CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 17: Combinatorial Problems as Linear
Programs Il

Instructor: Shaddin Dughmi

Announcements

@ Today: Spanning Trees and Flows
o Flexibility awarded by polyhedral perspective

0 Spanning Trees

The Minimum Cost Spanning Tree Problem

Given a connected undirected graph G = (V, E'), and costs ¢, on
edges e, find a minimum cost spanning tree of G. J

@ Spanning Tree: an acyclic set of edges connecting every pair of
nodes

@ When graph is disconnected, can search for min-cost spanning
forest instead

@ We use n and m to denote |V | and |E|, respectively.

Spanning Trees 1/10

Kruskal’s Algorithm

The minimum spanning tree problem can be solved efficiently by a
simple greedy algorithm

Kruskal’s algorithm

Q@T7T+0
@ Sort edges in increasing order of cost

© For each edge e in order
e if ' Jeis acyclic, add e to 7.

Spanning Trees 2/10

Kruskal’s Algorithm

The minimum spanning tree problem can be solved efficiently by a
simple greedy algorithm

Kruskal’s algorithm

Q@T7T+0
@ Sort edges in increasing order of cost

© For each edge e in order
e if ' Jeis acyclic, add e to 7.

@ Proof of correctness is via a simple exchange argument.
@ Generalizes to Matroids

Spanning Trees 2/10

MST Linear Program

MST LP

minimize) __p cee
subjectto > ze=n-—-1

ecl
Yoax. <|X|—-1, for X Cc V.
eCX
ZTe > 0, fore € E.

Spanning Trees 3/10

MST Linear Program

MST LP

minimize) __p cee
subjectto > ze=n-—-1

eck
Yox. <|X|—-1, forX C V.
eCX
Te > 0, fore € E.

v

The feasible region of the above LP is the convex hull of spanning
trees.

Spanning Trees 3/10

MST Linear Program

MST LP

minimize) __p cee
subjectto > ze=n-—-1

eck
Yox. <|X|—-1, forX C V.
eCX
ZTe > 0, fore € E.

v

The feasible region of the above LP is the convex hull of spanning
trees.

@ Proof by finding a dual solution with cost matching the output of
Kruskal’s algorithm.

Spanning Trees 3/10

MST Linear Program

MST LP

minimize) __p cee
subjectto > ze=n-—-1

eck
Yox. <|X|—-1, forX C V.
eCX
Te > 0, fore € E.

v

The feasible region of the above LP is the convex hull of spanning
trees.

@ Proof by finding a dual solution with cost matching the output of
Kruskal’s algorithm.

@ Generalizes to Matroids

Spanning Trees 3/10

MST Linear Program

MST LP

minimize) __p cee
subjectto > ze=n-—-1

ecE
Yox. <|X|—-1, forX C V.
eCX
ZTe > 0, fore € E.

v

The feasible region of the above LP is the convex hull of spanning
trees.

@ Proof by finding a dual solution with cost matching the output of
Kruskal’s algorithm.

@ Generalizes to Matroids
@ Note: this LP has an exponential (in n) number of constraints

Spanning Trees 3/10

Solving the MST Linear Program

s,

Definition

A separation oracle for a linear program with feasible set » C R™ is an
algorithm which takes as input = € R™, and either certifies that x € P
or identifies a violated constraint.

Spanning Trees 4/10

Solving the MST Linear Program

2

A separation oracle for a linear program with feasible set P C R is an
algorithm which takes as input = € R™, and either certifies that x € P

or identifies a violated constraint.

| A

Theorem

A linear program with a polynomial number of variables is solvable in
polynomial time if and only if it admits a polynomial time separation
oracle.

Follows from the ellipsoid method, which we will see next week.
Spanning Trees 4/10

Solving the MST Linear Program

Primal LP

minimize) _pcexe
subjectto > z. <|X|-1, forX C V.
eCX
S re=n-—1
eckl
e > 0, fore e E.

@ Given z € R™, separation oracle must find a violated constraint if
one exists

Spanning Trees 5/10

Solving the MST Linear Program

Primal LP

minimize) _pcexe
subjectto > z. <|X|-1, forX C V.
eCX
S re=n-—1
eckl
e > 0, fore e E.

@ Given z € R™, separation oracle must find a violated constraint if
one exists
@ Reduces to finding X C V with >~y z. > |X| — 1, if one exists

o Equivalently 1szng‘xﬂ” o1

Spanning Trees 5/10

Solving the MST Linear Program

Primal LP

minimize) _pcexe
subjectto > z. <|X|-1, forX C V.
eCX
S re=n-—1
eckl
e > 0, fore e E.

@ Given z € R™, separation oracle must find a violated constraint if
one exists
@ Reduces to finding X C V with >~y z. > |X| — 1, if one exists

o Equivalently 1szng‘xﬂ” o1

. 1t ;
@ In turn, this reduces to maximizing % over X

Spanning Trees 5/10

Solving the MST Linear Program

Primal LP

minimize) _pcexe
subjectto > z. <|X|-1, forX C V.
eCX
S re=n-—1
eckl
e > 0, fore e E.

