CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 11: Duality of Convex Optimization Problems

Instructor: Shaddin Dughmi

- Yu's office hours changed to Friday 4pm-5pm
- Solutions to HW1 should be posted soon.
- HW2 coming soon
- This week: Convex Optimization Duality
 - Read all of B&V Chapter 5.

Recall: Optimization Problem in Standard Form

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad \text{for } i=1,\ldots,m. \\ & h_i(x)=0, \quad \text{for } i=1,\ldots,k. \end{array}$

- For convex optimization problems in standard form, *f_i* is convex and *h_i* is affine.
- Let D denote the domain of all these functions (i.e. when their value is finite)

Recall: Optimization Problem in Standard Form

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad \text{for } i=1,\ldots,m. \\ & h_i(x)=0, \quad \text{for } i=1,\ldots,k. \end{array}$

- For convex optimization problems in standard form, *f_i* is convex and *h_i* is affine.
- Let D denote the domain of all these functions (i.e. when their value is finite)

This Lecture + Next

We will develop duality theory for convex optimization problems, generalizing linear programming duality.

Running Example: Linear Programming

We have already seen the standard form LP below

$$\begin{array}{ll} \text{maximize} & c^{\mathsf{T}}x\\ \text{subject to} & Ax \preceq b\\ & x \succeq 0 \end{array}$$

 $\begin{array}{ll} \text{minimize} & -c^{\intercal}x\\ \text{subject to} & Ax - b \preceq 0\\ & -x \preceq 0 \end{array}$

We have already seen the standard form LP below

$$\begin{array}{cccc} \text{maximize} & c^{\intercal}x & & \text{minimize} & -c^{\intercal}x \\ \text{subject to} & Ax \leq b & & \text{subject to} & Ax - b \leq 0 \\ & x \geq 0 & & -x \prec 0 \end{array}$$

Along the way, we will recover the following standard form dual

$$\begin{array}{ll} \text{minimize} & y^{\mathsf{T}}b\\ \text{subject to} & A^{\mathsf{T}}y \succeq c\\ & y \succeq 0 \end{array}$$

The Lagrangian

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, & \mbox{for } i=1,\ldots,m. \\ & h_i(x)=0, & \mbox{for } i=1,\ldots,k. \end{array}$$

Basic idea of Lagrangian duality is to relax/soften the constraints by replacing each with a linear "penalty term" or "cost" in the objective.

The Lagrangian

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, & \mbox{for } i=1,\ldots,m. \\ & h_i(x)=0, & \mbox{for } i=1,\ldots,k. \end{array}$$

Basic idea of Lagrangian duality is to relax/soften the constraints by replacing each with a linear "penalty term" or "cost" in the objective.

The Lagrangian Function

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{k} \nu_i h_i(x)$$

- λ_i is Lagrange Multiplier for *i*'th inequality constraint
 - Required to be nonnegative
- ν_i is Lagrange Multiplier for *i*'th equality constraint
 - Allowed to be of arbitrary sign

The Lagrange Dual Problem

The Lagrange Dual Function

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad \text{for } i = 1, \dots, m. \\ & h_i(x) = 0, \quad \text{for } i = 1, \dots, k. \end{array}$$

The Lagrange dual function gives the optimal value of the primal problem subject to the softened constraints

The Lagrange Dual Function

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad \text{for } i = 1, \dots, m. \\ & h_i(x) = 0, \quad \text{for } i = 1, \dots, k. \end{array}$$

The Lagrange dual function gives the optimal value of the primal problem subject to the softened constraints

The Lagrange Dual Function

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^k \nu_i h_i(x) \right)$$

- Observe: g is a concave function of the Lagrange multipliers
- We will see: Its quite common for the Lagrange dual to be unbounded $(-\infty)$ for some λ and ν
- By convention, domain of g is (λ, ν) s.t. $g(\lambda, \nu) > -\infty$

Langrange Dual of LP

minimize
$$-c^{\mathsf{T}}x$$

subject to $Ax - b \leq 0$
 $-x \leq 0$

First, the Lagrangian function

$$L(x,\lambda) = -c^{\mathsf{T}}x + \lambda_1^{\mathsf{T}}(Ax - b) - \lambda_2^{\mathsf{T}}x$$
$$= (A^{\mathsf{T}}\lambda_1 - c - \lambda_2)^{\mathsf{T}}x - \lambda_1^{\mathsf{T}}b$$

