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Recall: Feasibility Problem

The ellipsoid method solves the following problem.

Convex Feasibility Problem
Given as input the following

A description of a compact convex set K ⊆ Rn

An ellipsoid E(c,Q) (typically a ball) containing K
A rational number R > 0 satisfying vol(E) ≤ R.
A rational number r > 0 such that if K is nonempty, then
vol(K) ≥ r.

Find a point x ∈ K or declare that K is empty.

Equivalent variant: drop the requirement on volume vol(K), and
either find a point x ∈ K or an ellipsoid E ⊇ K with vol(E) < r.
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All the ellipsoid method needed was the following subroutine

Separation oracle
An algorithm that takes as input x ∈ Rn, and either certifies x ∈ K or
outputs a hyperplane separting x from K.

i.e. a vector h ∈ Rn with hᵀx ≥ hᵀy for all y ∈ K.
Equivalently, K is contained in the halfspace

H(h, x) = {y : hᵀy ≤ hᵀx}

with x at its boundary.

Examples:
Explicitly written polytope Ay ≤ b: take h = ai to the row of A
corresponding to a constraint violated by x.
Convex set given by a family of convex inequalities fi(y) ≤ 0: Let
h = 5fi(x) for some violated constraint.
The positive semi-definite cone S+

n : Let H be the outer product
vvᵀ of an eigenvector v of X corresponding to a negative
eigenvalue.
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Ellipsoid Method
1 Start with initial ellipsoid E = E(c,Q) ⊇ K
2 Using the separation oracle, check if the center c ∈ K.

If so, terminate and output c.
Otherwise, we get a separating hyperplane h such that K is
contained in the half-ellipsoid E

⋂
{y : hᵀy ≤ hᵀc}

3 Let E′ = E(c′, Q′) be the minimum volume ellipsoid containing the
half ellipsoid above.

4 If vol(E′) ≥ r then set E = E′ and repeat (step 2), otherwise stop
and return “empty”.
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Properties

Using T to denote the runtime of the separation oracle

Theorem
The ellipsoid algorithm terminates in time polynomial n, ln R

r , and T ,
and either outputes x ∈ K or correctly declares that K is empty.

We proved most of this. For the rest, see references.

Note
For runtime polynomial in input size we need

T polynomial in input size
R
r exponential in input size
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Recall: Convex Optimization Problem
A problem of minimizing a convex function (or maximizing a concave
function) over a convex set.

minimize f(x)
subject to x ∈ X

Where X ⊆ Rn is convex and closed, and f : Rn → R is convex

We will abstract away details of how instances of a problem are
represented, but denote the length of the description by 〈I〉
We simply require polynomial time (in 〈I〉 and n) separation
oracles and such.
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Solvability of Convex Optimization

There are many subtly different “solvability statements”. This one is the
most useful, yet simple to describe, IMO.

Requirements
We say an algorithm weakly solves a convex optimization problem in
polynomial time if it:

Takes an approximation parameter ε > 0

Terminates in time poly(〈I〉, n, log(1ε ))

Returns an ε-optimal x ∈ X :

f(x) ≤ min
y∈X

f(y) + ε[max
y∈X

f(y)−min
y∈X

f(y)]
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Solvability of Convex Optimization

Theorem (Polynomial Solvability of CP)
Consider a family Π of convex optimization problems I = (f,X )
admitting the following operations in polynomial time (in 〈I〉 and n):

A separation oracle for the feasible set X ⊆ Rn

A first order oracle for f : evaluates f(x) and 5f(x).
An algorithm which computes a starting ellipsoid E ⊇ X with
vol(E)
vol(X ) = O(exp(〈I〉, n)).

Then there is a polynomial time algorithm which weakly solves Π.

Let’s now prove this, by reducing to the ellipsoid method
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Proof (Simplified)

Simplifying Assumption
Assume we are given miny∈X f(y) and maxy∈X f(y). Without loss of
generality assume they are [0, 1].

