CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 22: Introduction to Matroid Theory

Instructor: Shaddin Dughmi

- We should have heard from you about projects
- First two problems of HW3 released
 - It's shorter, but still pace yourself.

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - TSP
 - ...

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - TSP
 - ...
- Set system: Pair (X, I) where X is a finite ground set and $I \subseteq 2^X$ are the feasible sets

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - TSP
 - ...
- Set system: Pair (X, I) where X is a finite ground set and $I \subseteq 2^X$ are the feasible sets
- Objective: often "linear", referred to as modular

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - TSP
 - ...
- Set system: Pair (X, I) where X is a finite ground set and $I \subseteq 2^X$ are the feasible sets
- Objective: often "linear", referred to as modular
- Analogues of concave convex: submodular and supermodular (in no particular order!)

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - TSP
 - ...
- Set system: Pair (X, I) where X is a finite ground set and $I \subseteq 2^X$ are the feasible sets
- Objective: often "linear", referred to as modular
- Analogues of concave convex: submodular and supermodular (in no particular order!)
- Today, we will look only at optimizing modular objectives over an extremely prolific family of set systems
 - Related, directly or indirectly, to a large fraction of optimization problems in ${\cal P}$
 - Also pops up in submodular/supermodular optimization problems

1 Matroids and The Greedy Algorithm

- 2 Basic Terminology and Properties
- 3 The Matroid Polytope
- Matroid Intersection

Maximum Weight Forest Problem

Given a connected undirected graph G = (V, E), and weights $w_e \in \mathbb{R}$ on edges e, find a maximum weight acyclic subgraph (aka forest) of G.

- Slight generalization of minimum weight spanning tree
- We use n and m to denote |V| and |E|, respectively.

The Greedy Algorithm

- $B \leftarrow \emptyset$
- Sort non-negative weight edges in decreasing order of weight
 - e_1, \ldots, e_m , with $w_1 \ge w_2 \ge \ldots \ge w_m \ge 0$
- For i = 1 to m:
 - if $B \bigcup \{e_i\}$ is acyclic, add e_i to B.

The Greedy Algorithm

- Sort non-negative weight edges in decreasing order of weight
 - e_1, \ldots, e_m , with $w_1 \ge w_2 \ge \ldots \ge w_m \ge 0$
- For i = 1 to m:
 - if $B \bigcup \{e_i\}$ is acyclic, add e_i to B.

Theorem

The greedy algorithm outputs a maximum-weight forest.

- The empty set is acyclic
- 2 If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \bigcup \{e\}$ is acyclic

- The empty set is acyclic
- 2 If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \bigcup \{e\}$ is acyclic

(1) and (2) are trivial, so let's prove (3)

- The empty set is acyclic
- 2 If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- If *A*, *B* are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \bigcup \{e\}$ is acyclic
 - Sub-lemma: if C is acyclic, then |C| = n #components(C).
 Induction

- The empty set is acyclic
- 2 If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \bigcup \{e\}$ is acyclic
 - Sub-lemma: if C is acyclic, then |C| = n #components(C).
 Induction
 - When |B| > |A|, this means #components(B) < #components(A)

- The empty set is acyclic
- 2 If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \bigcup \{e\}$ is acyclic
 - Sub-lemma: if C is acyclic, then |C| = n #components(C).
 Induction
 - When |B| > |A|, this means #components(B) < #components(A)
 - Can't be that all $e \in B$ are "inside" connected components of A

- The empty set is acyclic
- 2 If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \bigcup \{e\}$ is acyclic
 - Sub-lemma: if C is acyclic, then |C| = n #components(C).
 Induction
 - When |B| > |A|, this means #components(B) < #components(A)
 - Can't be that all $e \in B$ are "inside" connected components of A
 - Some $e \in B$ must "go between" connected components of A.

- The empty set is acyclic
- 2 If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
 - Converse: if B cyclic then so is A
- If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \bigcup \{e\}$ is acyclic
 - Inductively: can extend A by adding |B|-|A| elements from $B\setminus A$
 - Sub-lemma: if C is acyclic, then |C| = n #components(C).
 Induction
 - When |B| > |A|, this means #components(B) < #components(A)
 - Can't be that all $e \in B$ are "inside" connected components of A
 - Some $e \in B$ must "go between" connected components of A.

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_i^* which "agrees" with the algorithm's choices on edges e_1, \ldots, e_i .

• i.e. if B_i denotes the algorithm's choice up to iteration i, then $B_i = B_i^* \bigcap \{e_1, \ldots, e_i\}$

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_i^* which "agrees" with the algorithm's choices on edges e_1, \ldots, e_i .

• i.e. if B_i denotes the algorithm's choice up to iteration i, then $B_i = B_i^* \bigcap \{e_1, \ldots, e_i\}$

• Assume true for step i - 1, and consider step i

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_i^* which "agrees" with the algorithm's choices on edges e_1, \ldots, e_i .