Langrange Dual of LP

minimize
$$-c^{\mathsf{T}}x$$

subject to $Ax - b \leq 0$
 $-x \leq 0$

First, the Lagrangian function

$$L(x,\lambda) = -c^{\mathsf{T}}x + \lambda_1^{\mathsf{T}}(Ax - b) - \lambda_2^{\mathsf{T}}x$$
$$= (A^{\mathsf{T}}\lambda_1 - c - \lambda_2)^{\mathsf{T}}x - \lambda_1^{\mathsf{T}}b$$

And the Lagrange Dual

$$g(\lambda) = \inf_{x} L(x, \lambda)$$
$$= \begin{cases} -\infty & \text{if } A^{\mathsf{T}}\lambda_1 - c - \lambda_2 \neq 0\\ -\lambda_1^{\mathsf{T}}b & A^{\mathsf{T}}\lambda_1 - c - \lambda_2 = 0 \end{cases}$$

The Lagrange Dual Problem

Langrange Dual of LP

minimize
$$-c^{\mathsf{T}}x$$

subject to $Ax - b \leq 0$
 $-x \leq 0$

First, the Lagrangian function

$$L(x,\lambda) = -c^{\mathsf{T}}x + \lambda_1^{\mathsf{T}}(Ax - b) - \lambda_2^{\mathsf{T}}x$$
$$= (A^{\mathsf{T}}\lambda_1 - c - \lambda_2)^{\mathsf{T}}x - \lambda_1^{\mathsf{T}}b$$

And the Lagrange Dual

$$\begin{split} g(\lambda) &= \inf_{x} L(x,\lambda) \\ &= \begin{cases} -\infty & \text{if } A^{\mathsf{T}}\lambda_1 - c - \lambda_2 \neq 0 \\ -\lambda_1^{\mathsf{T}}b & A^{\mathsf{T}}\lambda_1 - c - \lambda_2 = 0 \end{cases} \end{split}$$

So we restrict the domain of g to λ satisfying $A^{\intercal}\lambda_1 - c - \lambda_2 = 0$

The Lagrange Dual Problem

$$\begin{array}{ll} \min & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad \text{for } i = 1, \dots, m. \\ & h_i(x) = 0, \quad \text{for } i = 1, \dots, k. \end{array}$$

The Lagrange Dual Function

$$g(\lambda,\nu) = \inf_{x\in\mathcal{D}} L(x,\lambda,\nu) = \inf_{x\in\mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^k \nu_i h_i(x) \right)$$

$$\begin{array}{ll} \mbox{min} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, & \mbox{for } i=1,\ldots,m. \\ & h_i(x)=0, & \mbox{for } i=1,\ldots,k. \end{array}$$

The Lagrange Dual Function

$$g(\lambda,\nu) = \inf_{x\in\mathcal{D}} L(x,\lambda,\nu) = \inf_{x\in\mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^k \nu_i h_i(x) \right)$$

Fact

 $g(\lambda, \nu)$ is a lowerbound on OPT(primal) for every $\lambda \succeq 0$ and $\nu \in \mathbb{R}^k$.

$$\begin{array}{ll} \min & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad \text{for } i = 1, \dots, m. \\ & h_i(x) = 0, \quad \text{for } i = 1, \dots, k. \end{array}$$

The Lagrange Dual Function

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^k \nu_i h_i(x) \right)$$

Fact

 $g(\lambda, \nu)$ is a lowerbound on OPT(primal) for every $\lambda \succeq 0$ and $\nu \in \mathbb{R}^k$.

