
CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 13: Optimality Conditions for Convex
Optimization

Instructor: Shaddin Dughmi



Announcements

Today: short lecture wrapping up convex optimization
Thursday: We begin combinatorial optimization



Outline

1 Optimality Conditions



Recall: Lagrangian Duality

Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ � 0

Optimality Conditions 1/7



Recall: Lagrangian Duality

Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ � 0

Weak Duality
OPT (dual) ≤ OPT (primal).

Optimality Conditions 1/7



Recall: Lagrangian Duality

Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ � 0

Strong Duality
OPT (dual) = OPT (primal).

Optimality Conditions 1/7



Dual Solution as a Certificate

Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ � 0

Dual solutions serves as a certificate of optimality
If f0(x) = g(λ, ν), and both are feasible, then both are optimal.

If f0(x)− g(λ, ν) ≤ ε, then both are within ε of optimality.
OPT(primal) and OPT(dual) lie in the interval [g(λ, ν), f0(x)]

Primal-dual algorithms use dual certificates to recognize
optimality, or bound sub-optimality.
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Complementary Slackness
Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ � 0

Facts
If strong duality holds, and x∗ and (λ∗, ν∗) are optimal, then

x∗ minimizes L(x, λ∗, ν∗) over all x.
λ∗i fi(x

∗) = 0 for all i. (Complementary Slackness)
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Facts
If strong duality holds, and x∗ and (λ∗, ν∗) are optimal, then

x∗ minimizes L(x, λ∗, ν∗) over all x.
λ∗i fi(x

∗) = 0 for all i. (Complementary Slackness)

Proof

f0(x
∗) = g(λ∗, ν∗)

≤ f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

k∑
i=1

ν∗i hi(x
∗)

≤ f0(x∗)
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Complementary Slackness
Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ � 0

Facts
If strong duality holds, and x∗ and (λ∗, ν∗) are optimal, then

x∗ minimizes L(x, λ∗, ν∗) over all x.
λ∗i fi(x

∗) = 0 for all i. (Complementary Slackness)

Interpretation
Lagrange multipliers (λ∗, ν∗) “simulate” the primal feasibility
constraints
Interpreting λi as the “value” of the i’th constraint, at optimality
only the binding constraints are “valuable”

Recall economic interpretation of LP
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min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

max g(λ, ν)
s.t.
λ � 0

KKT Conditions
When strong duality holds, the primal problem is convex, and the
constraint functions are differentiable, x∗ and (λ∗, ν∗) are optimal iff:

x∗ and (λ∗, ν∗) are feasible
λ∗i fi(x

∗) = 0 (Complementary Slackness)

5xL(x
∗, λ∗, ν∗) = 5f0(x∗)+

∑m
i=1 λ

∗
i5fi(x∗)+

∑k
i=1 ν

∗
i5hi(x∗) = 0

Why are KKT Conditions Useful?
Derive an analytical solution to some convex optimization
problems
Gain structural insights
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Example: Equality-constrained Quadratic Program

minimize 1
2x

ᵀPx+ qᵀx+ r
subject to Ax = b

KKT Conditions: Ax∗ = b and Px∗ + q +Aᵀν∗ = 0

Simply a solution of a linear system with variables x∗ and ν∗.
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Example: Market Equilibria (Fisher’s Model)

Buyers B, and goods G.
Buyer i has utility uij for each unit of good G.
Buyer i has budget mi, and there’s one divisible unit of each good.

Does there exist a market equilibrium?
Prices pj on items, such that each player can buy his favorite
bundle and the market clears.

Eisenberg-Gale Convex Program

maximize
∑

imi log
∑

j uijxij
subject to

∑
i xij ≤ 1, for j ∈ G.

x � 0

Using KKT conditions, we can prove that the dual variables
corresponding to the item supply constraints are market-clearing
prices!

Optimality Conditions 6/7



Example: Market Equilibria (Fisher’s Model)

Buyers B, and goods G.
Buyer i has utility uij for each unit of good G.
Buyer i has budget mi, and there’s one divisible unit of each good.
Does there exist a market equilibrium?

Prices pj on items, such that each player can buy his favorite
bundle and the market clears.

Eisenberg-Gale Convex Program

maximize
∑

imi log
∑

j uijxij
subject to

∑
i xij ≤ 1, for j ∈ G.

x � 0

Using KKT conditions, we can prove that the dual variables
corresponding to the item supply constraints are market-clearing
prices!

Optimality Conditions 6/7



Example: Market Equilibria (Fisher’s Model)

Buyers B, and goods G.
Buyer i has utility uij for each unit of good G.
Buyer i has budget mi, and there’s one divisible unit of each good.
Does there exist a market equilibrium?

Prices pj on items, such that each player can buy his favorite
bundle and the market clears.

Eisenberg-Gale Convex Program

maximize
∑

imi log
∑

j uijxij
subject to

∑
i xij ≤ 1, for j ∈ G.

x � 0

Using KKT conditions, we can prove that the dual variables
corresponding to the item supply constraints are market-clearing
prices!

Optimality Conditions 6/7



Example: Market Equilibria (Fisher’s Model)

Buyers B, and goods G.
Buyer i has utility uij for each unit of good G.
Buyer i has budget mi, and there’s one divisible unit of each good.
Does there exist a market equilibrium?

Prices pj on items, such that each player can buy his favorite
bundle and the market clears.

Eisenberg-Gale Convex Program

maximize
∑

imi log
∑

j uijxij
subject to

∑
i xij ≤ 1, for j ∈ G.

x � 0

Using KKT conditions, we can prove that the dual variables
corresponding to the item supply constraints are market-clearing
prices!

Optimality Conditions 6/7



Next Lecture

Combinatorial Optimization!
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