- i.e. if B_i denotes the algorithm's choice up to iteration i, then $B_i = B_i^* \bigcap \{e_1, \ldots, e_i\}$
- Assume true for step i 1, and consider step i
- If $e_i \notin B_i$, then $B_{i-1} \bigcup \{e_i\}$ is cyclic. Since $B_{i-1} \subseteq B_{i-1}^*$, then $e_i \notin B_{i-1}^*$ (Property 2). So take $B_i^* = B_{i-1}^*$.

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_i^* which "agrees" with the algorithm's choices on edges e_1, \ldots, e_i .

- i.e. if B_i denotes the algorithm's choice up to iteration i, then $B_i = B_i^* \bigcap \{e_1, \ldots, e_i\}$
- Assume true for step *i* − 1, and consider step *i*
- If $e_i \notin B_i$, then $B_{i-1} \bigcup \{e_i\}$ is cyclic. Since $B_{i-1} \subseteq B_{i-1}^*$, then $e_i \notin B_{i-1}^*$ (Property 2). So take $B_i^* = B_{i-1}^*$.
- If $e_i \in B_i$ and $e_i \notin B_i^*$, extend B_i to the size of B_{i-1}^* (property 3)
 - Recall that $B_{i-1} = B_i \setminus \{e_i\} \subseteq B_{i-1}^*$
 - $B_i^* = B_{i-1}^* \bigcup \{e_i\} \setminus \{e_k\}$ for some k > i
 - B_i^* has weight no less than B_{i-1}^* , so optimal.

To prove optimality of the greedy algorithm, all we needed was the following.

Matroids

A set system $M = (\mathcal{X}, \mathcal{I})$ is a matroid if

$$\textcircled{0} \quad \emptyset \in \mathcal{I}$$

- **2** If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (Downward Closure)
- ③ If $A, B \in \mathcal{I}$ and |B| > |A|, then $\exists x \in B \setminus A$ such that $A \bigcup \{x\} \in \mathcal{I}$ (Exchange Property)

To prove optimality of the greedy algorithm, all we needed was the following.

Matroids

A set system $M = (\mathcal{X}, \mathcal{I})$ is a matroid if

- $\bigcirc \quad \emptyset \in \mathcal{I}$
- 2 If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (Downward Closure)
- ③ If $A, B \in \mathcal{I}$ and |B| > |A|, then $\exists x \in B \setminus A$ such that $A \bigcup \{x\} \in \mathcal{I}$ (Exchange Property)
 - Three conditions above are called the matroid axioms
 - $A \in \mathcal{I}$ is called an independent set of the matroid.

To prove optimality of the greedy algorithm, all we needed was the following.

Matroids

A set system $M = (\mathcal{X}, \mathcal{I})$ is a matroid if

- $\bigcirc \quad \emptyset \in \mathcal{I}$
- 2 If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (Downward Closure)
- ③ If $A, B \in \mathcal{I}$ and |B| > |A|, then $\exists x \in B \setminus A$ such that $A \bigcup \{x\} \in \mathcal{I}$ (Exchange Property)
 - Three conditions above are called the matroid axioms
 - $A \in \mathcal{I}$ is called an independent set of the matroid.
 - The matroid whose independent sets are acyclic subgraphs is called a graphic matroid
 - Other examples abound!

Example: Linear Matroid

- \mathcal{X} is a finite set of vectors $\{v_1, \dots, v_m\} \subseteq \mathbb{R}^n$
- $S \in \mathcal{I}$ iff the vectors in S are linearly independent
- Downward closure: If a set of vectors is linearly independent, then every subset of it is also
- Exchange property: Can always extend a low-dimension independent set *S* by adding vectors from a higher dimension independent set *T*

Example: Uniform Matroid

- \mathcal{X} is an arbitrary finite set $\{1, \ldots, n\}$.
- $S \in \mathcal{I}$ iff $|S| \leq k$.
- Downward closure: If a set S has $|S| \le k$ then the same holds for $T \subseteq S$.
- Exchange property: If $|S| < |T| \le k$, then there is an element in $T \setminus S$, and we can add it to S while preserving independence.

Example: Partition Matroid

- \mathcal{X} is the disjoint union of classes X_1, \ldots, X_m
- Each class X_j has an upperbound k_j .

•
$$S \in \mathcal{I}$$
 iff $|S \bigcap X_j| \le k_j$ for all j

• This is the "disjoint union" of a number of uniform matroids

Example: Transversal Matroid

- Described by a bipartite graph $E \subseteq L \times R$
- $\mathcal{X} = L$
- $S \in \mathcal{I}$ iff there is a bipartite matching which matches S
- Downward closure: If we can match S, then we can match $T \subseteq S$.
- Exchange property: If |T| > |S| is matchable, then an augmenting path/alternating path amends the extends the matching of S to some $x \in T \setminus S$.