Proof

- Every primal feasible x incurs nonpositive penalty by $L(x, \lambda, \nu)$
- Therefore, $L(x^*, \lambda, \nu) \leq f_0(x^*)$

• So
$$g(\lambda, \nu) \leq f_0(x^*) = OPT(Primal)$$

The Lagrange Dual Problem

$$\begin{array}{ll} \min & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad \text{for } i = 1, \dots, m. \\ & h_i(x) = 0, \quad \text{for } i = 1, \dots, k. \end{array}$$

The Lagrange Dual Function

$$g(\lambda,\nu) = \inf_{x\in\mathcal{D}} L(x,\lambda,\nu) = \inf_{x\in\mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^k \nu_i h_i(x) \right)$$

Interpretation

- A "hard" feasibility constraint can be thought of as imposing a penalty of $+\infty$ if violated
- Lagrangian imposes a "soft" linear penalty for violating a constraint, and a reward for slack
- Lagrange dual finds the optimal subject to these soft constraints

The Lagrange Dual Problem

Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

Let G be attainable constraint/objective function value tuples

i.e. (u,t) ∈ G if there is an x such that f₁(x) = u and f₀(x) = t

p* = inf {t : (u,t) ∈ G, u ≤ 0}
g(λ) = inf {λu + t : (u,t) ∈ G}

Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

- Let G be attainable constraint/objective function value tuples

 i.e. (u,t) ∈ G if there is an x such that f₁(x) = u and f₀(x) = t

 p* = inf {t : (u,t) ∈ G, u ≤ 0}
 q(λ) = inf {λu + t : (u,t) ∈ G}
- $\lambda u + t = g(\lambda)$ is a supporting hyperplane to \mathcal{G} pointing northeast
- Must intersect vertical axis below p*

• Therefore
$$g(\lambda) \leq p^*$$

The Lagrange Dual Problem

This is the problem of finding the best lower bound on OPT(primal) implied by the Lagrange dual function

maximize $g(\lambda, \nu)$ subject to $\lambda \succeq 0$

- Note: this is a convex optimization problem, regardless of whether primal problem was convex
- By convention, sometimes we add "dual feasibility" constraints to impose "nontrivial" lowerbounds (i.e. g(λ, ν) ≥ −∞)
- (λ*, ν*) solving the above are referred to as the dual optimal solution

maximize	$c^{\intercal}x$	minimize	$-c^{T}x$
subject to	$Ax \preceq b$	subject to	$Ax - b \preceq 0$
	$x \succeq 0$	-	$-x \preceq 0$

Recall

Our Lagrange dual function for the above LP (to the right), defined over the domain $A^{\intercal}\lambda_1 - c - \lambda_2 = 0$.

$$g(\lambda) = -\lambda_1^{\mathsf{T}} b$$

maximize	$c^{\intercal}x$	minimize	$-c^{T}x$
subject to	$Ax \preceq b$	subject to	$Ax - b \preceq 0$
	$x \succeq 0$	-	$-x \preceq 0$

Recall

Our Lagrange dual function for the above LP (to the right), defined over the domain $A^{\dagger}\lambda_1 - c - \lambda_2 = 0$.

$$g(\lambda) = -\lambda_1^{\mathsf{T}} b$$

The Lagrange dual problem can then be written as

maximize
$$-\lambda_1^{\mathsf{T}}b$$

subject to $A^{\mathsf{T}}\lambda_1 - c - \lambda_2 = 0$

 $\lambda\succeq 0$

maximize	$c^{\intercal}x$	minimize	$-c^{T}x$
subject to	$Ax \preceq b$	subject to	$Ax - b \preceq 0$
	$x \succeq 0$	-	$-x \preceq 0$

Recall

Our Lagrange dual function for the above LP (to the right), defined over the domain $A^{\dagger}\lambda_1 - c - \lambda_2 = 0$.

$$g(\lambda) = -\lambda_1^{\mathsf{T}} b$$

The Lagrange dual problem can then be written as

maximize
$$-\lambda_1^{\mathsf{T}}b$$

subject to $A^{\mathsf{T}}\lambda_1 = e - \lambda_2 = 0$
 $\overline{A^{\mathsf{T}}\lambda_1} \succeq c$
 $\lambda \succeq 0$

maximize	$c^{\intercal}x$	minimize	$-c^{\intercal}x$
subject to	$Ax \preceq b$	subject to	$Ax - b \preceq 0$
	$x \succeq 0$		$-x \preceq 0$

Recall

Our Lagrange dual function for the above LP (to the right), defined over the domain $A^{\dagger}\lambda_1 - c - \lambda_2 = 0$.

