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Combinatorial Vs Convex Optimization

In CS, discrete problems are traditionally viewed/analyzed using
discrete mathematics and combinatorics

Algorithms are combinatorial in nature (greedy, dynamic
programming, divide and conquor, etc)

In OR and optimization community, these problems are often
expressed as continuous optimization problems

Usually linear programs, but increasingly more general convex
programs

Increasingly in recent history, it is becoming clear that combining
both viewpoints is the way to go

Better algorithms (runtime, approximation)
Structural insights (e.g. market clearing prices in matching markets)
Unifying theories and general results (Matroids, submodular
optimization, constraint satisfaction)
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Discrete Problems as Linear Programs

The oldest continuous formulations of discrete problems were
linear programs

In fact, Dantzig’s original application was the problem of matching
70 people to 70 jobs!

This is not surprising, since almost any finite family of discrete
objects can be encoded as a finite subset of Euclidean space

Convex hull of that set is a polytope
E.g. spanning trees, paths, cuts, TSP tours, assignments...
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Discrete Problems as Linear Programs

LP algorithms typically require representation as a “small” family
of inequalities,

Not possible in general (Say when problem is NP-hard, assuming
(P 6= NP ))
Shown unconditionally impossible in some cases (e.g. TSP)

But, in many cases, polyhedra in inequality form can be shown to
encode a combinatorial problems at the vertices

Today
We examine shortest path through a polyhedral lense.

Re-deriving and simplifying familiar results algorithmic results
through the Primal-Dual paradigm
This is a warmup for more intricate applications of LP and convex
optimization to combinatorial problems
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The Shortest Path Problem

Given a directed graph G = (V,E) with cost ce ∈ R on edge e, find the
minimum cost path from s to t.

We use n and m to denote |V | and |E|, respectively.
We allow costs to be negative, but assume no negative cycles
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When costs are nonnegative, Dijkstra’s algorithm finds the shortest
path from s to every other node in time O(m+ n log n).

Using primal/dual paradigm, we will design a polynomial-time algorithm
that works when graph has negative edges but no negative cycles
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Note: Negative Edges and Complexity

When the graph has no negative cycles, there is a shortest path
which is simple
When the graph has negative cycles, there may not be a shortest
path from s to t.
In these cases, the algorithm we design can be modified to “fail
gracefully” by detecting such a cycle

Can be used to detect arbitrage opportunities in currency exchange
networks

In the presence of negative cycles, finding the shortest simple
path is NP-hard (by reduction from Hamiltonian cycle)
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An LP Relaxation of Shortest Path

Consider the following LP

Primal Shortest Path LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

where δv = −1 if v = s, 1 if v = t, and 0 otherwise.

This is a relaxation of the shortest path problem
Indicator vector xP of s− t path P is a feasible solution, with cost as
given by the objective
Fractional feasible solutions may not correspond to paths

A-priori, it is conceivable that optimal value of LP is less than
length of shortest path.
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Integrality of the Shortest Path Polyhedron

min
∑

e∈E cexe
s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

We will show that above LP encodes the shortest path problem exactly

Claim
When c satisfies the no-negative-cycles property, the indicator vector of the
shortest s− t path is an optimal solution to the LP.
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Dual LP

We will use the following LP dual

Primal LP

min
∑

e∈E cexe
s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀(u, v) ∈ E.

Interpretation of dual variables yv: “height” or “potential”
Relative potential of vertices constrained by length of edge
between them (triangle inequality)
Dual is trying to maximize relative potential of s and t,

The Shortest Path Polytope 8/22



Proof Using the Dual

Claim
When c satisfies the no-negative-cycles property, the indicator vector
of the shortest s− t path is an optimal solution to the LP.

Primal LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀(u, v) ∈ E.

Let x∗ be indicator vector of shortest s-t path
Feasible for primal

Let y∗v be shortest path distance from s to v
Feasible for dual (by triangle inequality)∑

e cex
∗
e = y∗t − y∗s , so both x∗ and y∗ optimal.
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Integrality of Polyhedra

A stronger statement is true:

Integrality of Shortest Path LP
The vertices of the polyhedral feasible region are precisely the
indicator vectors of simple paths in G.

Implies that there always exists an optimal solution which is a path
whenever LP is bounded and feasible
Reduces computing shortest path in graphs with no negative
cycles to finding optimal vertex of LP
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Integrality of Polyhedra

A stronger statement is true:

Integrality of Shortest Path LP
The vertices of the polyhedral feasible region are precisely the
indicator vectors of simple paths in G.

Proof
1 LP is bounded iff c satisfies no-negative-cycles

←: previous proof
→: If c has a negative cycle, there are arbitrarily cheap “flows”
along that cycle

2 Fact: For every LP vertex x there is objective c such that x is
unique optimal. (Prove it!)

3 Since such a c satisfies no-negative-cycles property, our previous
claim shows that x is integral.
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Integrality of Polyhedra

A stronger statement is true:

Integrality of Shortest Path LP
The vertices of the polyhedral feasible region are precisely the
indicator vectors of simple paths in G.

In general, the approach we took applies in many contexts: To show a
polytope’s vertices integral, it suffices to show that there is an integral
optimal for any objective.
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Ford’s Algorithm
Primal LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀e = (u, v) ∈ E.

For convenience, add (s, v) of length∞ when one doesn’t exist.

