CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 16: Combinatorial Problems as Linear
Programs Il

Instructor: Shaddin Dughmi



Announcements

@ Project announced
e Choose a topic and partner(s) by Nov 1
e Choose papers by Nov 8
@ Short report (< 10 pages) by Dec 6
@ Today: Another case study on use LPs to encode combinatorial
problems, featuring bipartite matching



0 Introduction



The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (V, E), with V = L|J R, and weights w, on
edges e, find a maximum weight matching. J

@ Matching: a set of edges covering each node at most once
@ We use n and m to denote |V| and | E|, respectively.
@ Equivalent to maximum weight / minimum cost perfect matching.
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The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (V, E), with V = L|J R, and weights w, on
edges e, find a maximum weight matching. J

@ Matching: a set of edges covering each node at most once
@ We use n and m to denote |V| and | E|, respectively.
@ Equivalent to maximum weight / minimum cost perfect matching.

Our focus will be less on algorithms, and more on using polyhedral
interpretation to gain insights about a combinatorial problem. J
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An LP Relaxation of Bipartite Matching

Bipartite Matching LP

> e <1, YveV.
e€d(v)
T > 0, Ve e E.
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An LP Relaxation of Bipartite Matching

Bipartite Matching LP

max ) .p WeTe
s.t.
> e <1, YveV.
e€d(v)
T > 0, Ve e E.

@ Feasible region is a polytope P (i.e. a bounded polyhedron)
@ This is a relaxation of the bipartite matching problem
@ Integer points in P are the indicator vectors of matchings.

PNZ™ ={xp : M is a matching}
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9 Integrality of the Bipartite Matching Polytope



Integrality of the Bipartite Matching Polytope

[ —

Yo oz <1, YveVl. . \
e€d(v) ° e o \\’
T > 0, Ve € E. ‘

The feasible region of the matching LP is the convex hull of indicator
vectors of matchings.

P = convexhull {x, : M is a matching}
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Theorem

The feasible region of the matching LP is the convex hull of indicator
vectors of matchings.

P = convexhull {x, : M is a matching}

@ This is the strongest guarantee you could hope for of an LP
relaxation of a combinatorial problem

@ Solving LP is equivalent to solving the combinatorial problem
@ Stronger guarantee than shortest path LP from last time
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@ Suffices to show that all vertices are integral (why?)
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@ H either contains a cycle, or else a maximal path which is simple.
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Case 1: Cycle C
@ Let C = (ey,...,er), with k& even
@ There is € > 0 such that adding +e(+1,—1,...,4+1,—1) to z¢
preserves feasibility
@ z is the midpoint of = + ¢(+1, -1, ...,+1,—1)¢ and
x—e(+1,-1,...,41,—1)¢, so z is not a vertex.
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Case 2: Maximal Path P

@ Let P = (ey,...,e), going through vertices vy, v1, ..., v
@ By maximality, e; is the only edge of vy with non-zero z-weight
o Similarly for e, and vy.

@ There is € > 0 such that adding +e(+1,—1,...,?1) to zp
preserves feasibility

@ z is the midpoint of = + ¢(+1, -1, ..., 71)p and
xr —e(+1,-1,...,71)p, SO x is not a vertex.
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Related Fact: Birkhoff Von-Neumann Theorem

Yo ze=1, YweW.
e€d(v)
Te > 0, Ve € FE.

@ The analogous statement holds for the perfect matching LP
above, by an essentially identical proof.
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Yo ze=1, YweW.
e€d(v)
Te > 0, Ve € FE.

@ The analogous statement holds for the perfect matching LP
above, by an essentially identical proof.

@ When the bipartite graph is complete and has the same number of
nodes on either side, can be equivalently phrased as a property of
matrices.
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Related Fact: Birkhoff Von-Neumann Theorem

Yo ze=1, YweW.
e€d(v)
Te > 0, Ve € FE.

@ The analogous statement holds for the perfect matching LP
above, by an essentially identical proof.
@ When the bipartite graph is complete and has the same number of

nodes on either side, can be equivalently phrased as a property of
matrices.

Birkhoff Von-Neumann Theorem

The set of n x n doubly stochastic matrices is the convex hull of n x n
permutation matrices.

e.g.
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Total Unimodularity

We could have proved integrality of the bipartite matching LP using a
more general tool

A matrix A is Totally Unimodular if every square submatrix has
determinant 0, +1 or —1.

v

If A € R™*" js totally unimodular, and b is an integer vector, then
{z: Az < b,z > 0} has integer vertices.
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Total Unimodularity

We could have proved integrality of the bipartite matching LP using a
more general tool

A matrix A is Totally Unimodular if every square submatrix has
determinant 0, +1 or —1.

v

If A € R™*" s totally unimodular, and b is an integer vector, then
{z : Az < b,z > 0} has integer vertices.

@ Non-zero entries of vertex z are solution of A’z’ = ¥’ for some
nonsignular square submatrix A’ and corresponding sub-vector &’

@ Cramer’s rule:

o det(A}[b")
v det A
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Total Unimodularity of Bipartite Matching

Yo e <1, YoeV.
e€d(v)

The constraint matrix of the bipartite matching LP is totally unimodular. I
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e€d(v)

The constraint matrix of the bipartite matching LP is totally unimodular. \

@ A,. = 1if eincident on v, and 0 otherwise.

