CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 16: Combinatorial Problems as Linear

Programs II

Instructor: Shaddin Dughmi

Announcements

- Project announced
 - Choose a topic and partner(s) by Nov 1
 - Choose papers by Nov 8
 - Short report (≤ 10 pages) by Dec 6
- Today: Another case study on use LPs to encode combinatorial problems, featuring bipartite matching

Outline

- Introduction
- Integrality of the Bipartite Matching Polytope
- Total Unimodularity
- Duality of Bipartite Matching

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G=(V,E), with $V=L\bigcup R$, and weights w_e on edges e, find a maximum weight matching.

- Matching: a set of edges covering each node at most once
- We use n and m to denote |V| and |E|, respectively.
- Equivalent to maximum weight / minimum cost perfect matching.

Introduction 1/14

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G=(V,E), with $V=L\bigcup R$, and weights w_e on edges e, find a maximum weight matching.

- Matching: a set of edges covering each node at most once
- We use n and m to denote |V| and |E|, respectively.
- Equivalent to maximum weight / minimum cost perfect matching.

Our focus will be less on algorithms, and more on using polyhedral interpretation to gain insights about a combinatorial problem.

Introduction 1/14

An LP Relaxation of Bipartite Matching

Bipartite Matching LP

```
\begin{aligned} \max \sum_{e \in E} w_e x_e \\ \text{s.t.} \\ \sum_{e \in \delta(v)} x_e \leq 1, & \forall v \in V. \\ x_e \geq 0, & \forall e \in E. \end{aligned}
```

Introduction 2/14

An LP Relaxation of Bipartite Matching

Bipartite Matching LP

$$\begin{aligned} \max & \sum_{e \in E} w_e x_e \\ \text{s.t.} & \\ & \sum_{e \in \delta(v)} x_e \leq 1, \qquad \forall v \in V. \\ & x_e \geq 0, \qquad \forall e \in E. \end{aligned}$$

- Feasible region is a polytope \mathcal{P} (i.e. a bounded polyhedron)
- This is a relaxation of the bipartite matching problem
 - \bullet Integer points in ${\cal P}$ are the indicator vectors of matchings.

 $\mathcal{P} \cap \mathbb{Z}^m = \{x_M : M \text{ is a matching}\}$

Introduction 2/14

Outline

- Introduction
- Integrality of the Bipartite Matching Polytope
- Total Unimodularity
- Duality of Bipartite Matching

Integrality of the Bipartite Matching Polytope

$$\begin{split} &\sum_{e \in \delta(v)} x_e \leq 1, & \forall v \in V. \\ &x_e \geq 0, & \forall e \in E. \end{split}$$

Theorem

The feasible region of the matching LP is the convex hull of indicator vectors of matchings.

 $\mathcal{P} = \mathsf{convexhull} \{ x_M : M \text{ is a matching} \}$

Integrality of the Bipartite Matching Polytope

Theorem

The feasible region of the matching LP is the convex hull of indicator vectors of matchings.

 $\mathcal{P} = \mathsf{convexhull} \{x_M : M \text{ is a matching}\}$

Note

- This is the strongest guarantee you could hope for of an LP relaxation of a combinatorial problem
- Solving LP is equivalent to solving the combinatorial problem
- Stronger guarantee than shortest path LP from last time

• Suffices to show that all vertices are integral (why?)

- Suffices to show that all vertices are integral (why?)
- Consider $x \in \mathcal{P}$ non-integral, we will show that x is not a vertex.

- Suffices to show that all vertices are integral (why?)
- Consider $x \in \mathcal{P}$ non-integral, we will show that x is not a vertex.
- ullet Let H be the subgraph formed by edges with $x_e \in (0,1)$

- Suffices to show that all vertices are integral (why?)
- Consider $x \in \mathcal{P}$ non-integral, we will show that x is not a vertex.
- Let H be the subgraph formed by edges with $x_e \in (0,1)$
- ullet H either contains a cycle, or else a maximal path which is simple.

