
CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 1: Introduction to Optimization

Instructor: Shaddin Dughmi
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Mathematical Optimization
The task of selecting the “best” configuration of a set of variables from
a “feasible” set of configurations.

minimize (or maximize) f(x)
subject to x ∈ X

Terminology: decision variable(s), objective function, feasible set,
optimal solution, optimal value
Two main classes: continuous and combinatorial
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Continuous Optimization Problems
Optimization problems where feasible set X is a connected subset of
Euclidean space, and f is a continuous function.

Instances typically formulated as follows.

minimize f(x)
subject to gi(x) ≤ bi, for i ∈ C.

Objective function f : Rn → R.
Constraint functions gi : Rn → R. The inequality gi(x) ≤ bi is the
i’th constraint.
In general, intractable to solve efficiently (NP hard)
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Convex Optimization Problem
A continuous optimization problem where f is a convex function on X ,
and X is a convex set.

Convex function: f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all
x, y ∈ X and α ∈ [0, 1]
Convex set: αx+ (1− α)y ∈ X , for all x, y ∈ X and α ∈ [0, 1]
Convexity of X implied by convexity of gi’s
For maximization problems, f should be concave
Typically solvable efficiently (i.e. in polynomial time)
Encodes optimization problems from a variety of application areas

Convex Set
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Convex Optimization Example: Least Squares
Regression

Given a set of measurements (a1, b1), . . . , (am, bm), where ai ∈ Rn is
the i’th input and bi ∈ R is the i’th output, find the linear function
f : Rn → R best explaining the relationship between inputs and
outputs.

f(a) = xᵀa for some x ∈ Rn

Least squares: minimize
mean-square error.

minimize ||Ax− b||22
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Convex Optimization Example: Minimum Cost Flow

Given a directed network G = (V,E) with cost ce ∈ R+ per unit of
traffic on edge e, and capacity de, find the minimum cost routing of r
divisible units of traffic from s to t.
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minimize
∑

e∈E cexe
subject to

∑
e←v xe =

∑
e→v xe, for v ∈ V \ {s, t} .∑

e←s xe = r
xe ≤ de, for e ∈ E.
xe ≥ 0, for e ∈ E.

Generalizes to traffic-dependent costs. For example
ce(xe) = aex

2
e + bexe + ce.
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Combinatorial Optimization

Combinatorial Optimization Problem
An optimization problem where the feasible set X is finite.

e.g. X is the set of paths in a network, assignments of tasks to
workers, etc...
Again, NP-hard in general, but many are efficiently solvable (either
exactly or approximately)
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Combinatorial Optimization Example: Shortest Path

Given a directed network G = (V,E) with cost ce ∈ R+ on edge e, find
the minimum cost path from s to t.
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Combinatorial Optimization Example: Traveling
Salesman Problem

Given a set of cities V , with d(u, v) denoting the distance between
cities u and v, find the minimum length tour that visits all cities.
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Continuous vs Combinatorial Optimization

Some optimization problems are best formulated as one or the
other
Many problems, particularly in computer science and operations
research, can be formulated as both
This dual perspective can lead to structural insights and better
algorithms
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Example: Shortest Path

The shortest path problem can be encoded as a minimum cost flow
problem, using distances as the edge costs, unit capacities, and
desired flow rate 1
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minimize
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e∈E cexe
subject to

∑
e←v xe =

∑
e→v xe, for v ∈ V \ {s, t} .∑

e←s xe = 1
xe ≤ 1, for e ∈ E.
xe ≥ 0, for e ∈ E.

The optimum solution of the (linear) convex program above will assign
flow only on a single path — namely the shortest path.
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Course Goals

Recognize and model convex optimization problems, and develop
a general understanding of the relevant algorithms.
Formulate combinatorial optimization problems as convex
programs
Use both the discrete and continuous perspectives to design
algorithms and gain structural insights for optimization problems
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Who Should Take this Class

Anyone planning to do research in the design and analysis of
algorithms

Convex and combinatorial optimization have become an
indispensible part of every algorithmist’s toolkit

Students interested in theoretical machine learning and AI
Convex optimization underlies much of machine learning
Submodularity has recently emerged as an important abstraction
for feature selection, active learning, planning, and other
applications

Anyone else who solves or reasons about optimization problems:
electrical engineers, control theorists, operations researchers,
economists . . .

If there are applications in your field you would like to hear more
about, let me know.
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Course Outline

Weeks 1-4: Convex optimization basics and duality theory
Week 5: Algorithms for convex optimization
Weeks 6-8: Viewing discrete problems as convex programs;
structural and algorithmic implications.
Weeks 9-14: Matroid theory, submodular optimization, and other
applications of convex optimization to combinatorial problems
Week 15: Project presentations (or additional topics)
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Basic Information

Lecture time: Tuesdays and Thursdays 2 pm - 3:20 pm
Lecture place: KAP 147
Instructor: Shaddin Dughmi

Email: shaddin@usc.edu
Office: SAL 234
Office Hours: TBD

Course Homepage: www.cs.usc.edu/people/shaddin/cs599fa13
References: Convex Optimization by Boyd and Vandenberghe,
and Combinatorial Optimization by Korte and Vygen. (Will place
on reserve)
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Prerequisites

Mathematical maturity: Be good at proofs
Substantial exposure to algorithms or optimization

CS570 or equivalent, or
CS303 and you did really well
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Requirements and Grading

This is an advanced elective class, so grade is not the point.
I assume you want to learn this stuff.

