CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 11: Duality of Convex Optimization
Problems

Instructor: Shaddin Dughmi



Announcements

@ Yu’s office hours changed to Friday 4pm-5pm
@ Solutions to HW1 should be posted soon.

@ HW2 coming soon
@ This week: Convex Optimization Duality
o Read all of B&V Chapter 5.



0 The Lagrange Dual Problem



Recall: Optimization Problem in Standard Form

minimize  fo(x)
subjectto  fi(x) <0, fori=1,...,m.
hi(x) =0, fori=1,... k.

@ For convex optimization problems in standard form, f; is convex
and h; is affine.

@ Let D denote the domain of all these functions (i.e. when their
value is finite)
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Recall: Optimization Problem in Standard Form

minimize  fo(x)
subjectto  fi(x) <0, fori=1,...,m.
hi(x) =0, fori=1,... k.

@ For convex optimization problems in standard form, f; is convex
and h; is affine.

@ Let D denote the domain of all these functions (i.e. when their
value is finite)

This Lecture + Next

We will develop duality theory for convex optimization problems,
generalizing linear programming duality.
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Running Example: Linear Programming

We have already seen the standard form LP below

maximize cTx minimize —cTz
subjectto Az <b subjectto Ax —b =<0
x>0 —x =<0
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Running Example: Linear Programming

We have already seen the standard form LP below

maximize cTx minimize —cTz
subjectto Az <b subjectto Ax —b =<0
x>0 —x =<0

Along the way, we will recover the following standard form dual
minimize  yTb
subjectto ATy = ¢
y=0
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The Lagrangian

minimize  fy(z)
subjectto fi(x) <0, fori=1,...,m.

Basic idea of Lagrangian duality is to relax/soften the constraints by
replacing each with a linear “penalty term” or “cost” in the objective. J
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The Lagrangian

minimize  fo(z)
subjectto  fi(r) <
hi(z) =

0, fori=1,...,m.
0, fori=1,... k.
Basic idea of Lagrangian duality is to relax/soften the constraints by
replacing each with a linear “penalty term” or “cost” in the objective.

v

The Lagrangian Function
k
L(z,\v) —l—Z)\ fi(z +ZVihi($)
=1

@ )\, is Lagrange Multiplier for i’th inequality constraint
@ Required to be nonnegative

@ v; is Lagrange Multiplier for i’th equality constraint
o Allowed to be of arbitrary sign
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The Lagrange Dual Function

minimize  fo(x)

subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.
The Lagrange dual function gives the optimal value of the primal
problem subject to the softened constraints J
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The Lagrange Dual Function

minimize  fy(z)
subjectto fi(x) <0, fori=1,...,m.
hi(x) =0, fori=1,... k.

The Lagrange dual function gives the optimal value of the primal
problem subject to the softened constraints J

The Lagrange Dual Function
k
g\, v) :xing)L(x,)\,V) = mf ( -I—Z)\ fi(z Z W Z(x))

=1

v

@ Observe: g is a concave function of the Lagrange multipliers

@ We will see: Its quite common for the Lagrange dual to be
unbounded (—oo) for some A and v

@ By convention, domain of g is (A, v) s.t. g(A\,v) > —c0
The'Cagrange Dual Problem

y
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Langrange Dual of LP

minimize —cTz
subjectto Az —b=<0
—z =0
First, the Lagrangian function

L(z,\) = —cTz + A\ (Az — b) — Nz
== (AT)\l — C— )\Q)Tl' - )\.{b
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Langrange Dual of LP

minimize —cTz
subjectto Az —b=<0
—x =<0
First, the Lagrangian function

L(z,\) = —cTz + A\ (Az — b) — Nz
== (AT)\l — C — )\Q)TCL' - )\.{b
And the Lagrange Dual
g(A\) =inf L(x, \)

. — 00 ifAT)\l—C—)\Q%O
Sl =ATh ATA —c— A =0

The Lagrange Dual Problem

5/20



Langrange Dual of LP

minimize —cTz
subjectto Az —b=<0
—z =0
First, the Lagrangian function

L(z,\) = —cTz + A\ (Az — b) — Nz
= (ATA1 —c— Xa)Tx — A]b
And the Lagrange Dual
g(A\) =inf L(x, \)