@ By induction on size of submatrix A’. Trivial for base case k = 1.
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The constraint matrix of the bipartite matching LP is totally unimodular.

@ A,. = 1if eincident on v, and 0 otherwise.

@ By induction on size of submatrix A’. Trivial for base case k = 1.
@ If A’ has all-zero column, then det A’ =0

@ If A’ has column with single 1, then holds by induction.
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Total Unimodularity of Bipartite Matching

Yo e <1, YoeV.
e€d(v)

The constraint matrix of the bipartite matching LP is totally unimodular.

@ A,. = 1if eincident on v, and 0 otherwise.

@ By induction on size of submatrix A’. Trivial for base case k = 1.
@ If A’ has all-zero column, then det A’ =0

@ If A’ has column with single 1, then holds by induction.

@ If all columns of A’ have two 1’s,

o Partition rows (vertices) into L and R
e Sumofrows Lis (1,1,...,1), similarly for R
e A’is singular, so det A’ = 0.
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e Duality of Bipartite Matching



Primal and Dual LPs

Primal LP

> ze <1,

e€d(v)
ze > 0,

Yv e V.

Ve € F.

v

min ZUGV Yo

S.t.
Yu + Yo > We, Ve = (u,v) € E.
Yo = 0, Yv e V.

@ Primal interpertation: Player 1 looking to build a set of projects
e Each edge e is a project generating “profit” w,
e Each project e = (u,v) needs two resources, v and v
e Each resource can be used by at most one project at a time
e Must choose a profit-maximizing set of projects
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Primal and Dual LPs

Primal LP

rSn’(ax Loz P min > ev Yo

= < vy = T s.t.
6625%11) Te=" vewv Yu + Yo > We, Ve = (U,U) e FE.
Ze > 0, Ve € E. Yo = 0, Yv € V.

@ Primal interpertation: Player 1 looking to build a set of projects
e Each edge e is a project generating “profit” w,
e Each project e = (u,v) needs two resources, v and v
e Each resource can be used by at most one project at a time
e Must choose a profit-maximizing set of projects
@ Dual interpertation: Player 2 looking to buy resources
e Offer a price y, for each resource.
@ Prices should incentivize player 1 to sell resources
e Want to pay as little as possible.
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Vertex Cover Interpretation

max ) .cp e

s.t. min ZvEV Yv
1
r. <1, YveV. =
ee%v) a Yu+ Y =1, Ve=(u,v) €E.
ZTe > 0, Ve € E. Yo = 0, Yo e V.

When edge weights are 1, binary solutions to dual are vertex covers

Definition

C C Vis avertex cover if every e € E has
at least one endpoint in C
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Vertex Cover Interpretation

max ZeeE Te

s.t. min ZUEV Yv
s.t.
r. <1, YveV.
ee%Ev) Yu+y =1, Ve=(u,v)€E.
ZTe > 0, Ve € E. Yo = 0, Yo e V.

When edge weights are 1, binary solutions to dual are vertex covers

Definition

C C Vis avertex cover if every e € E has
at least one endpoint in C

@ Dual is a relaxation of the minimum vertex cover problem for
bipartite graphs.
@ By weak duality: min-vertex-cover > max-cardinality-matching
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Konig’'s Theorem

max . cpTe g
veV Jv

s.t.
1.
S 2. <1, WweV. S
ecs(v) Yu+Yyp > 1, Ve=(u,v) €E.
T, >0, Ve e E. Yy = 0, Yo e V.

Konig’s Theorem

In a bipartite graph, the cardinality of the maximum matching is equal
to the cardinality of the minimum vertex cover.

i.e. the dual LP has an optimal integral solution

&—9o
Duality of Bipartite Matching 12/14



=5

@ Let M(G) be a max cardinality of a matching in G
@ Let C(G) be min cardinality of a vertex cover in G
@ We already proved that M (G) < C(G)

@ We will prove C(G) < M(G) by induction on number of nodes in
G.
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@ Let y be an optimal dual, and v a vertex with 3, > 0
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@ By complementary slackness, every maximum cardinality
matching must match v.
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@ Let y be an optimal dual, and v a vertex with 3, > 0

@ By complementary slackness, every maximum cardinality
matching must match v.

e M(G\v)=MG) -1
@ By inductive hypothesis, C(G \ v) = M(G \v) = M(G) — 1
® C(G) <C(G\v)+1=M(Q).

Note: Could have proved the same using total unimodularity
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Consequences of Konig’'s Theorem

@ Vertex covers can serve as a certificate of optimality for bipartite
matchings, and vice versa
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Consequences of Konig’'s Theorem

@ Vertex covers can serve as a certificate of optimality for bipartite
matchings, and vice versa

@ Like maximum cardinality matching, minimum vertex cover in
bipartite graphs can be formulated as an LP, and solved in
polynomial time

@ The same is true for the maximum independent set problem in
bipartite graphs.

e ('is a vertex cover iff V' \ C is an independent set.
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