CS599: Convex and Combinatorial Optimization Fall 2013
Lecture 17: Combinatorial Problems as Linear Programs III

Instructor: Shaddin Dughmi

Announcements

- Today: Spanning Trees and Flows
- Flexibility awarded by polyhedral perspective

Outline

(1) Spanning Trees
(2) Flows

The Minimum Cost Spanning Tree Problem

Given a connected undirected graph $G=(V, E)$, and $\operatorname{costs} c_{e}$ on edges e, find a minimum cost spanning tree of G.

- Spanning Tree: an acyclic set of edges connecting every pair of nodes
- When graph is disconnected, can search for min-cost spanning forest instead
- We use n and m to denote $|V|$ and $|E|$, respectively.

Kruskal's Algorithm

The minimum spanning tree problem can be solved efficiently by a simple greedy algorithm

Kruskal's algorithm

(1) $T \leftarrow \emptyset$
(2) Sort edges in increasing order of cost
(3) For each edge e in order

- if $T \bigcup e$ is acyclic, add e to T.

Kruskal's Algorithm

The minimum spanning tree problem can be solved efficiently by a simple greedy algorithm

Kruskal's algorithm

(1) $T \leftarrow \emptyset$
(2) Sort edges in increasing order of cost
(3) For each edge e in order

- if $T \bigcup e$ is acyclic, add e to T.
- Proof of correctness is via a simple exchange argument.
- Generalizes to Matroids

MST Linear Program

MST LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \in E} x_{e}=n-1 & \\
& \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V . \\
& x_{e} \geq 0, & \text { for } e \in E .
\end{array}
$$

MST Linear Program

MST LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \in E} x_{e}=n-1 & \\
& \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V . \\
& x_{e} \geq 0, & \text { for } e \in E .
\end{array}
$$

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

MST Linear Program

MST LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \in E} x_{e}=n-1 & \\
& \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V \\
& x_{e} \geq 0, & \text { for } e \in E
\end{array}
$$

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

- Proof by finding a dual solution with cost matching the output of Kruskal's algorithm.

MST Linear Program

MST LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \in E} x_{e}=n-1 & \\
& \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V \\
& x_{e} \geq 0, & \text { for } e \in E
\end{array}
$$

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

- Proof by finding a dual solution with cost matching the output of Kruskal's algorithm.
- Generalizes to Matroids

MST Linear Program

MST LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \in E} x_{e}=n-1 & \\
& \sum_{e \subseteq X} x_{e} \leq|X|-1, \quad \text { for } X \subset V . \\
& x_{e} \geq 0, & \text { for } e \in E .
\end{array}
$$

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

- Proof by finding a dual solution with cost matching the output of Kruskal's algorithm.
- Generalizes to Matroids
- Note: this LP has an exponential (in n) number of constraints

Solving the MST Linear Program

Definition

A separation oracle for a linear program with feasible set $\mathcal{P} \subseteq \mathbb{R}^{m}$ is an algorithm which takes as input $x \in \mathbb{R}^{m}$, and either certifies that $x \in \mathcal{P}$ or identifies a violated constraint.

Solving the MST Linear Program

Definition

A separation oracle for a linear program with feasible set $\mathcal{P} \subseteq \mathbb{R}^{m}$ is an algorithm which takes as input $x \in \mathbb{R}^{m}$, and either certifies that $x \in \mathcal{P}$ or identifies a violated constraint.

Theorem

A linear program with a polynomial number of variables is solvable in polynomial time if and only if it admits a polynomial time separation oracle.

Follows from the ellipsoid method, which we will see next week.

Solving the MST Linear Program

Primal LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V \\
& \sum_{e \in E} x_{e}=n-1 & \\
& x_{e} \geq 0, & \text { for } e \in E
\end{array}
$$

- Given $x \in \mathbb{R}^{m}$, separation oracle must find a violated constraint if one exists

Solving the MST Linear Program

Primal LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V \\
& \sum_{e \in E} x_{e}=n-1 & \\
& x_{e} \geq 0, & \text { for } e \in E
\end{array}
$$

- Given $x \in \mathbb{R}^{m}$, separation oracle must find a violated constraint if one exists
- Reduces to finding $X \subset V$ with $\sum_{e \subseteq X} x_{e}>|X|-1$, if one exists
- Equivalently $\frac{1+\sum_{e \subseteq X} x_{e}}{|X|}>1$

Solving the MST Linear Program

Primal LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V \\
& \sum_{e \in E} x_{e}=n-1 & \\
& x_{e} \geq 0, & \text { for } e \in E
\end{array}
$$

- Given $x \in \mathbb{R}^{m}$, separation oracle must find a violated constraint if one exists
- Reduces to finding $X \subset V$ with $\sum_{e \subseteq X} x_{e}>|X|-1$, if one exists
- Equivalently $\frac{1+\sum_{e \subset X} x_{e}}{|X|}>1$
- In turn, this reduces to maximizing $\frac{1+\sum_{e \subseteq X} x_{e}}{|X|}$ over X