The Greedy Algorithm

② Sort nonnegative elements of \mathcal{X} in decreasing order of weight

•
$$\{1, ..., n\}$$
 with $w_1 \ge w_2, \ge ... \ge w_n \ge 0$.

Solution For
$$i = 1$$
 to n :

• if $B \bigcup \{i\} \in \mathcal{I}$, add i to B.

Theorem

The greedy algorithm returns the maximum weight set for every choice of weights if and only if the set system $(\mathcal{X}, \mathcal{I})$ is a matroid.

We already saw the "if" direction. We will skip "only if".

The Greedy Algorithm on Matroids

The Greedy Algorithm

- ② Sort nonnegative elements of \mathcal{X} in decreasing order of weight
 - $\{1, ..., n\}$ with $w_1 \ge w_2, \ge ... \ge w_n \ge 0$.
- For i = 1 to n:
 - if $B \bigcup \{i\} \in \mathcal{I}$, add *i* to *B*.

The Greedy Algorithm on Matroids

The Greedy Algorithm

- ② Sort nonnegative elements of $\mathcal X$ in decreasing order of weight
 - $\{1,\ldots,n\}$ with $w_1 \ge w_2, \ge \ldots \ge w_n \ge 0$.
- For i = 1 to n:
 - if $B \bigcup \{i\} \in \mathcal{I}$, add i to B.
 - To implement this, we need an independence oracle for step 3
 - A subroutine which checks whether $S \in \mathcal{I}$ or not.
 - Runs in time $O(n \log n) + nT$, where T is runtime of the independence oracle.

The Greedy Algorithm on Matroids

The Greedy Algorithm

- ② Sort nonnegative elements of \mathcal{X} in decreasing order of weight
 - $\{1, ..., n\}$ with $w_1 \ge w_2, \ge ... \ge w_n \ge 0$.
- For i = 1 to n:
 - if $B \bigcup \{i\} \in \mathcal{I}$, add i to B.
 - To implement this, we need an independence oracle for step 3
 - A subroutine which checks whether $S \in \mathcal{I}$ or not.
 - Runs in time $O(n \log n) + nT$, where *T* is runtime of the independence oracle.
 - For most "natural" matroids, independence oracle is easy to implement efficiently
 - Graphic matroid
 - Linear matroid
 - Uniform/partition matroid
 - Transversal matroid

Matroids and The Greedy Algorithm

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I})$.

• An independent set is a set $A \in \mathcal{I}$.

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I}).$

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set
Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set
- A base of $S \subseteq \mathcal{X}$ in \mathcal{M} is maximal independent subset of S
 - I.e. a base of the matroid after deleting \overline{S} .

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I}).$

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set
- A base of $S \subseteq \mathcal{X}$ in \mathcal{M} is maximal independent subset of S
 - I.e. a base of the matroid after deleting \overline{S} .
- A circuit $S \subseteq \mathcal{X}$ is a minimal dependent subset of \mathcal{X}

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set
- A base of $S \subseteq \mathcal{X}$ in \mathcal{M} is maximal independent subset of S
 - I.e. a base of the matroid after deleting \overline{S} .
- A circuit $S \subseteq \mathcal{X}$ is a minimal dependent subset of \mathcal{X}

What are these for:

- Graphic matroid
- Linear matroid
- Uniform matroid
- Partition matroid
- Transversal matroid

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S = \mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S = \mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension

• Follows directly from the exchange property.

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S = \mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension
- Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank

- The Rank of S ⊆ X in M is the size of the maximal independent subsets (i.e. bases) of S.
- The rank of \mathcal{M} is the size of the bases of \mathcal{M} .
- The function $rank_{\mathcal{M}}(S): 2^{\mathcal{X}} \to \mathbb{N}$ is called the rank function of \mathcal{M} .

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S = \mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension
- Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank

- The Rank of S ⊆ X in M is the size of the maximal independent subsets (i.e. bases) of S.
- The rank of \mathcal{M} is the size of the bases of \mathcal{M} .
- The function $rank_{\mathcal{M}}(S): 2^{\mathcal{X}} \to \mathbb{N}$ is called the rank function of \mathcal{M} .

E.g.: Graphic matroid, linear matroid, transversal matroid

Basic Terminology and Properties

Span

Given $S \subseteq \mathcal{X}$, $span(S) = \{i \in \mathcal{X} : rank(S) = rank(S \bigcup \{i\})\}$

- $\bullet\,$ i.e. the elements which would form a circuit if added to a base of S
- e.g.: Linear matroid, graphic matroid, uniform matroid.

Span

Given $S \subseteq \mathcal{X}$, $span(S) = \{i \in \mathcal{X} : rank(S) = rank(S \bigcup \{i\})\}$

- $\bullet\,$ i.e. the elements which would form a circuit if added to a base of $S\,$
- e.g.: Linear matroid, graphic matroid, uniform matroid.