3-4 homeworks, 75% of grade.
Proof based.
Challenging.
Discussion allowed, even encouraged, but must write up solutions
independently.

Research project or final, 25% of grade. Project suggestions will
be posted on website.
One late homework allowed, 2 days.
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Survey

Name
Email
Department
Degree
Relevant coursework/background
Research project idea
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A Brief History

The forefather of convex optimization problems, and the most
ubiquitous.
Developed by Kantorovich during World War II (1939) for planning
the Soviet army’s expenditures and returns. Kept secret.
Discovered a few years later by George Dantzig, who in 1947
developed the simplex method for solving linear programs
John von Neumann developed LP duality in 1947, and applied it to
game theory
Polynomial-time algorithms: Ellipsoid method (Khachiyan 1979),
interior point methods (Karmarkar 1984).
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LP General Form

minimize (or maximize) cᵀx
subject to aᵀi x ≤ bi, for i ∈ C1.

aᵀi x ≥ bi, for i ∈ C2.
aᵀi x = bi, for i ∈ C3.

Decision variables: x ∈ Rn

Parameters:
c ∈ Rn defines the linear objective function
ai ∈ Rn and bi ∈ R define the i’th constraint.
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Standard Form

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

Every LP can be transformed to this form
minimizing cᵀx is equivalent to maximizing −cᵀx
≥ constraints can be flipped by multiplying by −1
Each equality constraint can be replaced by two inequalities
Uconstrained variable xj can be replaced by x+j − x

−
j , where both

x+j and x−j are constrained to be nonnegative.
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Geometric View
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Geometric View
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A 2-D example

maximize x1 + x2
subject to x1 + 2x2 ≤ 2

2x1 + x2 ≤ 2
x1, x2 ≥ 0
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Application: Optimal Production

n products, m raw materials
Product j uses aij units of raw material i
There are bi units of material i available
Product j yields profit cj per unit
Facility wants to maximize profit subject to available raw materials

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

Linear Programming 23/29



Terminology

Hyperplane: The region defined by a linear equality
Halfspace: The region defined by a linear inequality aᵀi x ≤ bi.
Polytope: The intersection of a set of linear inequalities in
Euclidean space

Feasible region of an LP is a polytope
Equivalently: convex hull of a finite set of points

Vertex: A point x is a vertex of polytope P if 6 ∃y 6= 0 with x+ y ∈ P
and x− y ∈ P
Face of P : The intersection with P of a hyperplane H disjoint from
the interior of P
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Basic Facts about LPs and Polytopes

Fact
Feasible regions of LPs (i.e. polytopes) are convex

Fact
Set of optimal solutions of an LP is convex

In fact, a face of the polytope
intersection of P with hyperplane cᵀx = OPT

Fact
At a vertex, n linearly independent constraints are satisfied with
equality (a.k.a. tight)
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Basic Facts about LPs and Polytopes

Fact
An LP either has an optimal solution, or is unbounded or infeasible
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Fundamental Theorem of LP
If an LP in standard form has an optimal solution, then it has a vertex
optimal solution.

Proof
Assume not, and take a non-vertex optimal solution x with the
maximum number of tight constraints
There is y 6= 0 s.t. x± y are feasible
y is perpendicular to the objective function and the tight
constraints at x.

i.e. cᵀy = 0, and aᵀi y = 0 whenever the i’th constraint is tight for x.

Can choose y s.t. yj < 0 for some j
Let α be the largest constant such that x+ αy is feasible

Such an α exists

An additional constraint becomes tight at x+ αy, a contradiction.

Linear Programming 27/29



Fundamental Theorem of LP
If an LP in standard form has an optimal solution, then it has a vertex
optimal solution.

Proof
Assume not, and take a non-vertex optimal solution x with the
maximum number of tight constraints
There is y 6= 0 s.t. x± y are feasible
y is perpendicular to the objective function and the tight
constraints at x.

i.e. cᵀy = 0, and aᵀi y = 0 whenever the i’th constraint is tight for x.

Can choose y s.t. yj < 0 for some j
Let α be the largest constant such that x+ αy is feasible

Such an α exists

An additional constraint becomes tight at x+ αy, a contradiction.

Linear Programming 27/29



Counting non-zero Variables

Corollary
If an LP in standard form has an optimal solution, then there is an
optimal solution with at most m non-zero variables.

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

e.g. for optimal production with n products and m raw materials,
there is an optimal plan with at most m products.
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Next Lecture

LP Duality and its interpretations
Examples of duality relationships
Implications of Duality
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