Our task reduces to the following convex feasibility problem:

find x
subject to x ∈ X

f(x) ≤ ε
We can feed this into the Ellipsoid method!

Needed Ingredients
1 Separation oracle for new feasible set K:

Use the separation
oracle for X and first order oracle for f

2 Ellipsoid E containing K:

Use the ellipsoid containing X

3 Guarantee that vol(E)
vol(K) ≤ exp(n, 〈I〉, log 1

ε ):

Uh oh!
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Proof (Simplified)

K = {x ∈ X : f(x) ≤ ε}

Lemma
vol(K) ≤ εn vol(X).

This shows that vol(K) is only exponentially smaller (in n and log 1
ε )

than vol(X ), and therefore also vol(E), so it suffices.

Assume wlog 0 ∈ X and f(0) = minx∈X f(x) = 0.
Consider scaling X by ε to get εX .
vol(εX ) = εn vol(X).
We show that εX ⊆ K by showing f(y) ≤ ε for all y ∈ εX .
Let y = εx for x ∈ X , and invoke Jensen’s inequality

f(y) = f(εx+ (1− ε)0) ≤ εf(x) + (1− ε)f(0) ≤ ε
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Proof (General)

Denote L = miny∈X f(y) and H = maxy∈X f(y)

If we knew the target T = L+ ε[H − L], we can reduce to solving
the feasibility problem over K = {x ∈ X : f(x) ≤ T}.

If we knew it lied in a sufficiently narrow range, we could binary
search for T
We don’t need to know anything about T !

Key Observation
We don’t really need to know T , H, or L to simulate the same
execution of the ellipsoid method on K!!
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Proof (General)

find x
subject to x ∈ X

f(x) ≤ T = L+ ε[H − L]

Simulate the execution of the ellipsoid method on K
Polynomial number of iterations, terminating with point in K

Require separation oracle for K to use 5f only as a last resort
This is allowed.
Tries to get feasibility whenever possible.

Action of algorithm in each iteration other than the last can be
described independently of T

If ellipsoid center c /∈ X , use separating hyperplane with X .
Else use 5f(c)

Run this simulation until enough iterations have passed, and take
the best feasible point encountered. This must be in K.
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Recall: Linear Programming

Recall: Linear Programming Problem
A problem of maximizing a linear function over a polyhedron.

maximize cᵀx
subject to Ax � b

When stated in standard form, optimal solution occurs at a vertex.
We will consider both explicitly and implicit LPs

Explicit: given by A, b and c
Implicit: Given by c and a separation oracle for Ax ≤ b.

In both cases, we require all numbers to be rational
In the explicit case, we require polynomial time in 〈A〉, 〈b〉, and 〈c〉,
the number of bits used to represent the parameters of the LP.
In the implicit case, we require polynomial time in the bit
complexity of individual entries of A, b, c.
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Implicit: Given by c and a separation oracle for Ax ≤ b.

In both cases, we require all numbers to be rational
In the explicit case, we require polynomial time in 〈A〉, 〈b〉, and 〈c〉,
the number of bits used to represent the parameters of the LP.
In the implicit case, we require polynomial time in the bit
complexity of individual entries of A, b, c.
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Theorem (Polynomial Solvability of Explicit LP)
There is a polynomial time algorithm for linear programming, when the
linear program is represented explicitly.

Proof Sketch (Informal)
Using result for weakly solving convex programs, we need 4 things:

A separation oracle for Ax ≤ b: trivial when explicitly represented
A first order oracle for cᵀx: also trivial
A bounding ellipsoid of volume at most an exponential times the
volume of the feasible polyhedron: tricky
A way of “rounding” an ε-optimal solution to an optimal vertex
solution: tricky

Solution to both issues involves tedious accounting of numerical issues
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Ellipsoid and Volume Bound (Informal)

Key to tackling both difficulties is the following observation:

Lemma
Let v be vertex of the polyhedron Ax ≤ b. It is the case that v has
polynomial bit complexity, i.e. 〈v〉 ≤M , where M = O(poly(〈A〉, 〈b〉)).