Observation

i is selected by the greedy algorithm iff $i \notin span(\{1, \ldots, i-1\})$

Given $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, consider the following operations:

• Deletion: For $B \subseteq \mathcal{X}$, we define $\mathcal{M} \setminus B = (\mathcal{X}', \mathcal{I}')$ with $\mathcal{X}' = X \setminus B$,

$$\mathcal{I}' = \left\{ S \subseteq X' : S \in \mathcal{I} \right\}$$

• Graphic: deleting edges from the graph

Given $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, consider the following operations:

• Deletion: For $B \subseteq \mathcal{X}$, we define $\mathcal{M} \setminus B = (\mathcal{X}', \mathcal{I}')$ with $\mathcal{X}' = X \setminus B$,

$$\mathcal{I}' = \left\{ S \subseteq X' : S \in \mathcal{I} \right\}$$

• Graphic: deleting edges from the graph

• Disjoint union: Given $M_1 = (\mathcal{X}_1, \mathcal{I}_2)$ and $M_2 = (\mathcal{X}_2, \mathcal{I}_2)$ with $\mathcal{X}_1 \bigcap \mathcal{X}_2 = \emptyset$, we define

$$M_1 \oplus M_2 = (\mathcal{X}_1 \bigcup \mathcal{X}_2, \left\{ A_1 \bigcup A_2 : A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \right\})$$

Graphic: combining two node-disjoint graphs

Given $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, consider the following operations:

• Deletion: For $B \subseteq \mathcal{X}$, we define $\mathcal{M} \setminus B = (\mathcal{X}', \mathcal{I}')$ with $\mathcal{X}' = X \setminus B$,

$$\mathcal{I}' = \left\{ S \subseteq X' : S \in \mathcal{I} \right\}$$

• Graphic: deleting edges from the graph

• Disjoint union: Given $M_1 = (\mathcal{X}_1, \mathcal{I}_2)$ and $M_2 = (\mathcal{X}_2, \mathcal{I}_2)$ with $\mathcal{X}_1 \bigcap \mathcal{X}_2 = \emptyset$, we define

$$M_1 \oplus M_2 = (\mathcal{X}_1 \bigcup \mathcal{X}_2, \left\{ A_1 \bigcup A_2 : A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \right\})$$

Graphic: combining two node-disjoint graphs

• Contraction: Given $B \subseteq \mathcal{X}$, let $M/B = (X', \mathcal{I}')$ with $X' = X \setminus B$,

$$\mathcal{I}' = \left\{ S \subseteq X' : B \bigcup S \in \mathcal{I} \right\}$$

• i.e. Think of B as always being included

• Graphic: contract the connected components of B

Given $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, consider the following operations:

• Deletion: For $B \subseteq \mathcal{X}$, we define $\mathcal{M} \setminus B = (\mathcal{X}', \mathcal{I}')$ with $\mathcal{X}' = X \setminus B$,

$$\mathcal{I}' = \left\{ S \subseteq X' : S \in \mathcal{I} \right\}$$

• Graphic: deleting edges from the graph

• Disjoint union: Given $M_1 = (\mathcal{X}_1, \mathcal{I}_2)$ and $M_2 = (\mathcal{X}_2, \mathcal{I}_2)$ with $\mathcal{X}_1 \bigcap \mathcal{X}_2 = \emptyset$, we define

$$M_1 \oplus M_2 = (\mathcal{X}_1 \bigcup \mathcal{X}_2, \left\{ A_1 \bigcup A_2 : A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \right\})$$

Graphic: combining two node-disjoint graphs

• Contraction: Given $B \subseteq \mathcal{X}$, let $M/B = (X', \mathcal{I}')$ with $X' = X \setminus B$,

$$\mathcal{I}' = \left\{ S \subseteq X' : B \bigcup S \in \mathcal{I} \right\}$$

• i.e. Think of B as always being included

- Graphic: contract the connected components of B
- Others: truncation, dual, union...

Basic Terminology and Properties

• Optimization over matroids is "easy", in the same way that optimization over convex sets is "easy"

- Optimization over matroids is "easy", in the same way that optimization over convex sets is "easy"
- Operations preserving set convexity are analogous to operations preserving matroid structure

- Optimization over matroids is "easy", in the same way that optimization over convex sets is "easy"
- Operations preserving set convexity are analogous to operations preserving matroid structure
- Arguably, matroids and submodular functions are discrete analogues of convex sets and convex functions, respectively.
 - Less exhaustive

2 Basic Terminology and Properties

4 Matroid Intersection

• As is often the case with tractable discrete problems, we can view their feasible set as a polyhedron

- As is often the case with tractable discrete problems, we can view their feasible set as a polyhedron
- For $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, the convex hull of independent sets can be written as a polytope in a natural way
 - The polytope is "solvable", and admits a polytime separation oracle