Solving the MST Linear Program

Primal LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \subseteq X} x_{e} \leq|X|-1, \quad \text { for } X \subset V . \\
& \sum_{e \in E} x_{e}=n-1 & \\
& x_{e} \geq 0, & \text { for } e \in E .
\end{array}
$$

- Given $x \in \mathbb{R}^{m}$, separation oracle must find a violated constraint if one exists
- Reduces to finding $X \subset V$ with $\sum_{e \subseteq X} x_{e}>|X|-1$, if one exists
- Equivalently $\frac{1+\sum_{e \subset X} x_{e}}{|X|}>1$
- In turn, this reduces to maximizing $\frac{1+\sum_{e \subseteq X} x_{e}}{|X|}$ over X

We will see how to do this efficiently later in the class, since $\frac{1+\sum_{e \subseteq X} x_{e}}{|X|}$ is a supermodular function of the set X.

Application of Fractional Spanning Trees

- The LP formulation of spanning trees has many applications
- We will look at one contrived yet simple application that shows the flexibility enabled by polyhedral formulation

Fault-Tolerant MST

- Your tree is an overlay network on the internet used to transmit data
- A hacker is looking to attack your tree, by knocking off one of the edges of the graph
- You can foil the hacker by choosing a random tree
- The hacker knows the algorithm you use, but not your random coins

Fault-tolerant MST LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V \\
& \sum_{e \in E} x_{e}=n-1 & \\
& x_{e} \leq p, & \text { for } e \in E \\
& x_{e} \geq 0, & \text { for } e \in E
\end{array}
$$

- Above LP can be solved efficiently
- Can interpret resulting fractional spanning tree x as a recipe for a probability distribution over trees T
- $e \in T$ with probability x_{e}
- Since $x_{e} \leq p$, no edge is in the tree with probability more than p.

Fault-tolerant MST LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V \\
& \sum_{e \in E} x_{e}=n-1 & \\
& x_{e} \leq p, & \text { for } e \in E \\
& x_{e} \geq 0, & \text { for } e \in E
\end{array}
$$

- Such a probability distribution exists!

Fault-tolerant MST LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V \\
& \sum_{e \in E} x_{e}=n-1 & \\
& x_{e} \leq p, & \text { for } e \in E \\
& x_{e} \geq 0, & \text { for } e \in E
\end{array}
$$

- Such a probability distribution exists!
- x is in the (original) MST polytope
- Caratheodory's theorem: x is a convex combination of $m+1$ vertices of MST polytope
- By integrality of MST polytope: x is the "expectation" of a probability distribution over spanning trees.

Fault-tolerant MST LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \subseteq X} x_{e} \leq|X|-1, & \text { for } X \subset V \\
& \sum_{e \in E} x_{e}=n-1 & \\
& x_{e} \leq p, & \text { for } e \in E \\
& x_{e} \geq 0, & \text { for } e \in E
\end{array}
$$

- Such a probability distribution exists!
- x is in the (original) MST polytope
- Caratheodory's theorem: x is a convex combination of $m+1$ vertices of MST polytope
- By integrality of MST polytope: x is the "expectation" of a probability distribution over spanning trees.
- Consequence of Ellipsoid algorithm: can compute such a decomposition of x efficiently!

Outline

(1) Spanning Trees

(2) Flows

The Maximum Flow Problem

Given a directed graph $G=(V, E)$ with capacities u_{e} on edges e, a source node s, and a sink node t, find a maximum flow from s to t respecting the capacities.

```
maximize }\mp@subsup{\sum}{e\in\mp@subsup{\delta}{}{+}(s)}{}\mp@subsup{x}{e}{}-\mp@subsup{\sum}{e\in\mp@subsup{\delta}{}{-}(s)}{}\mp@subsup{x}{e}{
subject to \quad 
    x
    x
```

Can be computed either by solving the LP, or by a combinatorial algorithm such as Ford Fulkerson.

Primal LP

Dual LP (Simplified)

$\max \sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e}$
s.t.

$$
\begin{array}{ll}
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

$\min \sum_{e \in E} u_{e} z_{e}$

s.t.
$y_{v}-y_{u} \leq z_{e}, \quad \forall e=(u, v) \in E$.
$y_{s}=0$
$y_{t}=1$
$z_{e} \geq 0, \quad \forall e \in E$.