- Suffices to show that all vertices are integral (why?)
- Consider $x \in \mathcal{P}$ non-integral, we will show that x is not a vertex.
- ullet Let H be the subgraph formed by edges with $x_e \in (0,1)$
- ullet H either contains a cycle, or else a maximal path which is simple.

Case 1: Cycle C

- Let $C = (e_1, \ldots, e_k)$, with k even
- There is $\epsilon>0$ such that adding $\pm\epsilon(+1,-1,\dots,+1,-1)$ to x_C preserves feasibility
- x is the midpoint of $x + \epsilon(+1, -1, ..., +1, -1)_C$ and $x \epsilon(+1, -1, ..., +1, -1)_C$, so x is not a vertex.

Case 2: Maximal Path P

- Let $P = (e_1, \dots, e_k)$, going through vertices v_0, v_1, \dots, v_k
- By maximality, e₁ is the only edge of v₀ with non-zero x-weight
 Similarly for e_k and v_k.
- There is $\epsilon > 0$ such that adding $\pm \epsilon (+1, -1, \dots, ?1)$ to x_P preserves feasibility
- x is the midpoint of $x + \epsilon(+1, -1, ..., ?1)_P$ and $x \epsilon(+1, -1, ..., ?1)_P$, so x is not a vertex.

Integrality of the Bipartite Matching Polytope

Related Fact: Birkhoff Von-Neumann Theorem

$$\begin{split} \sum_{e \in \delta(v)} x_e &= 1, \quad \forall v \in V. \\ x_e &\geq 0, \qquad \quad \forall e \in E. \end{split}$$

 The analogous statement holds for the perfect matching LP above, by an essentially identical proof.

Related Fact: Birkhoff Von-Neumann Theorem

$$\sum_{e \in \delta(v)} x_e = 1, \quad \forall v \in V.$$
$$x_e \ge 0, \qquad \forall e \in E.$$

- The analogous statement holds for the perfect matching LP above, by an essentially identical proof.
- When the bipartite graph is complete and has the same number of nodes on either side, can be equivalently phrased as a property of matrices.

Related Fact: Birkhoff Von-Neumann Theorem

$$\sum_{e \in \delta(v)} x_e = 1, \quad \forall v \in V.$$
$$x_e \ge 0, \qquad \forall e \in E.$$

- The analogous statement holds for the perfect matching LP above, by an essentially identical proof.
- When the bipartite graph is complete and has the same number of nodes on either side, can be equivalently phrased as a property of matrices.

Birkhoff Von-Neumann Theorem

The set of $n \times n$ doubly stochastic matrices is the convex hull of $n \times n$ permutation matrices.

e.g.

$$\left(\begin{array}{cc} 0.5 & 0.5 \\ 0.5 & 0.5 \end{array}\right) = 0.5 \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + 0.5 \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Outline

- Introduction
- Integrality of the Bipartite Matching Polytope
- Total Unimodularity
- Duality of Bipartite Matching

Total Unimodularity

We could have proved integrality of the bipartite matching LP using a more general tool

Definition

A matrix A is Totally Unimodular if every square submatrix has determinant 0, +1 or -1.

Theorem

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular, and b is an integer vector, then $\{x : Ax \leq b, x \geq 0\}$ has integer vertices.

Total Unimodularity

We could have proved integrality of the bipartite matching LP using a more general tool

Definition

A matrix A is Totally Unimodular if every square submatrix has determinant 0, +1 or -1.

Theorem

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular, and b is an integer vector, then $\{x: Ax \leq b, x \geq 0\}$ has integer vertices.

- Non-zero entries of vertex x are solution of A'x' = b' for some nonsignular square submatrix A' and corresponding sub-vector b'
- Cramer's rule:

$$x_i' = \frac{\det(A_i'|b')}{\det A'}$$

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

Proof

- $A_{ve} = 1$ if e incident on v, and 0 otherwise.
- By induction on size of submatrix A'. Trivial for base case k=1.