- As is often the case with tractable discrete problems, we can view their feasible set as a polyhedron
- For $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, the convex hull of independent sets can be written as a polytope in a natural way
 - The polytope is "solvable", and admits a polytime separation oracle
- This perspective will be crucial for more advanced applications of matroids
 - Optimization of linear functions over matroid intersections
 - Optimization of submodular functions over matroids

Polytope
$$\mathcal{P}(\mathcal{M})$$
 for $\mathcal{M}=(\mathcal{X},\mathcal{I})$

$$\sum_{\substack{\alpha \in S \\ x_i \geq 0,}} x_i \leq rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$

$$for \ i \in \mathcal{X}.$$

- Assigns a variable x_i to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
 - $0 \le x_i \le 1$ since the rank of a singleton is at most 1.

Polytope
$$\mathcal{P}(\mathcal{M})$$
 for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{\substack{\in S \\ x_i \ge 0,}} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$

- Assigns a variable x_i to every element i of the ground set
- Each feasible x is a fractional subset of $\mathcal X$
 - $0 \le x_i \le 1$ since the rank of a singleton is at most 1.
- The 0-1 indicator vector x_I for independent set $I \in \mathcal{I}$ is in the above polytope

Polytope
$$\mathcal{P}(\mathcal{M})$$
 for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{\substack{\alpha \in S \\ x_i \geq 0,}} x_i \leq rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$

- Assigns a variable x_i to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
 - $0 \le x_i \le 1$ since the rank of a singleton is at most 1.
- The 0-1 indicator vector x_I for independent set $I \in \mathcal{I}$ is in the above polytope
- In fact, we will show that $\mathcal{P}(\mathcal{M})$ is precisely the convex hull of independent sets $\mathcal I$

Polytope
$$\mathcal{P}(\mathcal{M})$$
 for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{\substack{i \in S \\ x_i \ge 0,}} x_i \le rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$

$$for \ i \in \mathcal{X}.$$

- Assigns a variable x_i to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
 - $0 \le x_i \le 1$ since the rank of a singleton is at most 1.
- The 0-1 indicator vector x_I for independent set $I \in \mathcal{I}$ is in the above polytope
- In fact, we will show that $\mathcal{P}(\mathcal{M})$ is precisely the convex hull of independent sets $\mathcal I$
- Note: polytope has $2^{|\mathcal{X}|}$ constraints.

Integrality of the Matroid Polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$
$$x_i \ge 0, \text{ for } i \in \mathcal{X}.$$

Theorem

 $\mathcal{P}(\mathcal{M}) = convexhull \{ x_I : I \in \mathcal{I} \}$

Integrality of the Matroid Polytope

Polytope
$$\mathcal{P}(\mathcal{M})$$
 for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$
$$x_i \ge 0, \text{ for } i \in \mathcal{X}.$$

Theorem

 $\mathcal{P}(\mathcal{M}) = convexhull \{ x_I : I \in \mathcal{I} \}$

• It is clear that $\mathcal{P}(\mathcal{M}) \supseteq convexhull \{x_I : I \in \mathcal{I}\}$

Polytope
$$\mathcal{P}(\mathcal{M})$$
 for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$
$$x_i \ge 0, \text{ for } i \in \mathcal{X}.$$

Theorem

$$\mathcal{P}(\mathcal{M}) = convexhull \{ x_I : I \in \mathcal{I} \}$$

- It is clear that $\mathcal{P}(\mathcal{M}) \supseteq convexhull \{x_I : I \in \mathcal{I}\}$
- To show that P(M) ⊆ convexhull {x_I : I ∈ I}, we will show that every vertex of P(M) equals x_I for some I ∈ I.

Polytope
$$\mathcal{P}(\mathcal{M})$$
 for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$
$$x_i \ge 0, \text{ for } i \in \mathcal{X}.$$

Theorem

$$\mathcal{P}(\mathcal{M}) = convexhull \{ x_I : I \in \mathcal{I} \}$$

- It is clear that $\mathcal{P}(\mathcal{M}) \supseteq convexhull \{x_I : I \in \mathcal{I}\}$
- To show that P(M) ⊆ convexhull {x_I : I ∈ I}, we will show that every vertex of P(M) equals x_I for some I ∈ I.
- Recall: suffices to show that every linear function $w^T x$ is maximized over $\mathcal{P}(\mathcal{M})$ at some x_I for $I \in \mathcal{I}$.

Recall: The Greedy Algorithm

- $B \leftarrow \emptyset$
- ② Sort nonnegative elements of \mathcal{X} in decreasing order of weight

•
$$\{1, ..., n\}$$
 with $w_1 \ge w_2, \ge ... \ge w_n \ge 0$.

- For i = 1 to n:
 - if $B \bigcup \{i\} \in \mathcal{I}$, add i to B.