- Dual solution describes fraction z_{e} of each edge to fractionally cut

Primal LP

$$
\max \sum_{e \in \delta^{\delta+}(s)} x_{e}-\sum_{e \in \delta^{-(s)}} x_{e}
$$

s.t.

$$
\begin{array}{ll}
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Dual LP (Simplified)

$$
\begin{array}{ll}
\min \sum_{e \in E} u_{e} z_{e} & \\
\text { s.t. } & \\
y_{v}-y_{u} \leq z_{e}, & \forall e=(u, v) \in E . \\
y_{s}=0 & \\
y_{t}=1 & \forall e \in E . \\
z_{e} \geq 0, &
\end{array}
$$

- Dual solution describes fraction z_{e} of each edge to fractionally cut
- Dual constraints require that at least 1 edge is cut on every path from s to t.
- $\sum_{(u, v) \in P} z_{u v} \geq \sum_{(u, v) \in P} y_{v}-y_{u}=y_{t}-y_{s}=1$

Primal LP

$\max \sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e}$
s.t.

$$
\begin{array}{ll}
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Dual LP (Simplified)

$\min \sum_{e \in E} u_{e} z_{e}$

s.t.
$y_{v}-y_{u} \leq z_{e}, \quad \forall e=(u, v) \in E$.
$y_{s}=0$
$y_{t}=1$
$z_{e} \geq 0$,
$\forall e \in E$.

- Every integral $s-t$ cut is feasible.

Primal LP

$$
\max \sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e}
$$

s.t.

$$
\begin{array}{ll}
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Dual LP (Simplified)

$\min \sum_{e \in E} u_{e} z_{e}$

s.t.
$y_{v}-y_{u} \leq z_{e}, \quad \forall e=(u, v) \in E$. $y_{s}=0$
$y_{t}=1$
$z_{e} \geq 0$,
$\forall e \in E$.

- Every integral $s-t$ cut is feasible.
- By weak duality: max flow \leq minimum cut

Primal LP

$$
\max \sum_{e \in \delta^{\delta+}(s)} x_{e}-\sum_{e \in \delta^{-(s)}} x_{e}
$$

s.t.

$$
\begin{array}{ll}
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Dual LP (Simplified)

$$
\begin{array}{ll}
\min \sum_{e \in E} u_{e} z_{e} & \\
\text { s.t. } & \\
y_{v}-y_{u} \leq z_{e}, & \forall e=(u, v) \in E . \\
y_{s}=0 & \\
y_{t}=1 & \forall e \in E . \\
z_{e} \geq 0, &
\end{array}
$$

- Every integral $s-t$ cut is feasible.
- By weak duality: max flow \leq minimum cut
- Ford-Fulkerson shows that max flow = min cut
- i.e. dual has integer optimal

Primal LP

$$
\max \sum_{e \in \delta^{\delta+}(s)} x_{e}-\sum_{e \in \delta^{-(s)}} x_{e}
$$

s.t.

$$
\begin{array}{ll}
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Dual LP (Simplified)

$$
\begin{array}{ll}
\min \sum_{e \in E} u_{e} z_{e} & \\
\text { s.t. } & \\
y_{v}-y_{u} \leq z_{e}, & \forall e=(u, v) \in E . \\
y_{s}=0 & \\
y_{t}=1 & \forall e \in E . \\
z_{e} \geq 0, &
\end{array}
$$

- Every integral $s-t$ cut is feasible.
- By weak duality: max flow \leq minimum cut
- Ford-Fulkerson shows that max flow = min cut
- i.e. dual has integer optimal
- Ford-Fulkerson also shows that there is an integral optimal flow when capacities are integer.

Generalizations of Max Flow

$$
\begin{array}{ll}
\max \sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e} & \\
\text { s.t. } & \\
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} . \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Writing as an LP shows that many generalizations are also tractable

Generalizations of Max Flow

$$
\begin{array}{ll}
\max \sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e} & \\
\text { s.t. } \\
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} . \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_{e} \leq x_{e} \leq u_{e}$

Generalizations of Max Flow

$$
\begin{array}{ll}
\max \sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e} & \\
\text { s.t. } & \\
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} . \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_{e} \leq x_{e} \leq u_{e}$
- minimum cost flow of a certain amount r
- Objective min $\sum_{e} c_{e} x_{e}$
- Additional constraint: $\sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e}=r$

Generalizations of Max Flow

$$
\begin{array}{ll}
\max \sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e} & \\
\text { s.t. } & \\
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} . \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_{e} \leq x_{e} \leq u_{e}$
- minimum cost flow of a certain amount r
- Objective min $\sum_{e} c_{e} x_{e}$
- Additional constraint: $\sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e}=r$
- Multiple commodities sharing the network

Generalizations of Max Flow

$$
\begin{array}{ll}
\max \sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e} & \\
\text { s.t. } & \\
\sum_{e \in \delta^{-}(v)} x_{e}=\sum_{e \in \delta^{+}(v)} x_{e}, & \forall v \in V \backslash\{s, t\} . \\
x_{e} \leq u_{e}, & \forall e \in E . \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_{e} \leq x_{e} \leq u_{e}$
- minimum cost flow of a certain amount r
- Objective min $\sum_{e} c_{e} x_{e}$
- Additional constraint: $\sum_{e \in \delta^{+}(s)} x_{e}-\sum_{e \in \delta^{-}(s)} x_{e}=r$
- Multiple commodities sharing the network
- ...