Specifically, the solution of a system of linear equations has bit
complexity polynomially related to that of the equations.

Complexity of Linear Programming 13/27



Ellipsoid and Volume Bound (Informal)

Key to tackling both difficulties is the following observation:

Lemma
Let v be vertex of the polyhedron Ax ≤ b. It is the case that v has
polynomial bit complexity, i.e. 〈v〉 ≤M , where M = O(poly(〈A〉, 〈b〉)).

Specifically, the solution of a system of linear equations has bit
complexity polynomially related to that of the equations.

Bounding ellipsoid: all vertices contained in the box
−2M ≤ x ≤ 2M , which in turn is contained in an ellipsoid of
volume exponential in M and n.
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Let v be vertex of the polyhedron Ax ≤ b. It is the case that v has
polynomial bit complexity, i.e. 〈v〉 ≤M , where M = O(poly(〈A〉, 〈b〉)).

Specifically, the solution of a system of linear equations has bit
complexity polynomially related to that of the equations.

Volume lowerbound: Relaxing to Ax ≤ b+ ε, for sufficiently small ε
with 〈ε〉 = poly(M). Gives volume exponentially small in M , but
no smaller. Still close enough to original polyhedron so solution to
relaxed problem can be “rounded” to solution of the latter.
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Key to tackling both difficulties is the following observation:

Lemma
Let v be vertex of the polyhedron Ax ≤ b. It is the case that v has
polynomial bit complexity, i.e. 〈v〉 ≤M , where M = O(poly(〈A〉, 〈b〉)).

Specifically, the solution of a system of linear equations has bit
complexity polynomially related to that of the equations.

Rounding to a vertex: If a point y is ε-optimal, for sufficiently small
ε chosen carefully to polynomial in description of input, then
rounding to the nearest x with M bits recovers the vertex.
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Theorem (Polynomial Solvability of Implicit LP)
Consider a family Π of linear programming problems I = (A, b, c)
admitting the following operations in polynomial time (in 〈I〉 and n):

A separation oracle for the polyhedron Ax ≤ b
Explicit access to c

Moreover, assume that every 〈aij〉, 〈bi〉, 〈cj〉 are at most poly(〈I〉, n).
Then there is a polynomial time algorithm for Π (both primal and dual).

Informal Proof Sketch (Primal)

Separation oracle and first order oracle are given
Rounding to a vertex exactly as in the explicit case.

Every vertex v still has polynomial bit complexity M

Bounding ellipsoid: Still true that we get a bounding ellipsoid of
volume exponential in 〈I〉 and n
However, no lowerbound on the volume of Ax ≤ b — can’t relax to
Ax ≤ b+ ε as in the explicit case.

It turns out this is still OK, but takes a lot of work.
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Theorem (Polynomial Solvability of Implicit LP)
Consider a family Π of linear programming problems I = (A, b, c)
admitting the following operations in polynomial time (in 〈I〉 and n):

A separation oracle for the polyhedron Ax ≤ b
Explicit access to c

Moreover, assume that every 〈aij〉, 〈bi〉, 〈cj〉 are at most poly(〈I〉, n).
Then there is a polynomial time algorithm for Π (both primal and dual).

For the dual, we need equivalence of separation and optimization
(HW?)
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Separation and Optimization

One interpretation of the previous theorem is that optimization of
linear functions over a polytope of polynomial bit complexity
reduces to implementing a separation oracle
As it turns out, the two tasks are polynomial-time equivalent.

Lets formalize the two questions, parametrized by a polytope P .

Linear Optimization Problem
Input: Linear objective c ∈ Rn.
Output: argmaxx∈P c

ᵀx.

Separation Problem
Input: y ∈ Rn

Output: Decide that y ∈ P , or else find h ∈ Rn s.t. hᵀx < hᵀy for
all x ∈ P .
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Recall: Minimum Cost Spanning Tree

Given a connected undirected
graph G = (V,E), and costs ce on
edges e, find a minimum cost
spanning tree of G.

Spanning Tree Polytope∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≥ 0, for e ∈ E.

