CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III

Instructor: Shaddin Dughmi

• Today: Spanning Trees and Flows

• Flexibility awarded by polyhedral perspective

The Minimum Cost Spanning Tree Problem

Given a connected undirected graph G = (V, E), and costs c_e on edges e, find a minimum cost spanning tree of G.

- Spanning Tree: an acyclic set of edges connecting every pair of nodes
- When graph is disconnected, can search for min-cost spanning forest instead
- We use n and m to denote |V| and |E|, respectively.

Spanning Trees

The minimum spanning tree problem can be solved efficiently by a simple greedy algorithm

Kruskal's algorithm $\ T \leftarrow \emptyset$ $\ Sort edges in increasing order of cost$ $\ For each edge e in order$

• if $T \bigcup e$ is acyclic, add e to T.

The minimum spanning tree problem can be solved efficiently by a simple greedy algorithm

Kruskal's algorithm T ← Ø Sort edges in increasing order of cost For each edge e in order if T ∪ e is acyclic, add e to T.

Proof of correctness is via a simple exchange argument.

• Generalizes to Matroids

MST LP

$$\begin{array}{ll} \mbox{minimize} & \sum_{e \in E} c_e x_e \\ \mbox{subject to} & \sum_{e \in E} x_e = n - 1 \\ & \sum_{e \subseteq X} x_e \leq |X| - 1, & \mbox{for } X \subset V. \\ & x_e \geq 0, & \mbox{for } e \in E. \end{array}$$

n s

MST LP

$$\begin{array}{lll} \mbox{inimize} & \sum_{e \in E} c_e x_e \\ \mbox{ubject to} & \sum_{e \in E} x_e = n-1 \\ & \sum_{e \subseteq X} x_e \leq |X|-1, & \mbox{for } X \subset V. \\ & x_e \geq 0, & \mbox{for } e \in E. \end{array}$$

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

MST LP

$$\begin{array}{lll} \mbox{minimize} & \sum_{e \in E} c_e x_e \\ \mbox{subject to} & \sum_{e \in E} x_e = n-1 \\ & \sum_{e \subseteq X} x_e \leq |X|-1, & \mbox{for } X \subset V. \\ & x_e \geq 0, & \mbox{for } e \in E. \end{array}$$

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

 Proof by finding a dual solution with cost matching the output of Kruskal's algorithm.

MST LP

$$\begin{array}{lll} \mbox{ninimize} & \sum_{e \in E} c_e x_e \\ \mbox{subject to} & \sum_{e \in E} x_e = n-1 \\ & \sum_{e \subseteq X} x_e \leq |X|-1, & \mbox{for } X \subset V. \\ & x_e \geq 0, & \mbox{for } e \in E. \end{array}$$

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

- Proof by finding a dual solution with cost matching the output of Kruskal's algorithm.
- Generalizes to Matroids

MST LP

$$\begin{array}{ll} \mbox{inimize} & \sum_{e \in E} c_e x_e \\ \mbox{subject to} & \sum_{e \in E} x_e = n-1 \\ & \sum_{e \subseteq X} x_e \leq |X|-1, & \mbox{for } X \subset V. \\ & x_e \geq 0, & \mbox{for } e \in E. \end{array}$$

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

- Proof by finding a dual solution with cost matching the output of Kruskal's algorithm.
- Generalizes to Matroids
- Note: this LP has an exponential (in n) number of constraints

Spanning Trees

Definition

A separation oracle for a linear program with feasible set $\mathcal{P} \subseteq \mathbb{R}^m$ is an algorithm which takes as input $x \in \mathbb{R}^m$, and either certifies that $x \in \mathcal{P}$ or identifies a violated constraint.

Definition

A separation oracle for a linear program with feasible set $\mathcal{P} \subseteq \mathbb{R}^m$ is an algorithm which takes as input $x \in \mathbb{R}^m$, and either certifies that $x \in \mathcal{P}$ or identifies a violated constraint.

Theorem

A linear program with a polynomial number of variables is solvable in polynomial time if and only if it admits a polynomial time separation oracle.