Theorem

The greedy algorithm returns the maximum weight set for every choice of weights if and only if the set system $(\mathcal{X}, \mathcal{I})$ is a matroid.

Recall: The Greedy Algorithm

- $B \leftarrow \emptyset$
- ② Sort nonnegative elements of \mathcal{X} in decreasing order of weight

•
$$\{1, ..., n\}$$
 with $w_1 \ge w_2, \ge ... \ge w_n \ge 0$.

- For i = 1 to n:
 - if $B \bigcup \{i\} \in \mathcal{I}$, add i to B.

Theorem

The greedy algorithm returns the maximum weight set for every choice of weights if and only if the set system $(\mathcal{X}, \mathcal{I})$ is a matroid.

- We can think of the greedy algorithm as computing the indicator vector $x^* = x_B \in \mathcal{P}(\mathcal{M})$
- We will show that x^* maximizes $w^{\mathsf{T}}x$ over $x \in \mathcal{P}(\mathcal{M})$.

i is selected by the greedy algorithm iff $i \notin span(\{1, \ldots, i-1\})$

• i.e. if rank[1:i] - rank[1:i-1] = 1.

i is selected by the greedy algorithm iff $i \notin span(\{1, \ldots, i-1\})$ • i.e. if rank[1:i] - rank[1:i-1] = 1.

• Therefore, $x_i^* = rank[1:i] - rank[1:i-1]$

$$\sum_{i} w_{i} x_{i}^{*} = \sum_{i} w_{i} (rank[1:i] - rank[1:i-1])$$

i is selected by the greedy algorithm iff $i \notin span(\{1, \ldots, i-1\})$ • i.e. if rank[1:i] - rank[1:i-1] = 1.

• Therefore, $x_i^* = rank[1:i] - rank[1:i-1]$

$$\sum_{i} w_{i} x_{i}^{*} = \sum_{i} w_{i} (rank[1:i] - rank[1:i-1])$$

• Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

i is selected by the greedy algorithm iff $i \notin span(\{1, \ldots, i-1\})$ • i.e. if rank[1:i] - rank[1:i-1] = 1.

• Therefore, $x_i^* = rank[1:i] - rank[1:i-1]$

$$\sum_{i} w_{i} x_{i}^{*} = \sum_{i} w_{i} (rank[1:i] - rank[1:i-1])$$

• Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$\sum_{i} w_{i} x_{i} = \sum_{i} (w_{i} - w_{i+1}) x(1:i)$$

i is selected by the greedy algorithm iff $i \notin span(\{1, \ldots, i-1\})$ • i.e. if rank[1:i] - rank[1:i-1] = 1.

• Therefore, $x_i^* = rank[1:i] - rank[1:i-1]$

$$\sum_{i} w_i x_i^* = \sum_{i} w_i (rank[1:i] - rank[1:i-1])$$

• Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$\sum_{i} w_{i} x_{i} = \sum_{i} (w_{i} - w_{i+1}) x(1:i)$$

$$\leq \sum_{i} (w_{i} - w_{i+1}) rank(1:i)$$

i is selected by the greedy algorithm iff $i \notin span(\{1, \ldots, i-1\})$ • i.e. if rank[1:i] - rank[1:i-1] = 1.

• Therefore, $x_i^* = rank[1:i] - rank[1:i-1]$

$$\sum_{i} w_i x_i^* = \sum_{i} w_i (rank[1:i] - rank[1:i-1])$$

• Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$\sum_{i} w_{i}x_{i} = \sum_{i} (w_{i} - w_{i+1})x(1:i)$$

$$\leq \sum_{i} (w_{i} - w_{i+1})rank(1:i)$$

$$= \sum_{i} w_{i}(rank[1:i] - rank[1:i-1])$$

The Matroid Polytope

 w_3 w_4
The Matroid Base Polytope

- The matroid polytope is the convex hull of independent sets
 - Graphic: convex hull of forests
- What if we wish to consider only "full-rank" sets?
 - Graphic: spanning trees

The Matroid Base Polytope

- The matroid polytope is the convex hull of independent sets
 - Graphic: convex hull of forests
- What if we wish to consider only "full-rank" sets?
 - Graphic: spanning trees

Polytope $\mathcal{P}_{base}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$
$$\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M})$$
$$x_i \geq 0, \text{ for } i \in \mathcal{X}.$$

• The 0-1 indicator vector x_B for a base B of \mathcal{M} is in above polytope

The Matroid Base Polytope

- The matroid polytope is the convex hull of independent sets
 - Graphic: convex hull of forests
- What if we wish to consider only "full-rank" sets?
 - Graphic: spanning trees

Polytope $\mathcal{P}_{base}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$
$$\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M})$$
$$x_i \geq 0, \text{ for } i \in \mathcal{X}.$$