$$g(\lambda) = -\lambda_1^{\mathsf{T}} b$$

The Lagrange dual problem can then be written as

minimize
$$y^{\mathsf{T}}b$$

subject to $A^{\mathsf{T}}y \succeq c$
 $y \succeq 0$

maximize $-\lambda_1^{\mathsf{T}}b$ subject to $A^{\mathsf{T}}\lambda_1 = e - \lambda_2 = 0$ $A^{\mathsf{T}}\lambda_1 \succeq c$ $\lambda \succeq 0$

 $\begin{array}{ll} \mbox{minimize} & c^{\mathsf{T}}x\\ \mbox{subject to} & Ax = b\\ & x \in K \end{array}$

• $x \in K$ can equivalently be written as $z^{\intercal}x \leq 0$, $\forall z \in K^{\circ}$

$$L(x,\lambda,\nu) = c^{\mathsf{T}}x + \nu^{\mathsf{T}}(Ax - b) + \sum_{z \in K^{\circ}} \lambda_z \cdot z^{\mathsf{T}}x$$
$$= (c - A^{\mathsf{T}}\nu + \sum_{z \in K^{\circ}} \lambda_z \cdot z)^{\mathsf{T}}x + \nu^{\mathsf{T}}b$$

 $\begin{array}{ll} \mbox{minimize} & c^{\mathsf{T}}x\\ \mbox{subject to} & Ax = b\\ & x \in K \end{array}$

• $x \in K$ can equivalently be written as $z^{\intercal}x \leq 0$, $\forall z \in K^{\circ}$

$$L(x,\lambda,\nu) = c^{\mathsf{T}}x + \nu^{\mathsf{T}}(Ax - b) + \sum_{z \in K^{\circ}} \lambda_z \cdot z^{\mathsf{T}}x$$
$$= (c - A^{\mathsf{T}}\nu + \sum_{z \in K^{\circ}} \lambda_z \cdot z)^{\mathsf{T}}x + \nu^{\mathsf{T}}b$$

• Can think of $\lambda \succeq 0$ as choosing some $s \in K^{\circ}$

$$L(x,s,\nu) = (c - A^{\mathsf{T}}\nu + s)^{\mathsf{T}}x + \nu^{\mathsf{T}}b$$

 $\begin{array}{ll} \mbox{minimize} & c^{\mathsf{T}}x\\ \mbox{subject to} & Ax = b\\ & x \in K \end{array}$

• $x \in K$ can equivalently be written as $z^{\intercal}x \leq 0$, $\forall z \in K^{\circ}$

$$L(x,\lambda,\nu) = c^{\mathsf{T}}x + \nu^{\mathsf{T}}(Ax - b) + \sum_{z \in K^{\circ}} \lambda_z \cdot z^{\mathsf{T}}x$$
$$= (c - A^{\mathsf{T}}\nu + \sum_{z \in K^{\circ}} \lambda_z \cdot z)^{\mathsf{T}}x + \nu^{\mathsf{T}}b$$

Can think of λ ≥ 0 as choosing some s ∈ K°

$$L(x,s,\nu) = (c - A^{\mathsf{T}}\nu + s)^{\mathsf{T}}x + \nu^{\mathsf{T}}b$$

 Lagrange dual function g(s, ν) is bounded when coefficient of x is zero, in which case it has value ν^Tb

The Lagrange Dual Problem

$$\begin{array}{lll} \mbox{minimize} & c^{\intercal}x & & \\ \mbox{subject to} & Ax = b & & \\ & x \in K & & \\ \mbox{subject to} & A^{\intercal}\nu - c \in K^{\circ} \end{array}$$

• $x \in K$ can equivalently be written as $z^{\intercal}x \leq 0$, $\forall z \in K^{\circ}$

$$L(x,\lambda,\nu) = c^{\mathsf{T}}x + \nu^{\mathsf{T}}(Ax - b) + \sum_{z \in K^{\circ}} \lambda_z \cdot z^{\mathsf{T}}x$$
$$= (c - A^{\mathsf{T}}\nu + \sum_{z \in K^{\circ}} \lambda_z \cdot z)^{\mathsf{T}}x + \nu^{\mathsf{T}}b$$

• Can think of $\lambda \succeq 0$ as choosing some $s \in K^{\circ}$

$$L(x,s,\nu) = (c - A^{\mathsf{T}}\nu + s)^{\mathsf{T}}x + \nu^{\mathsf{T}}b$$

 Lagrange dual function g(s, ν) is bounded when coefficient of x is zero, in which case it has value ν^Tb

