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Fall 2013

Lecture 16: Combinatorial Problems as Linear
Programs II

Instructor: Shaddin Dughmi



Announcements

Project announced
Choose a topic and partner(s) by Nov 1
Choose papers by Nov 8
Short report (≤ 10 pages) by Dec 6

Today: Another case study on use LPs to encode combinatorial
problems, featuring bipartite matching



Outline

1 Introduction

2 Integrality of the Bipartite Matching Polytope

3 Total Unimodularity

4 Duality of Bipartite Matching



The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (V,E), with V = L
⋃
R, and weights we on

edges e, find a maximum weight matching.

Matching: a set of edges covering each node at most once
We use n and m to denote |V | and |E|, respectively.
Equivalent to maximum weight / minimum cost perfect matching.

1 2

1.5

3

Our focus will be less on algorithms, and more on using polyhedral
interpretation to gain insights about a combinatorial problem.
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An LP Relaxation of Bipartite Matching

Bipartite Matching LP

max
∑

e∈E wexe
s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Feasible region is a polytope P (i.e. a bounded polyhedron)
This is a relaxation of the bipartite matching problem

Integer points in P are the indicator vectors of matchings.

P ∩ Zm = {xM :M is a matching}
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Integrality of the Bipartite Matching Polytope

∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Theorem
The feasible region of the matching LP is the convex hull of indicator
vectors of matchings.

P = convexhull {xM :M is a matching}

Note
This is the strongest guarantee you could hope for of an LP
relaxation of a combinatorial problem
Solving LP is equivalent to solving the combinatorial problem
Stronger guarantee than shortest path LP from last time
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Integrality of the Bipartite Matching Polytope

∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Theorem
The feasible region of the matching LP is the convex hull of indicator
vectors of matchings.

P = convexhull {xM :M is a matching}

Note
This is the strongest guarantee you could hope for of an LP
relaxation of a combinatorial problem
Solving LP is equivalent to solving the combinatorial problem
Stronger guarantee than shortest path LP from last time

Integrality of the Bipartite Matching Polytope 3/14



Proof

1

1

0.7

0

0.3

0.6

0.1

Suffices to show that all vertices are integral (why?)

Consider x ∈ P non-integral, we will show that x is not a vertex.
Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Integrality of the Bipartite Matching Polytope 4/14



Proof

1

1

0.7

0

0.3

0.6

0.1

Suffices to show that all vertices are integral (why?)
Consider x ∈ P non-integral, we will show that x is not a vertex.

Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Integrality of the Bipartite Matching Polytope 4/14



Proof

0.7

0.3

0.6

0.1

Suffices to show that all vertices are integral (why?)
Consider x ∈ P non-integral, we will show that x is not a vertex.
Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Integrality of the Bipartite Matching Polytope 4/14



Proof

0.7

0.3

0.6

0.1

Suffices to show that all vertices are integral (why?)
Consider x ∈ P non-integral, we will show that x is not a vertex.
Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Integrality of the Bipartite Matching Polytope 4/14



Proof

0.7

0.3

0.6

Suffices to show that all vertices are integral (why?)
Consider x ∈ P non-integral, we will show that x is not a vertex.
Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Integrality of the Bipartite Matching Polytope 4/14



Proof

0.7

0.3

0.6

0.1

Case 1: Cycle C

Let C = (e1, . . . , ek), with k even
There is ε > 0 such that adding ±ε(+1,−1, . . . ,+1,−1) to xC
preserves feasibility
x is the midpoint of x+ ε(+1,−1, ...,+1,−1)C and
x− ε(+1,−1, . . . ,+1,−1)C , so x is not a vertex.
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Proof

0.7

0.3

0.6

Case 2: Maximal Path P

Let P = (e1, . . . , ek), going through vertices v0, v1, . . . , vk
By maximality, e1 is the only edge of v0 with non-zero x-weight

Similarly for ek and vk.

There is ε > 0 such that adding ±ε(+1,−1, . . . , ?1) to xP
preserves feasibility
x is the midpoint of x+ ε(+1,−1, ..., ?1)P and
x− ε(+1,−1, . . . , ?1)P , so x is not a vertex.
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Related Fact: Birkhoff Von-Neumann Theorem

∑
e∈δ(v)

xe = 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

The analogous statement holds for the perfect matching LP
above, by an essentially identical proof.