. —0o0 ifAT)\l—C—)\Q%O
Sl =ATh ATA —c— A =0

So we restrict the domain of g to A satisfying ATA; —c— Xy =0

The Lagrange Dual Problem
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function

k
g\ v) = ziIé%L(x,)\, v)= 1nf ( Z)\ fi(z ;Vzhz(fﬂ))
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function

k
g\ v) = ziIé%L(%,)\,V) = 1nf ( Z)\ fi(z ;wh&@)

g(\,v) is a lowerbound on OPT (primal) for every A = 0 and v € R¥.
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function

m k
g\ v) = mirellf)L(a:, A\ V) = l}g% (fo(x) + ;)\Zfz(x) + ;Vlhz(x)>

v

Fact
g(\,v) is a lowerbound on OPT (primal) for every A = 0 and v € R¥.

v

Proof
@ Every primal feasible x incurs nonpositive penalty by L(z, A, v)
@ Therefore, L(x*, \,v) < fo(z*)
@ So g(\,v) < fo(z*) = OPT(Primal)
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function
k
g\ v) = miIGI%L(x, A\ V) = 1nf ( )+ Z)\ falz) + Z;V,hz(x)>

Interpretation

@ A “hard” feasibility constraint can be thought of as imposing a
penalty of +cc if violated

@ Lagrangian imposes a “soft” linear penalty for violating a
constraint, and a reward for slack

@ Lagrange dual finds the optimal subject to these soft constraints

v
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Interpretation: “Soft” Lower Bound

gl

—9 G v I ’
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-
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Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

minimize  fo() é : ’

SUbJeCt to fl ($) S 0 A+t =€](‘/\]_“—-—-—________‘__‘_H
: A

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(z) = v and fy(z) = ¢

@ p* =inf{t: (u,t) € G,u <0}

@ g(\) =inf{du+t : (u,t) € G}
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Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

minimize  fo() é 1

subjectto  fi(z) <0 Autt=gN——— |

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(z) = v and fy(z) = ¢

@ p* =inf{t: (u,t) € G,u <0}

@ g(\) =inf{du+t : (u,t) € G}

@ \u+t = g()) is a supporting hyperplane to G pointing northeast
@ Must intersect vertical axis below p*
@ Therefore g(\) < p*
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The Lagrange Dual Problem

This is the problem of finding the best lower bound on OPT(primal)
implied by the Lagrange dual function

Agu +t = g(Az) G
maximize g(\,v) Xeut = g(x*) =
Subject to A>0 Mt t=g(A) da

@ Note: this is a convex optimization problem, regardless of whether
primal problem was convex

@ By convention, sometimes we add “dual feasibility” constraints to
impose “nontrivial” lowerbounds (i.e. g(\,v) > —0)

@ (\*,v*) solving the above are referred to as the dual optimal
solution
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Langrange Dual Problem of LP

maximize cTz minimize —cTx
subjectto Az =<b subjectto Az —b =<0
=0 —z <0

Our Lagrange dual function for the above LP (to the right), defined over
the domain ATA; —c— Xy = 0.

g(A) = —Ab
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Langrange Dual Problem of LP

maximize cTz minimize —cTx
subjectto Az =<b subjectto Az —b =<0
=0 —z <0

Our Lagrange dual function for the above LP (to the right), defined over
the domain ATA; —c— Xy = 0.

g(A) = —Ab

The Lagrange dual problem can then be written as

maximize —AJb
subjectto ATA1 —c— )Xo =0

A=0
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Langrange Dual Problem of LP

maximize cTz minimize —cTx
subjectto Az =<b subjectto Az —b =<0
=0 —z <0

Our Lagrange dual function for the above LP (to the right), defined over
the domain ATA; —c— Xy = 0.

g(A) = —Ab

The Lagrange dual problem can then be written as

maximize —AJb

subjectto AT\ —e—=X3 =0
AT)\l t C
A0
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Langrange Dual Problem of LP

maximize cTz minimize —cTx
subjectto Az =<b subjectto Az —b =<0
=0 —z <0

Our Lagrange dual function for the above LP (to the right), defined over
the domain ATA; —c— Xy = 0.