The Lagrange Dual Problem

Weak Duality

Primal Problem

 $\begin{array}{l} \min \ f_0(x) \\ \text{s.t.} \\ f_i(x) \leq 0, \quad \forall i = 1, \dots, m. \\ h_i(x) = 0, \quad \forall i = 1, \dots, k. \end{array}$

Dual Problem

$$\max_{\substack{ \lambda \in 0 \\ \lambda \succeq 0 }} g(\lambda, \nu)$$

Weak Duality

Primal Problem

 $\begin{array}{l} \min \ f_0(x) \\ \text{s.t.} \\ f_i(x) \leq 0, \quad \forall i=1,\ldots,m. \\ h_i(x)=0, \quad \forall i=1,\ldots,k. \end{array}$

Dual Problem

 $\max_{\substack{ \boldsymbol{k} \in \boldsymbol{k} \\ \boldsymbol{\lambda} \succeq \boldsymbol{0} }} g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ s.t.

- We have already argued holds for every optimization problem
- Duality Gap: difference between optimal dual and primal values

Duality

Recall: Geometric Interpretation of Weak Duality

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_1(x) \leq 0 \end{array}$

• Let \mathcal{G} be attainable constraint/objective function value tuples • i.e. $(u,t) \in \mathcal{G}$ if there is an x such that $f_1(x) = u$ and $f_0(x) = t$

•
$$p^* = \inf \{t : (u, t) \in \mathcal{G}, u \le 0\}$$

• $g(\lambda) = \inf \{\lambda u + t : (u, t) \in \mathcal{G}\}$

Recall: Geometric Interpretation of Weak Duality

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_1(x) \leq 0 \end{array}$

Let G be attainable constraint/objective function value tuples
i.e. (u,t) ∈ G if there is an x such that f₁(x) = u and f₀(x) = t

•
$$p^* = \inf \{ t : (u, t) \in \mathcal{G}, u \le 0 \}$$

•
$$g(\lambda) = \inf \{\lambda u + t : (u, t) \in \mathcal{G}\}$$

Fact

The equation $\lambda u + t = g(\lambda)$ defines a supporting hyperplane to \mathcal{G} , intersecting t axis at $g(\lambda) \leq p^*$.

Duality

Strong Duality

We say strong duality holds if OPT(dual) = OPT(primal).

- Equivalently: there exists a setting of Lagrange multipliers so that $g(\lambda, \nu)$ gives a tight lowerbound on primal optimal value.
- In general, does not hold for non-convex optimization problems
- Usually, but not always, holds for convex optimization problems.
 - Mild assumptions, such as Slater's condition, needed.

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_1(x) \leq 0 \end{array}$

Let A be everything northeast (i.e. "worse") than G
i.e. (u,t) ∈ A if there is an x such that f₁(x) ≤ u and f₀(x) ≤ t
p* = inf {t : (0,t) ∈ A}
g(λ) = inf {λu + t : (u,t) ∈ A}

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_1(x) \le 0 \end{array}$

• Let \mathcal{A} be everything northeast (i.e. "worse") than \mathcal{G} • i.e. $(u,t) \in \mathcal{A}$ if there is an x such that $f_1(x) \leq u$ and $f_0(x) \leq t$

•
$$p^* = \inf \{t : (0,t) \in \mathcal{A}\}$$

•
$$g(\lambda) = \inf \{\lambda u + t : (u, t) \in \mathcal{A}\}$$

Fact

The equation $\lambda u + t = g(\lambda)$ defines a supporting hyperplane to \mathcal{G} , intersecting t axis at $g(\lambda) \leq p^*$.

Duality

Fact

When f_0 and f_1 are convex, \mathcal{A} is convex.

Fact

When f_0 and f_1 are convex, A is convex.

Proof

• Assume (u, t) and (u', t') are in \mathcal{A}

Fact

When f_0 and f_1 are convex, A is convex.

Proof

• Assume (u, t) and (u', t') are in \mathcal{A}

• $\exists x, x' \text{ with } (f_1(x), f_0(x)) \leq (u, t) \text{ and } (f_1(x'), f_0(x')) \leq (u', t').$

Fact

When f_0 and f_1 are convex, \mathcal{A} is convex.

