
CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 11: Duality of Convex Optimization
Problems

Instructor: Shaddin Dughmi



Announcements

Yu’s office hours changed to Friday 4pm-5pm
Solutions to HW1 should be posted soon.
HW2 coming soon
This week: Convex Optimization Duality

Read all of B&V Chapter 5.



Outline

1 The Lagrange Dual Problem

2 Duality



Recall: Optimization Problem in Standard Form

minimize f0(x)
subject to fi(x) ≤ 0, for i = 1, . . . ,m.

hi(x) = 0, for i = 1, . . . , k.

For convex optimization problems in standard form, fi is convex
and hi is affine.
Let D denote the domain of all these functions (i.e. when their
value is finite)

This Lecture + Next
We will develop duality theory for convex optimization problems,
generalizing linear programming duality.

The Lagrange Dual Problem 1/20



Recall: Optimization Problem in Standard Form

minimize f0(x)
subject to fi(x) ≤ 0, for i = 1, . . . ,m.

hi(x) = 0, for i = 1, . . . , k.

For convex optimization problems in standard form, fi is convex
and hi is affine.
Let D denote the domain of all these functions (i.e. when their
value is finite)

This Lecture + Next
We will develop duality theory for convex optimization problems,
generalizing linear programming duality.

The Lagrange Dual Problem 1/20



Running Example: Linear Programming

We have already seen the standard form LP below

maximize cᵀx
subject to Ax � b

x � 0

minimize −cᵀx
subject to Ax− b � 0

−x � 0

Along the way, we will recover the following standard form dual

minimize yᵀb
subject to Aᵀy � c

y � 0
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The Lagrangian

minimize f0(x)
subject to fi(x) ≤ 0, for i = 1, . . . ,m.

hi(x) = 0, for i = 1, . . . , k.

Basic idea of Lagrangian duality is to relax/soften the constraints by
replacing each with a linear “penalty term” or “cost” in the objective.

The Lagrangian Function

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

k∑
i=1

νihi(x)

λi is Lagrange Multiplier for i’th inequality constraint
Required to be nonnegative

νi is Lagrange Multiplier for i’th equality constraint
Allowed to be of arbitrary sign
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The Lagrange Dual Function

minimize f0(x)
subject to fi(x) ≤ 0, for i = 1, . . . ,m.

hi(x) = 0, for i = 1, . . . , k.

The Lagrange dual function gives the optimal value of the primal
problem subject to the softened constraints

The Lagrange Dual Function

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
k∑

i=1

νihi(x)

)

Observe: g is a concave function of the Lagrange multipliers
We will see: Its quite common for the Lagrange dual to be
unbounded (−∞) for some λ and ν
By convention, domain of g is (λ, ν) s.t. g(λ, ν) > −∞
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Langrange Dual of LP

minimize −cᵀx
subject to Ax− b � 0

−x � 0

First, the Lagrangian function

L(x, λ) = −cᵀx+ λᵀ1(Ax− b)− λ
ᵀ
2x

= (Aᵀλ1 − c− λ2)ᵀx− λᵀ1b

And the Lagrange Dual

g(λ) = inf
x
L(x, λ)

=

{
−∞ if Aᵀλ1 − c− λ2 6= 0

−λᵀ1b Aᵀλ1 − c− λ2 = 0

So we restrict the domain of g to λ satisfying Aᵀλ1 − c− λ2 = 0

The Lagrange Dual Problem 5/20



Langrange Dual of LP

minimize −cᵀx
subject to Ax− b � 0

−x � 0

First, the Lagrangian function

L(x, λ) = −cᵀx+ λᵀ1(Ax− b)− λ
ᵀ
2x

= (Aᵀλ1 − c− λ2)ᵀx− λᵀ1b

And the Lagrange Dual

g(λ) = inf
x
L(x, λ)