@ Given z € R™, separation oracle must find a violated constraint if
one exists
@ Reduces to finding X C V with >~y z. > |X| — 1, if one exists

Zggx e

e Equivalently s 5] >1

. 1t ;
@ In turn, this reduces to maximizing % over X

1+25§X Te

We will see how to do this efficiently later in the class, since —=53
is a supermodular function of the set X.

Spanning Trees

5/10

Application of Fractional Spanning Trees

@ The LP formulation of spanning trees has many applications

@ We will look at one contrived yet simple application that shows the
flexibility enabled by polyhedral formulation

Fault-Tolerant MST

@ Your tree is an overlay network on the internet used to transmit
data

@ A hacker is looking to attack your tree, by knocking off one of the
edges of the graph

@ You can foil the hacker by choosing a random tree

@ The hacker knows the algorithm you use, but not your random
coins

Spanning Trees 6/10

Fault-tolerant MST LP

minimize) . cexe

subjectto > z. <|X|-1, forX C V.
eCX

S rze=n-—1

eeFE

xESpy foreGE.
xe 2 0, fore € E.

@ Above LP can be solved efficiently

@ Can interpret resulting fractional spanning tree x as a recipe for a
probability distribution over trees T’

@ e € T with probability z.
@ Since z. < p, no edge is in the tree with probability more than p.

Spanning Trees 7110

Fault-tolerant MST LP

minimize) . cexe
subjectto > z. <|X|-1, forX C V.

eCX

S rze=n-—1

ecE

Te < p, fore € E.
Te > 0, fore € E.

@ Such a probability distribution exists!

Spanning Trees 7110

Fault-tolerant MST LP

minimize) . cexe

subjectto > z. <|X|-1, forX C V.
eCX

S rze=n-—1

eeFE

xESpy foreGE.
xe 2 0, fore € E.

@ Such a probability distribution exists!
e z is in the (original) MST polytope
o Caratheodory’s theorem: z is a convex combination of m + 1
vertices of MST polytope
o By integrality of MST polytope: z is the “expectation” of a probability
distribution over spanning trees.

Spanning Trees 7110

Fault-tolerant MST LP

minimize) . cexe
subjectto > z. <|X|-1, forX C V.

eCX

S rze=n-—1

ecE

Te < p, fore € E.
Te >0, fore € E.

@ Such a probability distribution exists!
e z is in the (original) MST polytope
o Caratheodory’s theorem: z is a convex combination of m + 1
vertices of MST polytope
o By integrality of MST polytope: z is the “expectation” of a probability
distribution over spanning trees.
@ Consequence of Ellipsoid algorithm: can compute such a
decomposition of z efficiently!

Spanning Trees 7110

e Flows

The Maximum Flow Problem

Given a directed graph G = (V, E) with capacities u. on edges e, a
source node s, and a sink node ¢, find a maximum flow from s to ¢
respecting the capacities.

maximize > cs+(s) Te = Dees—(s) e

subjectto >-.cs- () Te = Dces+(v) Te» fOrv eV \ {s,t}.
Te < Ue, forec E.
Ze >0, fore e E.

Can be computed either by solving the LP, or by a combinatorial
algorithm such as Ford Fulkerson.

Flows 8/10

(Primal LP_________________TDual LP (Simplified)

max >

e€dt(s)
s.t.
Y. Te=
e€d—(v)
Te < Ue,
Te >0,

Te— Y. e
e€d—(s)
Y B Yo e V\ {s,t
e€dt(v)
Ve € E.
Ve € E.

4

@ Dual solution describes fraction z, of each edge to fractionally cut

Flows

min >" . 5 UeZe
s.t.

Yo — Yu < Ze,
ys =0
yr =1
ze 2 0,

Ve = (u,v) € E.

Ve € E.

9/10

(Primal LP_________________TDual LP (Simplified)

max >, Te— Y, e
e€dt(s) e€d—(s)
s.t.
Y @e= Y R Yo e V\ {s,t
e€d— (v) e€dt(v)
Te < Ue, Ve € E.
T, > 0, Ve e E.

4

min >" . 5 UeZe
s.t.

Yo — Yu < Ze,
ys =0
yr =1
ze 2 0,

Ve = (u,v) € E.

Ve € E.

@ Dual solution describes fraction z, of each edge to fractionally cut
@ Dual constraints require that at least 1 edge is cut on every path

from s to t.

° Z(u,v)GP Ruy > Z(u,v)EP Yo = Yu =Yt —Ys = 1

Flows

9/10

(Primal LP_________________TDual LP (Simplified)

max >
e€dt(s)
s.t.