Proof

• Assume (u, t) and (u', t') are in \mathcal{A}

- $\exists x, x' \text{ with } (f_1(x), f_0(x)) \leq (u, t) \text{ and } (f_1(x'), f_0(x')) \leq (u', t').$
- By Jensen's inequality $(f_1(\frac{x+x'}{2}), f_0(\frac{x+x'}{2})) \le (\frac{u+u'}{2}, \frac{t+t'}{2})$

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_1(x) \leq 0 \end{array}$

Fact

When f_0 and f_1 are convex, \mathcal{A} is convex.

Proof

• Assume (u, t) and (u', t') are in \mathcal{A}

- $\exists x, x' \text{ with } (f_1(x), f_0(x)) \leq (u, t) \text{ and } (f_1(x'), f_0(x')) \leq (u', t').$
- By Jensen's inequality $(f_1(\frac{x+x'}{2}), f_0(\frac{x+x'}{2})) \le (\frac{u+u'}{2}, \frac{t+t'}{2})$
- Therefore, midpoint of (u, t) and (u', t') also in \mathcal{A} .

Duality

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_1(x) \leq 0 \end{array}$

Theorem (Informal)

There is a choice of λ so that $g(\lambda)=p^*.$ Therefore, strong duality holds.

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_1(x) \leq 0 \end{array}$

Theorem (Informal)

There is a choice of λ so that $g(\lambda) = p^*$. Therefore, strong duality holds.

Proof

- Recall $(0, p^*) \in \mathcal{A}$
- By the supporting hyperplane theorem, there is a supporting hyperplane to ${\cal A}$ at $(0,p^*)$
- Direction of the supporting hyperplane gives us an appropriate λ

 In our proof, we ignored a technicality that can prevent strong duality from holding.

- In our proof, we ignored a technicality that can prevent strong duality from holding.
- If our supporting hyperplane *H* at (0, p*) is vertical, then no finite λ exists such that (λ, 1) is normal to *H*.

 $\begin{array}{cccc} \text{minimize} & f_0(x) \\ \text{subject to} & f_1(x) \leq 0 \end{array} \\ \end{array}$

- In our proof, we ignored a technicality that can prevent strong duality from holding.
- If our supporting hyperplane H at (0, p*) is vertical, then no finite λ exists such that (λ, 1) is normal to H.
- Somewhat counterintuitively, this can happen even in simple convex optimization problems (though its somewhat rare in practice)

$$\begin{array}{ll} \mbox{minimize} & e^{-x} \\ \mbox{subject to} & \frac{x^2}{y} \leq 0 \\ & y \geq 1 \end{array}$$

- Problem is convex, with feasible region given by x = 0 and $y \ge 1$
- Optimal value is 1, at x = 0 and y = 1

$$\begin{array}{ll} \mbox{minimize} & e^{-x} \\ \mbox{subject to} & \frac{x^2}{y} \leq 0 \\ & y \geq 1 \end{array}$$

- Problem is convex, with feasible region given by x = 0 and $y \ge 1$
- Optimal value is 1, at x = 0 and y = 1
- \bullet Consider ${\cal A}$ restricted to the objective and the first constraint

 $\begin{array}{ll} \mbox{minimize} & e^{-x} \\ \mbox{subject to} & \frac{x^2}{y} \leq 0 \\ & y \geq 1 \end{array}$

- Problem is convex, with feasible region given by x = 0 and $y \ge 1$
- Optimal value is 1, at x = 0 and y = 1
- Consider A restricted to the objective and the first constraint
- $\mathcal{A} = \mathbb{R}^2_{++} \bigcup \{0\} \times [1,\infty]$
- Therefore, any supporting hyperplane to \mathcal{A} at (0,1) must be vertical.

Slater's Condition

There exists a point $x \in D$ where all inequality constraints are strictly satisfied (i.e. $f_i(x) < 0$). I.e. the optimization problem is strictly feasible.

- A sufficient condition for strong duality.
- Forces supporting hyperplane to be non-vertical

Slater's Condition

There exists a point $x \in D$ where all inequality constraints are strictly satisfied (i.e. $f_i(x) < 0$). I.e. the optimization problem is strictly feasible.

- A sufficient condition for strong duality.
- Forces supporting hyperplane to be non-vertical
- Can be weakened to requiring strict feasibility only of non-affine constraints