Follows from the ellipsoid method, which we will see next week. Spanning Trees

Primal LP

 Given x ∈ ℝ^m, separation oracle must find a violated constraint if one exists

Primal LP

$$\begin{array}{ll} \mbox{minimize} & \sum_{e \in E} c_e x_e \\ \mbox{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, & \mbox{for } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \geq 0, & \mbox{for } e \in E. \end{array}$$

- Given $x \in \mathbb{R}^m$, separation oracle must find a violated constraint if one exists
- Reduces to finding $X \subset V$ with $\sum_{e \subset X} x_e > |X| 1$, if one exists

• Equivalently
$$\frac{1+\sum_{e \subseteq X} x_e}{|X|} > 1$$

Primal LP

$$\begin{array}{ll} \mbox{minimize} & \sum_{e \in E} c_e x_e \\ \mbox{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, & \mbox{for } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \geq 0, & \mbox{for } e \in E. \end{array}$$

- Given $x \in \mathbb{R}^m$, separation oracle must find a violated constraint if one exists
- Reduces to finding $X \subset V$ with $\sum_{e \subset X} x_e > |X| 1$, if one exists

• Equivalently
$$\frac{1+\sum_{e \subseteq X} x_e}{|X|} > 1$$

• In turn, this reduces to maximizing $\frac{1+\sum_{e\subseteq X} x_e}{|X|}$ over X

Primal LP

 $\begin{array}{ll} \mbox{minimize} & \sum_{e \in E} c_e x_e \\ \mbox{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, & \mbox{for } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \geq 0, & \mbox{for } e \in E. \end{array}$

- Given $x \in \mathbb{R}^m$, separation oracle must find a violated constraint if one exists
- Reduces to finding $X \subset V$ with $\sum_{e \subset X} x_e > |X| 1$, if one exists

• Equivalently
$$\frac{1+\sum_{e \subseteq X} x_e}{|X|} > 1$$

• In turn, this reduces to maximizing $\frac{1+\sum_{e\subseteq X} x_e}{|X|}$ over X

We will see how to do this efficiently later in the class, since $\frac{1+\sum_{e \subseteq X} x_e}{|X|}$ is a supermodular function of the set *X*.

Spanning Trees

Application of Fractional Spanning Trees

- The LP formulation of spanning trees has many applications
- We will look at one contrived yet simple application that shows the flexibility enabled by polyhedral formulation

Fault-Tolerant MST

- Your tree is an overlay network on the internet used to transmit data
- A hacker is looking to attack your tree, by knocking off one of the edges of the graph
- You can foil the hacker by choosing a random tree
- The hacker knows the algorithm you use, but not your random coins

- Above LP can be solved efficiently
- Can interpret resulting fractional spanning tree x as a recipe for a probability distribution over trees T
 - $e \in T$ with probability x_e
 - Since $x_e \leq p$, no edge is in the tree with probability more than p.

• Such a probability distribution exists!

- Such a probability distribution exists!
 - x is in the (original) MST polytope
 - Caratheodory's theorem: x is a convex combination of m+1 vertices of MST polytope
 - By integrality of MST polytope: *x* is the "expectation" of a probability distribution over spanning trees.

- Such a probability distribution exists!
 - x is in the (original) MST polytope
 - Caratheodory's theorem: x is a convex combination of m+1 vertices of MST polytope
 - By integrality of MST polytope: *x* is the "expectation" of a probability distribution over spanning trees.
- Consequence of Ellipsoid algorithm: can compute such a decomposition of *x* efficiently!

The Maximum Flow Problem

Given a directed graph G = (V, E) with capacities u_e on edges e, a source node s, and a sink node t, find a maximum flow from s to t respecting the capacities.

$$\begin{array}{ll} \mbox{maximize} & \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ \mbox{subject to} & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, & \mbox{for } v \in V \setminus \{s,t\} \, . \\ & x_e \leq u_e, & \mbox{for } e \in E. \\ & x_e \geq 0, & \mbox{for } e \in E. \end{array}$$

Can be computed either by solving the LP, or by a combinatorial algorithm such as Ford Fulkerson.