- The 0-1 indicator vector x_B for a base B of \mathcal{M} is in above polytope
- In fact, we will show that $\mathcal{P}(\mathcal{M})$ is precisely the convex hull of bases of \mathcal{M}

$$\begin{split} &\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), & \text{for } S \subseteq \mathcal{X}. \\ &\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M}) \\ &x_i \geq 0, & \text{for } i \in \mathcal{X}. \end{split}$$

Theorem

 $\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$

$$\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$
$$\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M})$$
$$x_i \geq 0, \text{ for } i \in \mathcal{X}.$$

Theorem

 $\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$

As before, one direction is obvious: *P*_{base}(*M*) ⊇ convexhull {*x_B* : *B* is a base of *M*}

$$\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$
$$\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M})$$
$$x_i \geq 0, \text{ for } i \in \mathcal{X}.$$

Theorem

 $\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$

- As before, one direction is obvious: $\mathcal{P}_{base}(\mathcal{M}) \supseteq convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$
- For the other direction, take $x \in \mathcal{P}_{base}(\mathcal{M})$

$$\begin{split} &\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), & \text{for } S \subseteq \mathcal{X}. \\ &\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M}) \\ &x_i \geq 0, & \text{for } i \in \mathcal{X}. \end{split}$$

Theorem

 $\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$

- As before, one direction is obvious:
 *P*_{base}(*M*) ⊇ convexhull {*x*_B : *B* is a base of *M*}
- For the other direction, take $x \in \mathcal{P}_{base}(\mathcal{M})$
- Since $x \in \mathcal{P}(\mathcal{M})$, x is a convex combination of independent sets I_1, \ldots, I_k of \mathcal{M} .

$$\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), \text{ for } S \subseteq \mathcal{X}.$$
$$\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M})$$
$$x_i \geq 0, \text{ for } i \in \mathcal{X}.$$

Theorem

$$\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$$

- As before, one direction is obvious:
 *P*_{base}(*M*) ⊇ convexhull {*x_B* : *B* is a base of *M*}
- For the other direction, take $x \in \mathcal{P}_{base}(\mathcal{M})$
- Since $x \in \mathcal{P}(\mathcal{M})$, x is a convex combination of independent sets I_1, \ldots, I_k of \mathcal{M} .
- Since $||x||_1 = rank(\mathcal{M})$, and $||x_{I_\ell}||_1 \le rank(\mathcal{M})$ for all ℓ , it must be that $||x_{I_1}||_1 = ||x_{I_2}||_1 = \ldots = ||x_{I_k}||_1 = rank(\mathcal{M})$

- When given an independence oracle for \mathcal{M} , we can maximize linear functions over $\mathcal{P}(\mathcal{M})$ in $O(n \log n)$ time
 - By integrality, same as finding max-weight independent set of $\mathcal{M}.$

- When given an independence oracle for \mathcal{M} , we can maximize linear functions over $\mathcal{P}(\mathcal{M})$ in $O(n \log n)$ time
 - By integrality, same as finding max-weight independent set of \mathcal{M} .
- Therefore, by equivalence of separation and optimization, can also implement a separation oracle for $\mathcal{P}(\mathcal{M})$

- When given an independence oracle for \mathcal{M} , we can maximize linear functions over $\mathcal{P}(\mathcal{M})$ in $O(n \log n)$ time
 - By integrality, same as finding max-weight independent set of $\mathcal{M}.$
- Therefore, by equivalence of separation and optimization, can also implement a separation oracle for $\mathcal{P}(\mathcal{M})$
- A more direct proof: reduces to submodular function minimization
 - $rank_{\mathcal{M}}$ is a submodular set function.

Matroids and The Greedy Algorithm

2 Basic Terminology and Properties

3 The Matroid Polytope

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

i.e. a set is feasible if it is independent in both matroids

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

- i.e. a set is feasible if it is independent in both matroids
- In general, does not produce a matroid

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

- i.e. a set is feasible if it is independent in both matroids
- In general, does not produce a matroid
- Nevertheless, it will turn out that maximizing linear functions over a matroid intersection is tractable

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

- i.e. a set is feasible if it is independent in both matroids
- In general, does not produce a matroid
- Nevertheless, it will turn out that maximizing linear functions over a matroid intersection is tractable
- However, maximizing linear functions over the intersection of 3 or more matroids is NP-hard

Bipartite Matching

Given a bipartite graph G, a set of edges F is a bipartite matching if and only if each node is incident on at most one edge in F.

Bipartite Matching

Given a bipartite graph G, a set of edges F is a bipartite matching if and only if each node is incident on at most one edge in F.

Given a directed graph G, a set of edges is an r-arborescence is a tree directed away from the root r.

Bipartite Matching

Given a bipartite graph G, a set of edges F is a bipartite matching if and only if each node is incident on at most one edge in F.

Arborescence

Given a directed graph G, a set of edges is an r-arborescence is a tree directed away from the root r.

• Others: orientations of graphs, colorful spanning trees, ...