Optimization: Find the minimum/maximum weight spanning tree
Separation: Find X ⊂ V with

∑
e⊆X xe > |X| − 1, if one exists

i.e. When edge weights are x, find a “dense” subgraph
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Theorem (Equivalence of Separation and Optimization for
Polytopes)
Consider a family P of polytopes P = {x : Ax ≤ b} described implicitly
using 〈P 〉 bits, and satisfying 〈aij〉, 〈bi〉 ≤ poly(〈P 〉, n). Then the
separation problem is solvable in poly(〈P 〉, n, 〈y〉) time for P ∈ P if and
only if the linear optimization problem is solvable in poly(〈P 〉, n, 〈c〉)
time.

Colloquially, we say such polytope families are solvable.

E.g. Spanning tree polytopes, represented by graphs, are
solvable.
We already sketched the proof of the forward direction

Separation⇒ optimization

For the other direction, we need polars
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Recall: Polar Duality of Convex Sets

One way of representing the all halfspaces containing a convex set.

Polar
Let S ⊆ Rn be a closed convex set containing the origin. The polar of
S is defined as follows:

S◦ = {y : x · y ≤ 1 for all x ∈ S}

Note
Every halfspace aᵀx ≤ b with b 6= 0 can be written as a
“normalized” inequality yᵀx ≤ 1, by dividing by b.
S◦ can be thought of as the normalized representations of
halfspaces containing S.
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Properties of the Polar
1 If S is bounded and 0 ∈ interior(S), then the same holds for S◦.
2 S◦◦ = S

S = {x : y · x ≤ 1 for all y ∈ S◦} S◦ = {y : x · y ≤ 1 for all x ∈ S}
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Polarity of Polytopes

Polytopes

Given a polytope P represented as Ax � ~1, the polar P ◦ is the convex
hull of the rows of A.

Facets of P correspond to vertices of P ◦.
Dually, vertices of P correspond to facets of P ◦.
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Proof Outline: Optimization⇒ Separation
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S = {x : y · x ≤ 1 for all y ∈ S◦} S◦ = {y : x · y ≤ 1 for all x ∈ S}

Lemma
Separation over S reduces in constant time to optimization over S◦,
and vice versa since S◦◦ = S.

Proof
We are given vector x, and must check whether x ∈ S, and if not
output separating hyperplane.
x ∈ S iff y · x ≤ 1 for all y ∈ S◦

equivalently, iff maxy∈S◦ y · x ≤ 1.
If we find y ∈ S◦ s.t. y · x > 1, then y is the separating hyperplane

yᵀz ≤ 1 < yᵀx for every z ∈ S.
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Optimization⇐⇒ Separation
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Beyond Polytopes

Essentially everything we proved about equivalence of separation and
optimization for polytopes extends to (approximately) to arbitrary
convex sets.

Problems parametrized by P , a closed convex set.

Weak Optimization Problem
Input: Linear objective c ∈ Rn.
Output: x ∈ P+ε, and cᵀx ≥ maxx′∈P c

ᵀx′ − ε

Weak Separation Problem
Input: y ∈ Rn

Output: Decide that y ∈ P−ε, or else find h ∈ Rn with ||h|| = 1 s.t.
hᵀx < hᵀy + ε for all x ∈ P .

I could have equivalently stated the weak optimization problem for
convex functions instead of linear.
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Theorem (Equivalence of Separation and Optimization for
Convex Sets)
Consider a family P of convex sets described implicitly using 〈P 〉 bits.
Then the weak separation problem is solvable in poly(〈P 〉, n, 〈y〉) time
for P ∈ P if and only if the weak optimization problem is also solvable
in poly(〈P 〉, n, 〈c〉) time.

The “approximation” in this statement is necessary, since we can’t
solve convex optimization problems exactly.
Weak separation suffices for ellipsoid, which is only approximately
optimal anyways
By polarity, weak optimization is equivalent to weak separation
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Implication: Constructive Caratheodory
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Implication: Solvability is closed under intersection
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