When the bipartite graph is complete and has the same number of
nodes on either side, can be equivalently phrased as a property of
matrices.

Birkhoff Von-Neumann Theorem
The set of n× n doubly stochastic matrices is the convex hull of n× n
permutation matrices.

e.g. (
0.5 0.5
0.5 0.5

)
= 0.5

(
1 0
0 1

)
+ 0.5

(
0 1
1 0

)
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Total Unimodularity

We could have proved integrality of the bipartite matching LP using a
more general tool

Definition
A matrix A is Totally Unimodular if every square submatrix has
determinant 0, +1 or −1.

Theorem
If A ∈ Rm×n is totally unimodular, and b is an integer vector, then
{x : Ax ≤ b, x ≥ 0} has integer vertices.

Proof
Non-zero entries of vertex x are solution of A′x′ = b′ for some
nonsignular square submatrix A′ and corresponding sub-vector b′

Cramer’s rule:

x′i =
det(A′i|b′)
detA′
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Total Unimodularity of Bipartite Matching
∑

e∈δ(v)
xe ≤ 1, ∀v ∈ V.

Claim
The constraint matrix of the bipartite matching LP is totally unimodular.

Proof
Ave = 1 if e incident on v, and 0 otherwise.
By induction on size of submatrix A′. Trivial for base case k = 1.
If A′ has all-zero column, then detA′ = 0

If A′ has column with single 1, then holds by induction.
If all columns of A′ have two 1’s,

Partition rows (vertices) into L and R
Sum of rows L is (1, 1, . . . , 1), similarly for R
A′ is singular, so detA′ = 0.
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Primal and Dual LPs

Primal LP
max

∑
e∈E wexe

s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
min

∑
v∈V yv

s.t.
yu + yv ≥ we, ∀e = (u, v) ∈ E.
yv � 0, ∀v ∈ V.

Primal interpertation: Player 1 looking to build a set of projects
Each edge e is a project generating “profit” we
Each project e = (u, v) needs two resources, u and v
Each resource can be used by at most one project at a time
Must choose a profit-maximizing set of projects

Dual interpertation: Player 2 looking to buy resources
Offer a price yv for each resource.
Prices should incentivize player 1 to sell resources
Want to pay as little as possible.

Duality of Bipartite Matching 10/14
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Vertex Cover Interpretation

Primal LP
max

∑
e∈E xe

s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP

min
∑
v∈V yv

s.t.
yu + yv ≥ 1, ∀e = (u, v) ∈ E.
yv � 0, ∀v ∈ V.

When edge weights are 1, binary solutions to dual are vertex covers

Definition
C ⊆ V is a vertex cover if every e ∈ E has
at least one endpoint in C

Dual is a relaxation of the minimum vertex cover problem for
bipartite graphs.
By weak duality: min-vertex-cover ≥ max-cardinality-matching
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König’s Theorem

Primal LP
max

∑
e∈E xe

s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP

min
∑
v∈V yv

s.t.
yu + yv ≥ 1, ∀e = (u, v) ∈ E.
yv � 0, ∀v ∈ V.

König’s Theorem
In a bipartite graph, the cardinality of the maximum matching is equal
to the cardinality of the minimum vertex cover.

i.e. the dual LP has an optimal integral solution
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Let M(G) be a max cardinality of a matching in G
Let C(G) be min cardinality of a vertex cover in G
We already proved that M(G) ≤ C(G)
We will prove C(G) ≤M(G) by induction on number of nodes in
G.

Note: Could have proved the same using total unimodularity
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Let y be an optimal dual, and v a vertex with yv > 0

By complementary slackness, every maximum cardinality
matching must match v.

M(G \ v) =M(G)− 1

By inductive hypothesis, C(G \ v) =M(G \ v) =M(G)− 1

C(G) ≤ C(G \ v) + 1 =M(G).

Note: Could have proved the same using total unimodularity
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Consequences of König’s Theorem

Vertex covers can serve as a certificate of optimality for bipartite
matchings, and vice versa

Like maximum cardinality matching, minimum vertex cover in
bipartite graphs can be formulated as an LP, and solved in
polynomial time
The same is true for the maximum independent set problem in
bipartite graphs.

C is a vertex cover iff V \ C is an independent set.
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