g(A) = —Ab

The Lagrange dual problem can then be written as

minimize yTh maximize —/\.{b
subjectto ATy > ¢ subjectto AT\ —e=X3=0
y >0 ATA = ¢
A0
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Another Example: Conic Optimization Problem

minimize cTx
subjectto Ax =10
rze K

@ = € K can equivalently be written as 272 < 0, Vz € K°

L(z,\v)=cTz+vT(Ax —b) + Z)\ 2Tx
zeK°
=(c—ATv + Z Az 2)Te +vTh
zeK°
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Another Example: Conic Optimization Problem

minimize cTx
subjectto Ax =10
rze K

@ = € K can equivalently be written as 272 < 0, Vz € K°

L(z,\v)=cTz+vT(Ax —b) + Z)\ 2Tx
z€K®

=(c—ATv + Z Az 2)Te +vTh
zeK®°

@ Can think of A = 0 as choosing some s € K°

L(z,s,v)=(c— ATv + s)Tx + vTh
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Another Example: Conic Optimization Problem

minimize cTx
subjectto Ax =10
rze K

@ = € K can equivalently be written as 272 < 0, Vz € K°

L(z,\v)=cTz+vT(Ax —b) + Z)\ 2Tx
zeK°

=(c—ATv + Z Az 2)Te +vTh
zeK°

@ Can think of A = 0 as choosing some s € K°
L(z,s,v)=(c— ATv + s)Tx + vTh

@ Lagrange dual function g¢(s, v) is bounded when coefficient of = is
zero, in which case it has value v7b
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Another Example: Conic Optimization Problem

minimize ¢’z

subjectto Az =b maximize  vTb
re K subjectto ATv —ce K°

@ = € K can equivalently be written as 272 < 0, Vz € K°

L(z,\v)=cTz+vT(Ax —b) + Z)\ 2Tx
z€K®

=(c—ATv + Z Az 2)Te +vTh
zeK®°

@ Can think of A = 0 as choosing some s € K°
L(z,s,v)=(c— ATv + s)Tx + vTh

@ Lagrange dual function g¢(s, v) is bounded when coefficient of = is
zero, in which case it has value v7b
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@ Duaiity



Weak Duality
Primal Problem
min fo(z)
s.t.

fi(z) <
hl(x) =

Duality

Dual Problem

max g(\,v)
s.t.
A0

12/20



Weak Duality

Primal Problem

Dual Problem

min fo(z)

s.t. ;ntax 9 v)

fi(.CC)SO, Vi:1,...,m. )\.;_0

hi(x) =0, Vi=1,... k. -

. Aqu +t = g(A2) G
Weak Duality Newt = g3 .
7

OPT(dual) < OPT(primal). N+ t=g(\) 4

@ We have already argued holds for every optimization problem
@ Duality Gap: difference between optimal dual and primal values
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Recall: Geometric Interpretation of Weak Duality
minimize  fo(x) é :

subjectto  fi(xz) <0 T

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(x) = v and fo(z) =t

@ p* =inf{t: (u,t) € G,u <0}
@ g(\) =inf{du+t : (u,t) € G}
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Recall: Geometric Interpretation of Weak Duality
minimize  fo(z) ; :

subjectto  fi(z) <0 e

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(x) = v and fo(z) =t

@ p* =inf{t: (u,t) € G,u <0}

@ g(\) =inf{du+t : (u,t) € G}

The equation Au + ¢t = g()\) defines a supporting hyperplane to G,
intersecting ¢ axis at g(\) < p*.
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Strong Duality

Strong Duality
We say strong duality holds if OPT'(dual) = OPT (primal).

@ Equivalently: there exists a setting of Lagrange multipliers so that
g(A\,v) gives a tight lowerbound on primal optimal value.

@ In general, does not hold for non-convex optimization problems
@ Usually, but not always, holds for convex optimization problems.
e Mild assumptions, such as Slater’s condition, needed.
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Geometric Proof of Strong Duality

minimize  fo(z)
subjectto  fi(z) <0

X+t = gA) .77

(0.glA))

@ Let A be everything northeast (i.e. “worse”) than G
o i.e. (u,t) € Aifthereis an z such that f,(z) <wand fo(z) <t

@ p* =inf{t:(0,t) € A}
@ g(\) =inf{du+1t : (u,t) € A}
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subjectto  fi(z) <0

X+t = gA) .77

(0.glA))

@ Let A be everything northeast (i.e. “worse”) than G
o i.e. (u,t) € Aifthereis an z such that f,(z) <wand fo(z) <t