Dual LP (Simplified)

$\max \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e$		$\min \sum_{e \in E} u_e z_e$	
s.t. $\sum x_e = \sum x_e,$	$\forall v \in V \setminus \{s, t\}$	s.t. $y_v - y_u \le z_e,$ $y_s = 0$	$\forall e = (u, v) \in E.$
$e \in \delta^{-}(v) \qquad e \in \delta^{+}(v)$ $x_{e} \leq u_{e},$ $x_{e} \geq 0,$	$ \forall e \in E. \\ \forall e \in E. $	$y_t = 0$ $y_t = 1$ $z_e \ge 0,$	$\forall e \in E.$
	J		

• Dual solution describes fraction z_e of each edge to fractionally cut

$\max \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e$		$\min \sum_{e \in E} u_e z_e$	
s.t.		s.t. $y_v - y_u \le z_e,$	$\forall e = (u, v) \in E.$
$\sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e,$	$\forall v \in V \setminus \{s, t\}$	$\begin{array}{l} y_v y_u \leq z_e, \\ y_s = 0 \end{array}$	$vc = (u, v) \in D.$
$x_e \le u_e,$	$\forall e \in E.$	$y_t = 1$	
$x_e \ge 0,$	$\forall e \in E.$	$z_e \ge 0,$	$\forall e \in E.$

- Dual solution describes fraction z_e of each edge to fractionally cut
- Dual constraints require that at least 1 edge is cut on every path from *s* to *t*.

•
$$\sum_{(u,v)\in P} z_{uv} \ge \sum_{(u,v)\in P} y_v - y_u = y_t - y_s = 1$$

Dual LP (Simplified)

0/10 0/4

11/14

• Every integral s - t cut is feasible.

- Every integral s t cut is feasible.
- By weak duality: max flow ≤ minimum cut

- Every integral s t cut is feasible.
- By weak duality: max flow ≤ minimum cut
- Ford-Fulkerson shows that max flow = min cut
 - i.e. dual has integer optimal

- Every integral s t cut is feasible.
- By weak duality: max flow ≤ minimum cut
- Ford-Fulkerson shows that max flow = min cut
 - i.e. dual has integer optimal
- Ford-Fulkerson also shows that there is an integral optimal flow
 when capacities are integer.

$$\begin{split} \max & \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ \text{s.t.} & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, \qquad \forall v \in V \setminus \{s, t\} \, . \\ & x_e \leq u_e, \qquad \qquad \forall e \in E. \\ & x_e \geq 0, \qquad \qquad \forall e \in E. \end{split}$$

Writing as an LP shows that many generalizations are also tractable

$$\begin{split} \max & \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ \text{s.t.} & \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, \qquad \forall v \in V \setminus \{s, t\} \, . \\ & x_e \leq u_e, \qquad \qquad \forall e \in E. \\ & x_e \geq 0, \qquad \qquad \forall e \in E. \end{split}$$

Writing as an LP shows that many generalizations are also tractable

• Lower and upper bound constraints on flow: $\ell_e \leq x_e \leq u_e$

$$\begin{split} \max & \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ \text{s.t.} & \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, & \forall v \in V \setminus \{s, t\} \, . \\ & x_e \leq u_e, & \forall e \in E. \\ & x_e \geq 0, & \forall e \in E. \end{split}$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_e \leq x_e \leq u_e$
- minimum cost flow of a certain amount r
 - Objective $\min \sum_{e} c_e x_e$

• Additional constraint:
$$\sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e = r$$

$$\begin{split} \max & \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ \text{s.t.} & \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, & \forall v \in V \setminus \{s, t\} \, . \\ & x_e \leq u_e, & \forall e \in E. \\ & x_e \geq 0, & \forall e \in E. \end{split}$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_e \leq x_e \leq u_e$
- minimum cost flow of a certain amount r
 - Objective $\min \sum_{e} c_e x_e$
 - Additional constraint: $\sum_{e \in \delta^+(s)} x_e \sum_{e \in \delta^-(s)} x_e = r$
- Multiple commodities sharing the network

$$\begin{split} \max & \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ \text{s.t.} & \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, & \forall v \in V \setminus \{s, t\} \, . \\ & x_e \leq u_e, & \forall e \in E. \\ & x_e \geq 0, & \forall e \in E. \end{split}$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_e \leq x_e \leq u_e$
- minimum cost flow of a certain amount r
 - Objective $\min \sum_{e} c_e x_e$
 - Additional constraint: $\sum_{e \in \delta^+(s)} x_e \sum_{e \in \delta^-(s)} x_e = r$
- Multiple commodities sharing the network

• . . .