=

{
−∞ if Aᵀλ1 − c− λ2 6= 0

−λᵀ1b Aᵀλ1 − c− λ2 = 0

So we restrict the domain of g to λ satisfying Aᵀλ1 − c− λ2 = 0

The Lagrange Dual Problem 5/20



Langrange Dual of LP

minimize −cᵀx
subject to Ax− b � 0

−x � 0

First, the Lagrangian function

L(x, λ) = −cᵀx+ λᵀ1(Ax− b)− λ
ᵀ
2x

= (Aᵀλ1 − c− λ2)ᵀx− λᵀ1b

And the Lagrange Dual

g(λ) = inf
x
L(x, λ)

=

{
−∞ if Aᵀλ1 − c− λ2 6= 0

−λᵀ1b Aᵀλ1 − c− λ2 = 0

So we restrict the domain of g to λ satisfying Aᵀλ1 − c− λ2 = 0

The Lagrange Dual Problem 5/20



Interpretation: “Soft” Lower Bound

min f0(x)
subject to fi(x) ≤ 0, for i = 1, . . . ,m.

hi(x) = 0, for i = 1, . . . , k.

The Lagrange Dual Function

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

k∑
i=1

νihi(x)

)
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x∈D

(
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λifi(x) +
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νihi(x)

)

Fact
g(λ, ν) is a lowerbound on OPT(primal) for every λ � 0 and ν ∈ Rk.

Proof
Every primal feasible x incurs nonpositive penalty by L(x, λ, ν)
Therefore, L(x∗, λ, ν) ≤ f0(x∗)
So g(λ, ν) ≤ f0(x∗) = OPT (Primal)
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x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

k∑
i=1

νihi(x)

)

Interpretation
A “hard” feasibility constraint can be thought of as imposing a
penalty of +∞ if violated
Lagrangian imposes a “soft” linear penalty for violating a
constraint, and a reward for slack
Lagrange dual finds the optimal subject to these soft constraints
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Interpretation: “Soft” Lower Bound
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Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

minimize f0(x)
subject to f1(x) ≤ 0

Let G be attainable constraint/objective function value tuples
i.e. (u, t) ∈ G if there is an x such that f1(x) = u and f0(x) = t

p∗ = inf {t : (u, t) ∈ G, u ≤ 0}
g(λ) = inf {λu+ t : (u, t) ∈ G}

λu+ t = g(λ) is a supporting hyperplane to G pointing northeast
Must intersect vertical axis below p∗

Therefore g(λ) ≤ p∗
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The Lagrange Dual Problem

This is the problem of finding the best lower bound on OPT(primal)
implied by the Lagrange dual function

maximize g(λ, ν)
subject to λ � 0

Note: this is a convex optimization problem, regardless of whether
primal problem was convex
By convention, sometimes we add “dual feasibility” constraints to
impose “nontrivial” lowerbounds (i.e. g(λ, ν) ≥ −∞)
(λ∗, ν∗) solving the above are referred to as the dual optimal
solution
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Langrange Dual Problem of LP

maximize cᵀx
subject to Ax � b

x � 0

minimize −cᵀx
subject to Ax− b � 0

−x � 0

Recall
Our Lagrange dual function for the above LP (to the right), defined over
the domain Aᵀλ1 − c− λ2 = 0.

g(λ) = −λᵀ1b

The Lagrange dual problem can then be written as

minimize yᵀb
subject to Aᵀy � c

y � 0

maximize −λᵀ1b
subject to

Aᵀλ1 � c

λ � 0
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Another Example: Conic Optimization Problem

minimize cᵀx
subject to Ax = b

x ∈ K

maximize νᵀb
subject to Aᵀν − c ∈ K◦

x ∈ K can equivalently be written as zᵀx ≤ 0, ∀z ∈ K◦

L(x, λ, ν) = cᵀx+ νᵀ(Ax− b) +
∑
z∈K◦

λz · zᵀx

= (c−Aᵀν +
∑
z∈K◦

λz · z)ᵀx+ νᵀb

Can think of λ � 0 as choosing some s ∈ K◦

L(x, s, ν) = (c−Aᵀν + s)ᵀx+ νᵀb

Lagrange dual function g(s, ν) is bounded when coefficient of x is
zero, in which case it has value νᵀb
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Weak Duality
Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ � 0

Weak Duality
OPT (dual) ≤ OPT (primal).