@ p* =inf{t:(0,t) € A}
@ g(\) =inf{du+1t : (u,t) € A}

The equation \u + t = g(\) defines a supporting hyperplane to G,
intersecting ¢ axis at g(\) < p*.
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Geometric Proof of Strong Duality

minimize  fo(x)

subjectto  fi(z) <0 \K
When fy and f; are convex, A is convex. I
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Geometric Proof of Strong Duality

minimize  fo(x)

subjectto  fi(z) <0 \¥

@ Assume (u,t) and (u/,t’) are in A
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Geometric Proof of Strong Duality

(i2,f)
minimize  fo(x) & 4
subjectto  fi(z) <0

B\¥
When fy and f; are convex, A is convex. \

@ Assume (u,t) and (u/,t’) are in A
@ Jdz, 2’ with (f1(z), fo(z)) < (u,t) and (f1(z'), fo(z")) < (W', ).
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Geometric Proof of Strong Duality

minimize  fo(x)

subjectto  fi(z) <0 \¥

@ Assume (u,t) and (u/,t’) are in A
© dz,z’ with (fi(z), fo(2)) < (u,t) and (f1(z'), fo(z')) < (', 1)
@ By Jensen’s inequality (f1(Z52), fo(252)) < (Y5v, 5
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Geometric Proof of Strong Duality

minimize  fo(z) *

subjectto  fi(z) <0 \¥

@ Assume (u,t) and (u/,t’) are in A
© dz,z’ with (fi(z), fo(2)) < (u,t) and (f1(z'), fo(z')) < (', 1)
@ By Jensen’s inequality (f1(Z52), fo(252)) < (Y5v, 5

@ Therefore, midpoint of (u,t) and (v/,t') also in A.
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Geometric Proof of Strong Duality

minimize  fo(z)

subjectto fi(z) <0 ¥

Theorem (Informal)

There is a choice of A so that g(\) = p*. Therefore, strong duality
holds.
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Geometric Proof of Strong Duality

minimize  fo(x) .
subjectto  fi(z) <0

Theorem (Informal)

There is a choice of A so that g(\) = p*. Therefore, strong duality
holds.

@ Recall (0,p*) € A

@ By the supporting hyperplane theorem, there is a supporting
hyperplane to A at (0, p*)

@ Direction of the supporting hyperplane gives us an appropriate A
Duality
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| Lied (A little)

minimize  fo(z) 4

subjectto  fi(x) <0 K

@ In our proof, we ignored a technicality that can prevent strong
duality from holding.
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| Lied (A little)

minimize  fo(z)

subjectto  fi(x) <0 \¥

@ In our proof, we ignored a technicality that can prevent strong
duality from holding.

@ If our supporting hyperplane H at (0, p*) is vertical, then no finite A
exists such that (\, 1) is normal to H.
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| Lied (A little)

minimize  fo(x)

subjectto  fi(z) <0 \¥

@ In our proof, we ignored a technicality that can prevent strong
duality from holding.

@ If our supporting hyperplane H at (0, p*) is vertical, then no finite A
exists such that (\, 1) is normal to H.

@ Somewhat counterintuitively, this can happen even in simple
convex optimization problems (though its somewhat rare in
practice)
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Violation of Strong Duality

Duality

minimize e %
subject to % <0
>1

<

@ Problem is convex, with feasible region givenby z =0andy > 1
@ Optimal valueis 1,atz=0andy =1
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Violation of Strong Duality

minimize e %
subject to % <0
>1

<

@ Problem is convex, with feasible region givenby z =0andy > 1
@ Optimal valueis 1,atz=0andy =1

@ Consider A restricted to the objective and the first constraint
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Violation of Strong Duality

minimize z

—
subject to % <0
y=>1

@ Problem is convex, with feasible region givenby z =0andy > 1
@ Optimal valueis 1,atz=0andy =1

@ Consider A restricted to the objective and the first constraint

o A=R%, U{0} x [1,o]

@ Therefore, any supporting hyperplane to A at (0, 1) must be
vertical.

Duality 19/20



Slater’'s Condition

There exists a point z € D where all inequality constraints are strictly
satisfied (i.e. f;(z) < 0). l.e. the optimization problem is strictly
feasible.

@ A sufficient condition for strong duality.
@ Forces supporting hyperplane to be non-vertical
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Slater’'s Condition

There exists a point z € D where all inequality constraints are strictly
satisfied (i.e. f;(z) < 0). l.e. the optimization problem is strictly
feasible.

@ A sufficient condition for strong duality.

@ Forces supporting hyperplane to be non-vertical

@ Can be weakened to requiring strict feasibility only of non-affine
constraints
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