at proofs
@ Substantial exposure to algorithms or optimization

e CS570 or equivalent, or
e CS303 and you did really well
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Requirements and Grading

@ This is an advanced elective class, so grade is not the point.
o | assume you want to learn this stuff.
@ 3-4 homeworks, 75% of grade.

e Proof based.

e Challenging.

o Discussion allowed, even encouraged, but must write up solutions
independently.

@ Research project or final, 25% of grade. Project suggestions will
be posted on website.

@ One late homework allowed, 2 days.
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Name

Email

Department

Degree

Relevant coursework/background
Research project idea
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A Brief History

@ The forefather of convex optimization problems, and the most
ubiquitous.

@ Developed by Kantorovich during World War 11 (1939) for planning
the Soviet army’s expenditures and returns. Kept secret.

@ Discovered a few years later by George Dantzig, who in 1947
developed the simplex method for solving linear programs

@ John von Neumann developed LP duality in 1947, and applied it to
game theory

@ Polynomial-time algorithms: Ellipsoid method (Khachiyan 1979),
interior point methods (Karmarkar 1984).
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LP General Form

minimize (or maximize) cTz

subject to alx <b;, foriecCl.
alz >b;, forieC2
T

alz =b;, forieC3.

@ Decision variables: x € R™
@ Parameters:

e c € R™ defines the linear objective function
@ a; € R™ and b; € R define the 7'th constraint.
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Standard Form

maximize cTx
subjectto aJz <b;, fori=1,....m.
zj >0, forj=1,...,n.
Every LP can be transformed to this form
@ minimizing c¢Tx is equivalent to maximizing —cTx
@ > constraints can be flipped by multiplying by —1
@ Each equality constraint can be replaced by two inequalities
@ Uconstrained variable x; can be replaced by azj -z, where both

x;r and z; are constrained to be nonnegative.
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A 2-D example

maximize xz1 + x2

subjectto z; + 2x9 <2
201 + 10 < 2
xi1,x9 >0
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Application: Optimal Production

@ n products, m raw materials

@ Product j uses a;; units of raw material i

@ There are b; units of material 7 available

@ Product j yields profit c; per unit

@ Facility wants to maximize profit subject to available raw materials

maximize cTx

subjectto a]z <b;, fori=1,...,m.
zj >0, forj=1,...,n.
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Terminology

@ Hyperplane: The region defined by a linear equality
@ Halfspace: The region defined by a linear inequality o]z < b;.
@ Polytope: The intersection of a set of linear inequalities in
Euclidean space
o Feasible region of an LP is a polytope
e Equivalently: convex hull of a finite set of points
@ Vertex: A point x is a vertex of polytope P if Ay # 0withxz+y € P
andz —y e P
@ Face of P: The intersection with P of a hyperplane H disjoint from
the interior of P

\

~N
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Basic Facts about LPs and Polytopes

Feasible regions of LPs (i.e. polytopes) are convex
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Set of optimal solutions of an LP is convex
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Basic Facts about LPs and Polytopes

Feasible regions of LPs (i.e. polytopes) are convex

Set of optimal solutions of an LP is convex
@ In fact, a face of the polytope

@ intersection of P with hyperplane ¢Tx = OPT

At a vertex, n linearly independent constraints are satisfied with
equality (a.k.a. tight)
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Basic Facts about LPs and Polytopes

An LP either has an optimal solution, or is unbounded or infeasible \

" 4\
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Fundamental Theorem of LP

If an LP in standard form has an optimal solution, then it has a vertex
optimal solution.
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Fundamental Theorem of LP

If an LP in standard form has an optimal solution, then it has a vertex
optimal solution.

@ Assume not, and take a non-vertex optimal solution z with the
maximum number of tight constraints
@ Thereis y # 0 s.t. x £+ y are feasible

@ y is perpendicular to the objective function and the tight
constraints at x.
e i.e. ¢Ty =0, and a]y = 0 whenever the i’th constraint is tight for x.

@ Can choose y s.t. y; < 0 for some j
@ Let a be the largest constant such that = + ay is feasible
e Such an « exists

@ An additional constraint becomes tight at = + «y, a contradiction.
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Counting non-zero Variables

If an LP in standard form has an optimal solution, then there is an
optimal solution with at most m non-zero variables.

maximize cTz
subjectto alz <b;, fori=1,...,m.
z;j >0, forj=1,...,n.

@ e.g. for optimal production with n products and m raw materials,
there is an optimal plan with at most m products.
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Next Lecture

@ LP Duality and its interpretations
@ Examples of duality relationships
@ Implications of Duality
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