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

Proof

- $A_{ve} = 1$ if e incident on v, and 0 otherwise.
- By induction on size of submatrix A'. Trivial for base case k=1.
- If A' has all-zero column, then $\det A' = 0$

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

Proof

- $A_{ve} = 1$ if e incident on v, and 0 otherwise.
- By induction on size of submatrix A'. Trivial for base case k=1.
- If A' has all-zero column, then $\det A' = 0$
- If A' has column with single 1, then holds by induction.

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

Proof

- $A_{ve} = 1$ if e incident on v, and 0 otherwise.
- By induction on size of submatrix A'. Trivial for base case k=1.
- If A' has all-zero column, then $\det A' = 0$
- If A' has column with single 1, then holds by induction.
- If all columns of A' have two 1's,
 - Partition rows (vertices) into L and R
 - Sum of rows L is (1, 1, ..., 1), similarly for R
 - A' is singular, so $\det A' = 0$.

Outline

- Introduction
- Integrality of the Bipartite Matching Polytope
- Total Unimodularity
- Duality of Bipartite Matching

Primal and Dual LPs

Primal LP

$$\begin{aligned} & \max \sum_{e \in E} w_e x_e \\ & \text{s.t.} \\ & \sum_{e \in \delta(v)} x_e \leq 1, \qquad \forall v \in V. \\ & x_e \geq 0, \qquad \forall e \in E. \end{aligned}$$

Dual LP

$$\begin{aligned} & \min \sum_{v \in V} y_v \\ & \text{s.t.} \\ & y_u + y_v \geq w_e, & \forall e = (u, v) \in E. \\ & y_v \succeq 0, & \forall v \in V. \end{aligned}$$

- Primal interpertation: Player 1 looking to build a set of projects
 - ullet Each edge e is a project generating "profit" w_e
 - Each project e = (u, v) needs two resources, u and v
 - Each resource can be used by at most one project at a time
 - Must choose a profit-maximizing set of projects

Primal and Dual LPs

Primal LP

$$\begin{aligned} &\max \sum_{e \in E} w_e x_e \\ &\text{s.t.} \\ &\sum_{e \in \delta(v)} x_e \leq 1, \qquad \forall v \in V. \\ &x_e \geq 0, \qquad \forall e \in E. \end{aligned}$$

Dual LP

```
\begin{aligned} & \min \sum_{v \in V} y_v \\ & \text{s.t.} \\ & y_u + y_v \geq w_e, \quad \forall e = (u,v) \in E. \\ & y_v \succeq 0, \qquad \forall v \in V. \end{aligned}
```

- Primal interpertation: Player 1 looking to build a set of projects
 - ullet Each edge e is a project generating "profit" w_e
 - Each project e = (u, v) needs two resources, u and v
 - Each resource can be used by at most one project at a time
 - Must choose a profit-maximizing set of projects
- Dual interpertation: Player 2 looking to buy resources
 - Offer a price y_v for each resource.
 - Prices should incentivize player 1 to sell resources
 - Want to pay as little as possible.

Vertex Cover Interpretation

Primal LP

$$\begin{aligned} &\max \sum_{e \in E} x_e \\ &\text{s.t.} \\ &\sum_{e \in \delta(v)} x_e \leq 1, \quad \forall v \in V. \\ &x_e \geq 0, \quad \forall e \in E. \end{aligned}$$

Dual LP

$$\begin{aligned} &\min \sum_{v \in V} y_v \\ &\text{s.t.} \\ &y_u + y_v \geq 1, \quad \forall e = (u, v) \in E. \\ &y_v \succeq 0, \quad \forall v \in V. \end{aligned}$$

When edge weights are 1, binary solutions to dual are vertex covers

Definition

 $C\subseteq V$ is a vertex cover if every $e\in E$ has at least one endpoint in C

Vertex Cover Interpretation

Primal LP

 $\begin{aligned} \max \sum_{e \in E} x_e \\ \text{s.t.} & \\ \sum_{e \in \delta(v)} x_e \leq 1, \quad \forall v \in V. \\ x_e \geq 0, & \forall e \in E. \end{aligned}$