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over M₁ ∩ M₂ is equivalent to optimizing a linear function over *convexhull* {x_I : I ∈ I₁ ∩ I₂}.
- As it turns out, this is a solvable polytope.

Theorem

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over M₁ ∩ M₂ is equivalent to optimizing a linear function over *convexhull* {x_I : I ∈ I₁ ∩ I₂}.
- As it turns out, this is a solvable polytope.

Theorem

 $\mathcal{P}(M_1) \bigcap \mathcal{P}(M_2) = convexhull \{ x_I : I \in \mathcal{I}_1 \bigcap \mathcal{I}_2 \}$

• One direction is obvious: $\mathcal{P}(M_1) \bigcap \mathcal{P}(M_2) \supseteq convexhull \{x_I : I \in \mathcal{I}_1 \bigcap \mathcal{I}_2\}$

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over M₁ ∩ M₂ is equivalent to optimizing a linear function over *convexhull* {x_I : I ∈ I₁ ∩ I₂}.
- As it turns out, this is a solvable polytope.

Theorem

- One direction is obvious: $\mathcal{P}(M_1) \bigcap \mathcal{P}(M_2) \supseteq convexhull \{x_I : I \in \mathcal{I}_1 \bigcap \mathcal{I}_2\}$
- The other direction is not so obvious

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over M₁ ∩ M₂ is equivalent to optimizing a linear function over *convexhull* {x_I : I ∈ I₁ ∩ I₂}.
- As it turns out, this is a solvable polytope.

Theorem

- One direction is obvious: $\mathcal{P}(M_1) \bigcap \mathcal{P}(M_2) \supseteq convexhull \{x_I : I \in \mathcal{I}_1 \bigcap \mathcal{I}_2\}$
- The other direction is not so obvious
 - It is conceivable that $\mathcal{P}(\mathcal{M}_1) \bigcap \mathcal{P}(\mathcal{M}_2)$ has fractional vertices

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over M₁ ∩ M₂ is equivalent to optimizing a linear function over *convexhull* {x_I : I ∈ I₁ ∩ I₂}.
- As it turns out, this is a solvable polytope.

Theorem

- One direction is obvious: $\mathcal{P}(M_1) \cap \mathcal{P}(M_2) \supseteq convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$
- The other direction is not so obvious
 - It is conceivable that $\mathcal{P}(\mathcal{M}_1) \bigcap \mathcal{P}(\mathcal{M}_2)$ has fractional vertices
- Nevertheless, it is true but hard to prove, so we will skip it.

Optimization over Matroid Intersections

Optimization over Matroid Intersection $\mathcal{M}_1 \bigcap \mathcal{M}_2$

$$\begin{array}{ll} \mbox{maximize} & \sum_{i \in \mathcal{X}} w_i x_i \\ \mbox{subject to} & \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_1}(S), & \mbox{for } S \subseteq \mathcal{X}. \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_2}(S), & \mbox{for } S \subseteq \mathcal{X}. \\ & x_i \geq 0, & \mbox{for } i \in \mathcal{X}. \end{array}$$

Optimization over Matroid Intersections

Optimization over Matroid Intersection $\mathcal{M}_1 \bigcap \mathcal{M}_2$

$$\begin{array}{ll} \mbox{maximize} & \sum_{i \in \mathcal{X}} w_i x_i \\ \mbox{subject to} & & \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_1}(S), & \mbox{for } S \subseteq \mathcal{X}. \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_2}(S), & \mbox{for } S \subseteq \mathcal{X}. \\ & & x_i \geq 0, & & \mbox{for } i \in \mathcal{X}. \end{array}$$

Theorem

Given independence oracles to both matroids \mathcal{M}_1 and \mathcal{M}_2 , there is an algorithm for finding the maximum weight set in $\mathcal{M}_1 \bigcap \mathcal{M}_2$ which runs in poly(n) time.

Optimization over Matroid Intersections

Optimization over Matroid Intersection $\mathcal{M}_1 \bigcap \mathcal{M}_2$

$$\begin{array}{ll} \mbox{maximize} & \sum_{i \in \mathcal{X}} w_i x_i \\ \mbox{subject to} & & \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_1}(S), & \mbox{for } S \subseteq \mathcal{X}. \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_2}(S), & \mbox{for } S \subseteq \mathcal{X}. \\ & & x_i \geq 0, & & \mbox{for } i \in \mathcal{X}. \end{array}$$

Theorem

Given independence oracles to both matroids \mathcal{M}_1 and \mathcal{M}_2 , there is an algorithm for finding the maximum weight set in $\mathcal{M}_1 \bigcap \mathcal{M}_2$ which runs in poly(n) time.

Proof: Using equivalence of separation and optimization, and the fact that all coefficients in the LP have poly(n) bits.

Matroid Intersection

By a reduction from Hamiltonian Path in directed graphs