Ford’s Algorithm
1 yv = c(s,v) and pred(v)← s for v 6= s

2 ys ← 0, pred(s) = null.
3 While some dual constraint is violated, i.e. yv > yu + ce for some
e = (u, v)

yv ← yu + ce
Set pred(v) = u

4 Output the path t, pred(t), pred(pred(t)), . . . , s.
Algorithms for Single-Source Shortest Path 11/22



Correctness

Lemma (Loop Invariant 1)
Assuming no negative cycles, pred defines a path P from s to t, of
length at most yt − ys.

Interpretation
Ford’s algorithm maintains an (initially infeasible) dual y
Also maintains feasible primal P of length ≤ dual objective yt − ys
Iteratively “fixes” dual y, tending towards feasibility
Once y is feasible, weak duality implies P optimal.

Correctness follows from loop invariant 1 and termination condition.

Theorem (Correctness)
If Ford’s algorithm terminates, then it outputs a shortest path from s to t

Algorithms of this form, that output a matching primal and dual
solution, are called Primal-Dual Algorithms.
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Termination

Lemma (Loop Invariant 2)
Assuming no negative cycles, yv is the length of some simple path
from s to v.

Theorem (Termination)
When the graph has no negative cycles, Ford’s algorithm terminates in
a finite number of steps.

Proof
The graph has a finite number N of simple paths
By loop invariant 2, every dual variable yv is the length of some
simple path.
Dual variables are nonincreasing throughout algorithm, and one
decreases each iteration.
There can be at most nN iterations.
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Observation: Single sink shortest paths

Ford’s Algorithm
1 yv = c(s,v) and pred(v)← s for v 6= s

2 ys ← 0, pred(s) = null.
3 While some dual constraint is violated, i.e. yv > yu + ce for some
e = (u, v)

yv ← yu + ce
Set pred(v) = u

4 Output the path t, pred(t), pred(pred(t)), . . . , s.

Observation
Algorithm does not depend on t till very last step. So essentially solves
the single-source shortest path problem. i.e. finds shortest paths from
s to all other vertices v.

Algorithms for Single-Source Shortest Path 14/22



Loop Invariant 1

We prove Loop Invariant 1 through two Lemmas

Lemma (Loop Invariant 1a)
For every node w, we have yw − ypred(w) ≥ cpred(w),w

Proof
Fix w
Holds at first iteration
Preserved by Induction on iterations

If neither yw nor ypred(w) updated, nothing changes.
If yw (and pred(w)) updated, then yw ← ypred(w) + cpred(w),w

ypred(w) updated, it only goes down, preserving inequality.

Algorithms for Single-Source Shortest Path 15/22



Loop Invariant 1

Lemma (Invariant 1b)
Assuming no negative cycles, pred forms a directed tree rooted out of
s.

We denote this path from s to a node w by P (s, w).

Proof
Holds at first iteration
For a contradiction, consider iteration of first violation

v and u with yv > yu + cu,v

P (s, u) passes through v
Otherwise tree property preserved by pred(v)← u

Let P (v, u) be the portion of P (s, u) starting at v.
By Invariant 1a, and telescoping sum, length of P (v, u) is at most
yu − yv.
Length of cycle {P (v, u), (u, v)} at most yu − yv + cu,v < 0.

Algorithms for Single-Source Shortest Path 16/22



Summarizing Loop Invariant 1

Lemma (Invariant 1a)
For every node w, we have yw − ypred(w) ≥ cpred(w),w.

By telescoping sum, can bound yw − ys when pred leads back to s

Lemma (Invariant 1b)
Assuming no negative cycles, pred forms a directed tree rooted out of
s.

Implies that ys remains 0

Corollary (Loop Invariant 1)
Assuming no negative cycles, pred defines a path P (s, w) from s to
each node w, of length at most yw − ys = yw.

Algorithms for Single-Source Shortest Path 17/22



Loop Invariant 2

Lemma (Loop Invariant 2)
Assuming no negative cycles, yw is the length of some simple path
Q(s, w) from s to w, for all w.

Proof is technical, by induction, so we will skip. Instead, we will modify
Ford’s algorithm to guarantee polynomial time termination.

Algorithms for Single-Source Shortest Path 18/22



Bellman-Ford Algorithm

The following algorithm fixes an (arbitrary) order on edges E

Bellman-Ford Algorithm
1 yv = c(s,v) and pred(v)← s for v 6= s

2 ys ← 0, pred(s) = null.
3 While y is infeasible for the dual

For e = (u, v) in order, if yv > yu + ce then
yv ← yu + ce
Set pred(v) = u

4 Output the path t, pred(t), pred(pred(t)), . . . , s.

Note
Correctness follows from the correctness of Ford’s Algorithm.
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Runtime

Theorem
Bellman-Ford terminates after n− 1 scans through E, for a total
runtime of O(nm).

Follows immediately from the following Lemma

Lemma
After k scans through E, vertices v with a shortest s− v path
consisting of ≤ k edges are correctly labeled. (i.e., yv = distance(s, v))
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Proof

Lemma
After k scans through E, vertices v with a shortest s− v path
consisting of ≤ k edges are correctly labeled. (i.e., yv = distance(s, v))

Proof
Holds for k = 0

By induction on k.
Assume it holds for k − 1.
Let v be a node with a shortest path P from s with k edges.
P = {Q, e}, for some e = (u, v) and s− u path Q, where Q is a
shortest s− u path and Q has k − 1 edges.
By inductive hypothesis, u is correctly labeled just before e is
scanned – i.e. yu = distance(s, u).
Therefore, v is correctly labeled yv ← yu + cu,v = distance(s, v)
after e is scanned

Algorithms for Single-Source Shortest Path 21/22



A Note on Negative Cycles
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