We have already argued holds for every optimization problem
Duality Gap: difference between optimal dual and primal values
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Recall: Geometric Interpretation of Weak Duality

minimize f0(x)
subject to f1(x) ≤ 0

Let G be attainable constraint/objective function value tuples
i.e. (u, t) ∈ G if there is an x such that f1(x) = u and f0(x) = t

p∗ = inf {t : (u, t) ∈ G, u ≤ 0}
g(λ) = inf {λu+ t : (u, t) ∈ G}

Fact
The equation λu+ t = g(λ) defines a supporting hyperplane to G,
intersecting t axis at g(λ) ≤ p∗.
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Strong Duality

Strong Duality
We say strong duality holds if OPT (dual) = OPT (primal).

Equivalently: there exists a setting of Lagrange multipliers so that
g(λ, ν) gives a tight lowerbound on primal optimal value.
In general, does not hold for non-convex optimization problems
Usually, but not always, holds for convex optimization problems.

Mild assumptions, such as Slater’s condition, needed.
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Geometric Proof of Strong Duality

minimize f0(x)
subject to f1(x) ≤ 0

Let A be everything northeast (i.e. “worse”) than G
i.e. (u, t) ∈ A if there is an x such that f1(x) ≤ u and f0(x) ≤ t

p∗ = inf {t : (0, t) ∈ A}
g(λ) = inf {λu+ t : (u, t) ∈ A}

Fact
The equation λu+ t = g(λ) defines a supporting hyperplane to G,
intersecting t axis at g(λ) ≤ p∗.
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Geometric Proof of Strong Duality

minimize f0(x)
subject to f1(x) ≤ 0

Fact
When f0 and f1 are convex, A is convex.

Proof
Assume (u, t) and (u′, t′) are in A
∃x, x′ with (f1(x), f0(x)) ≤ (u, t) and (f1(x

′), f0(x
′)) ≤ (u′, t′).

By Jensen’s inequality (f1(
x+x′

2 ), f0(
x+x′

2 )) ≤ (u+u′

2 , t+t′

2 )

Therefore, midpoint of (u, t) and (u′, t′) also in A.
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Geometric Proof of Strong Duality

minimize f0(x)
subject to f1(x) ≤ 0

Theorem (Informal)
There is a choice of λ so that g(λ) = p∗. Therefore, strong duality
holds.

Proof
Recall (0, p∗) ∈ A
By the supporting hyperplane theorem, there is a supporting
hyperplane to A at (0, p∗)
Direction of the supporting hyperplane gives us an appropriate λ
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I Lied (A little)

minimize f0(x)
subject to f1(x) ≤ 0

In our proof, we ignored a technicality that can prevent strong
duality from holding.

If our supporting hyperplane H at (0, p∗) is vertical, then no finite λ
exists such that (λ, 1) is normal to H.
Somewhat counterintuitively, this can happen even in simple
convex optimization problems (though its somewhat rare in
practice)
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Violation of Strong Duality

minimize e−x

subject to x2

y ≤ 0

y ≥ 1

Problem is convex, with feasible region given by x = 0 and y ≥ 1

Optimal value is 1, at x = 0 and y = 1

Consider A restricted to the objective and the first constraint
A = R2

++

⋃
{0} × [1,∞]

Therefore, any supporting hyperplane to A at (0, 1) must be
vertical.
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Slater’s Condition
There exists a point x ∈ D where all inequality constraints are strictly
satisfied (i.e. fi(x) < 0). I.e. the optimization problem is strictly
feasible.

A sufficient condition for strong duality.
Forces supporting hyperplane to be non-vertical

Can be weakened to requiring strict feasibility only of non-affine
constraints

Duality 20/20



Slater’s Condition
There exists a point x ∈ D where all inequality constraints are strictly
satisfied (i.e. fi(x) < 0). I.e. the optimization problem is strictly
feasible.

A sufficient condition for strong duality.
Forces supporting hyperplane to be non-vertical
Can be weakened to requiring strict feasibility only of non-affine
constraints

Duality 20/20


	The Lagrange Dual Problem
	Duality

