
CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 17: Combinatorial Problems as Linear
Programs III

Instructor: Shaddin Dughmi



Announcements

Today: Spanning Trees and Flows
Flexibility awarded by polyhedral perspective



Outline

1 Spanning Trees

2 Flows



The Minimum Cost Spanning Tree Problem

Given a connected undirected graph G = (V,E), and costs ce on
edges e, find a minimum cost spanning tree of G.

Spanning Tree: an acyclic set of edges connecting every pair of
nodes
When graph is disconnected, can search for min-cost spanning
forest instead
We use n and m to denote |V | and |E|, respectively.

Spanning Trees 1/10



Kruskal’s Algorithm

The minimum spanning tree problem can be solved efficiently by a
simple greedy algorithm

Kruskal’s algorithm
1 T ← ∅
2 Sort edges in increasing order of cost
3 For each edge e in order

if T
⋃
e is acyclic, add e to T .

Proof of correctness is via a simple exchange argument.
Generalizes to Matroids
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MST Linear Program

MST LP
minimize

∑
e∈E cexe

subject to
∑
e∈E

xe = n− 1∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.

xe ≥ 0, for e ∈ E.

Theorem
The feasible region of the above LP is the convex hull of spanning
trees.

Proof by finding a dual solution with cost matching the output of
Kruskal’s algorithm.
Generalizes to Matroids
Note: this LP has an exponential (in n) number of constraints
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Solving the MST Linear Program

Definition
A separation oracle for a linear program with feasible set P ⊆ Rm is an
algorithm which takes as input x ∈ Rm, and either certifies that x ∈ P
or identifies a violated constraint.

Theorem
A linear program with a polynomial number of variables is solvable in
polynomial time if and only if it admits a polynomial time separation
oracle.

Follows from the ellipsoid method, which we will see next week.
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Solving the MST Linear Program
Primal LP

minimize
∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≥ 0, for e ∈ E.

Given x ∈ Rm, separation oracle must find a violated constraint if
one exists

Reduces to finding X ⊂ V with
∑

e⊆X xe > |X| − 1, if one exists

Equivalently
1+

∑
e⊆X xe

|X| > 1

In turn, this reduces to maximizing
1+

∑
e⊆X xe

|X| over X

We will see how to do this efficiently later in the class, since
1+

∑
e⊆X xe

|X|
is a supermodular function of the set X.
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Application of Fractional Spanning Trees

The LP formulation of spanning trees has many applications
We will look at one contrived yet simple application that shows the
flexibility enabled by polyhedral formulation

Fault-Tolerant MST
Your tree is an overlay network on the internet used to transmit
data
A hacker is looking to attack your tree, by knocking off one of the
edges of the graph
You can foil the hacker by choosing a random tree
The hacker knows the algorithm you use, but not your random
coins
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Fault-tolerant MST LP
minimize

∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≤ p, for e ∈ E.
xe ≥ 0, for e ∈ E.

Above LP can be solved efficiently
Can interpret resulting fractional spanning tree x as a recipe for a
probability distribution over trees T

e ∈ T with probability xe
Since xe ≤ p, no edge is in the tree with probability more than p.

Such a probability distribution exists!
x is in the (original) MST polytope
Caratheodory’s theorem: x is a convex combination of m+ 1
vertices of MST polytope
By integrality of MST polytope: x is the “expectation” of a probability
distribution over spanning trees.

Consequence of Ellipsoid algorithm: can compute such a
decomposition of x efficiently!
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The Maximum Flow Problem
Given a directed graph G = (V,E) with capacities ue on edges e, a
source node s, and a sink node t, find a maximum flow from s to t
respecting the capacities.

maximize
∑

e∈δ+(s) xe −
∑

e∈δ−(s) xe
subject to

∑
e∈δ−(v) xe =

∑
e∈δ+(v) xe, for v ∈ V \ {s, t} .

xe ≤ ue, for e ∈ E.
xe ≥ 0, for e ∈ E.

Can be computed either by solving the LP, or by a combinatorial
algorithm such as Ford Fulkerson.
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Primal LP
max

∑
e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Dual LP (Simplified)
min

∑
e∈E ueze

s.t.
yv − yu ≤ ze, ∀e = (u, v) ∈ E.
ys = 0
yt = 1
ze ≥ 0, ∀e ∈ E.

Dual solution describes fraction ze of each edge to fractionally cut

Dual constraints require that at least 1 edge is cut on every path
from s to t.∑

(u,v)∈P zuv ≥
∑

(u,v)∈P yv − yu = yt − ys = 1

Every integral s− t cut is feasible.
By weak duality: max flow ≤ minimum cut
Ford-Fulkerson shows that max flow = min cut

i.e. dual has integer optimal
Ford-Fulkerson also shows that there is an integral optimal flow
when capacities are integer.
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Generalizations of Max Flow

max
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Writing as an LP shows that many generalizations are also tractable

Lower and upper bound constraints on flow: `e ≤ xe ≤ ue
minimum cost flow of a certain amount r

Objective min
∑
e cexe

Additional constraint:
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe = r

Multiple commodities sharing the network
. . .
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