Dual LP

 $\begin{aligned} & \min \sum_{v \in V} y_v \\ & \text{s.t.} \\ & y_u + y_v \geq 1, \quad \forall e = (u, v) \in E. \\ & y_v \succeq 0, \quad \forall v \in V. \end{aligned}$

When edge weights are 1, binary solutions to dual are vertex covers

Definition

 $C\subseteq V$ is a vertex cover if every $e\in E$ has at least one endpoint in C

- Dual is a relaxation of the minimum vertex cover problem for bipartite graphs.
- By weak duality: min-vertex-cover ≥ max-cardinality-matching

König's Theorem

Primal LP

 $\begin{aligned} \max \sum_{e \in E} x_e \\ \text{s.t.} \\ \sum_{e \in \delta(v)} x_e \leq 1, \quad \forall v \in V. \\ x_e \geq 0, \quad \forall e \in E. \end{aligned}$

Dual LP

 $\begin{aligned} & \min \sum_{v \in V} y_v \\ & \text{s.t.} \\ & y_u + y_v \geq 1, \quad \forall e = (u,v) \in E. \\ & y_v \succeq 0, \quad \forall v \in V. \end{aligned}$

König's Theorem

In a bipartite graph, the cardinality of the maximum matching is equal to the cardinality of the minimum vertex cover.

i.e. the dual LP has an optimal integral solution

- ullet Let M(G) be a max cardinality of a matching in G
- Let C(G) be min cardinality of a vertex cover in G
- We already proved that $M(G) \leq C(G)$
- We will prove $C(G) \leq M(G)$ by induction on number of nodes in G.

• Let y be an optimal dual, and v a vertex with $y_v > 0$

- Let y be an optimal dual, and v a vertex with $y_v > 0$
- ullet By complementary slackness, every maximum cardinality matching must match v.

- Let y be an optimal dual, and v a vertex with $y_v > 0$
- ullet By complementary slackness, every maximum cardinality matching must match v.
 - $M(G \setminus v) = M(G) 1$

- Let y be an optimal dual, and v a vertex with $y_v > 0$
- ullet By complementary slackness, every maximum cardinality matching must match v.
 - $M(G \setminus v) = M(G) 1$
- ullet By inductive hypothesis, $C(G\setminus v)=M(G\setminus v)=M(G)-1$

- Let y be an optimal dual, and v a vertex with $y_v > 0$
- ullet By complementary slackness, every maximum cardinality matching must match v.
 - $M(G \setminus v) = M(G) 1$
- \bullet By inductive hypothesis, $C(G \setminus v) = M(G \setminus v) = M(G) 1$
- $C(G) \le C(G \setminus v) + 1 = M(G).$

- Let y be an optimal dual, and v a vertex with $y_v > 0$
- ullet By complementary slackness, every maximum cardinality matching must match v.
 - $M(G \setminus v) = M(G) 1$
- By inductive hypothesis, $C(G \setminus v) = M(G \setminus v) = M(G) 1$
- $\bullet \ C(G) \le C(G \setminus v) + 1 = M(G).$

Note: Could have proved the same using total unimodularity

Consequences of König's Theorem

 Vertex covers can serve as a certificate of optimality for bipartite matchings, and vice versa

Consequences of König's Theorem

- Vertex covers can serve as a certificate of optimality for bipartite matchings, and vice versa
- Like maximum cardinality matching, minimum vertex cover in bipartite graphs can be formulated as an LP, and solved in polynomial time

Consequences of König's Theorem

- Vertex covers can serve as a certificate of optimality for bipartite matchings, and vice versa
- Like maximum cardinality matching, minimum vertex cover in bipartite graphs can be formulated as an LP, and solved in polynomial time
- The same is true for the maximum independent set problem in bipartite graphs.
 - C is a vertex cover iff $V \setminus C$ is an independent set.