2
e€d—(v)
Te < Ue,

ze > 0,

Te =

Te — Z Te
e€d—(s)
Y B Yo e V\ {s,t
e€dt(v)
Ve € E.
Ve € E.

min >" . 5 UeZe
s.t.

Yo — Yu < Ze,
ys =0
yr =1
ze 2 0,

Ve = (u,v) € E.

Ve € E.

@ Every integral s — ¢ cut is feasible.

Flows

9/10

(Primal LP_________________TDual LP (Simplified)

max >, Te— Y, e
e€dt(s) e€d—(s)
s.t.
Y @e= Y R Yo e V\ {s,t
e€d— (v) e€dt(v)
Te < Ue, Ve € E.
xe >0, Ve € E.

min >" . 5 UeZe
s.t.

Yo — Yu < Ze,
ys =0
yr =1
ze 2 0,

Ve = (u,v) € E.

Ve € E.

@ Every integral s — ¢ cut is feasible.

@ By weak duality: max flow < minimum cut

Flows

9/10

(Primal LP_________________TDual LP (Simplified)

max >
e€dt(s)
s.t.

2
e€d—(v)
Te < Ue,

ze > 0,

Te =

Te— Y. e
e€d—(s)
Y B Yo e V\ {s,t
e€dt(v)
Ve € E.
Ve € E.

min >" . 5 UeZe
s.t.

Yo — Yu < Ze,
ys =0
yr =1
ze 2 0,

Ve = (u,v) € E.

Ve € E.

@ Every integral s — ¢ cut is feasible.

@ By weak duality: max flow < minimum cut

@ Ford-Fulkerson shows that max flow = min cut
e i.e. dual has integer optimal

Flows

9/10

(Primal LP_________________TDual LP (Simplified)

max >, ze— ». . .
ecst(s) e€o—(s) ;n;n ZEGE UeZe
s.t. ol
Y. Te= D Te, Yo e V\ {s,t Yo~ Yu < Ze, Ve = (u,v) € E.
e€d—(v) e€dt(v) Ys =0
Te < Ue, Ve € E. ye =1
ze > 0, Ve € E. ze 2 0, Ve € E.

@ Every integral s — ¢ cut is feasible.
@ By weak duality: max flow < minimum cut
@ Ford-Fulkerson shows that max flow = min cut

e i.e. dual has integer optimal
@ Ford-Fulkerson also shows that there is an integral optimal flow
when capacities are integer. 910

Flows

Generalizations of Max Flow

max > ze— Y. T

e€dt(s) e€d(s)
s.t.
Yo xe=), Te Yo eV {s,t}.
ec€d(v) e€dt(v)
Te < U, Ve € E.
T > 0, Ve € E.

Writing as an LP shows that many generalizations are also tractable

Flows

10/10

Generalizations of Max Flow

max > ze— Y. T

e€dt(s) e€d(s)
s.t.
Yo xe=), Te Yo eV {s,t}.
ec€d(v) e€dt(v)
Te < U, Ve € E.
T > 0, Ve € E.

Writing as an LP shows that many generalizations are also tractable
@ Lower and upper bound constraints on flow: ¢, < z. < u,

Flows 10/10

Generalizations of Max Flow

max > ze— Y. T

e€dt(s) e€d(s)
s.t.
Yo xe=), Te Yo eV {s,t}.
ec€d(v) e€dt(v)
Te < Ue, Ve € E.
T > 0, Ve € E.

Writing as an LP shows that many generalizations are also tractable
@ Lower and upper bound constraints on flow: ¢, < z. < u,
@ minimum cost flow of a certain amount r

e Objective min), ccx.

e Additional constraint: Y~ z.— > x.=r
e€dt(s) e€d—(s)

Flows 10/10

Generalizations of Max Flow

max > ze— Y. T

e€dt(s) e€d—(s)
s.t.
Yo Te=), e, Yo e V\{s,t}.
e€d—(v) ecdt(v)
Te < Ue, Ve € F.
T > 0, Ve € E.

Writing as an LP shows that many generalizations are also tractable

@ Lower and upper bound constraints on flow: ¢, < z. < u,
@ minimum cost flow of a certain amount r
e Objective min), ccx.

e Additional constraint: Y~ z.— > x.=r
e€dt(s) e€d—(s)

@ Multiple commaodities sharing the network

Flows 10/10

Generalizations of Max Flow

max > ze— Y. T

e€dt(s) e€d—(s)
s.t.
Yo xe=), Te Yo eV {s,t}.
e€d—(v) e€dt(v)
Te < Ue, Ve e E.
T > 0, Ve € E.

Writing as an LP shows that many generalizations are also tractable
@ Lower and upper bound constraints on flow: ¢, < z. < u,
@ minimum cost flow of a certain amount r

e Objective min), ccx.

e Additional constraint: Y~ z.— > x.=r
e€dt(s) e€d—(s)

@ Multiple commaodities sharing the network
° ...

Flows 10/10

	Spanning Trees
	Flows

