CS599: Convex and Combinatorial Optimization Fall 2013
 Lecture 22: Introduction to Matroid Theory

Instructor: Shaddin Dughmi

Announcements

- We should have heard from you about projects
- First two problems of HW3 released
- It's shorter, but still pace yourself.

Optimization over Sets

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
- Shortest paths
- Max-weight matching
- TSP
- ...

Optimization over Sets

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
- Shortest paths
- Max-weight matching
- TSP
- ...
- Set system: Pair $(\mathcal{X}, \mathcal{I})$ where \mathcal{X} is a finite ground set and $\mathcal{I} \subseteq 2^{\mathcal{X}}$ are the feasible sets

Optimization over Sets

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
- Shortest paths
- Max-weight matching
- TSP
- ...
- Set system: Pair $(\mathcal{X}, \mathcal{I})$ where \mathcal{X} is a finite ground set and $\mathcal{I} \subseteq 2^{\mathcal{X}}$ are the feasible sets
- Objective: often "linear", referred to as modular

Optimization over Sets

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
- Shortest paths
- Max-weight matching
- TSP
- ...
- Set system: Pair $(\mathcal{X}, \mathcal{I})$ where \mathcal{X} is a finite ground set and $\mathcal{I} \subseteq 2^{\mathcal{X}}$ are the feasible sets
- Objective: often "linear", referred to as modular
- Analogues of concave convex: submodular and supermodular (in no particular order!)

Optimization over Sets

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
- Shortest paths
- Max-weight matching
- TSP
- ...
- Set system: Pair $(\mathcal{X}, \mathcal{I})$ where \mathcal{X} is a finite ground set and $\mathcal{I} \subseteq 2^{\mathcal{X}}$ are the feasible sets
- Objective: often "linear", referred to as modular
- Analogues of concave convex: submodular and supermodular (in no particular order!)
- Today, we will look only at optimizing modular objectives over an extremely prolific family of set systems
- Related, directly or indirectly, to a large fraction of optimization problems in P
- Also pops up in submodular/supermodular optimization problems

Outline

(1) Matroids and The Greedy Algorithm
(2) Basic Terminology and Properties
(3) The Matroid Polytope
(4) Matroid Intersection

Maximum Weight Forest Problem

Given a connected undirected graph $G=(V, E)$, and weights $w_{e} \in \mathbb{R}$ on edges e, find a maximum weight acyclic subgraph (aka forest) of G.

- Slight generalization of minimum weight spanning tree
- We use n and m to denote $|V|$ and $|E|$, respectively.

The Greedy Algorithm

(1) $B \leftarrow \emptyset$
(2) Sort non-negative weight edges in decreasing order of weight - e_{1}, \ldots, e_{m}, with $w_{1} \geq w_{2} \geq \ldots \geq w_{m} \geq 0$
(3) For $i=1$ to m :

- if $B \bigcup\left\{e_{i}\right\}$ is acyclic, add e_{i} to B.

The Greedy Algorithm

(1) $B \leftarrow \emptyset$
(2) Sort non-negative weight edges in decreasing order of weight - e_{1}, \ldots, e_{m}, with $w_{1} \geq w_{2} \geq \ldots \geq w_{m} \geq 0$
(3) For $i=1$ to m :

- if $B \bigcup\left\{e_{i}\right\}$ is acyclic, add e_{i} to B.

Theorem

The greedy algorithm outputs a maximum-weight forest.

Lemma

(1) The empty set is acyclic
(2) If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
(3) If A, B are acyclic, and $|B|>|A|$, then there is $e \in B \backslash A$ such that $A \bigcup\{e\}$ is acyclic

Lemma
(1) The empty set is acyclic
(2) If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
(0) If A, B are acyclic, and $|B|>|A|$, then there is $e \in B \backslash A$ such that $A \bigcup\{e\}$ is acyclic
(1) and (2) are trivial, so let's prove (3)

Lemma
(1) The empty set is acyclic
(2) If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
(3) If A, B are acyclic, and $|B|>|A|$, then there is $e \in B \backslash A$ such that $A \bigcup\{e\}$ is acyclic

- Sub-lemma: if C is acyclic, then $|C|=n-\#$ components (C).
- Induction

Lemma

(1) The empty set is acyclic
(2) If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
(0) If A, B are acyclic, and $|B|>|A|$, then there is $e \in B \backslash A$ such that $A \bigcup\{e\}$ is acyclic

- Sub-lemma: if C is acyclic, then $|C|=n-\#$ components (C).
- Induction
- When $|B|>|A|$, this means \#components $(B)<\#$ components (A)

Lemma

(1) The empty set is acyclic
(2) If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
(3) If A, B are acyclic, and $|B|>|A|$, then there is $e \in B \backslash A$ such that $A \bigcup\{e\}$ is acyclic

- Sub-lemma: if C is acyclic, then $|C|=n-\#$ components (C).
- Induction
- When $|B|>|A|$, this means \#components $(B)<\#$ components (A)
- Can't be that all $e \in B$ are "inside" connected components of A

Lemma

(1) The empty set is acyclic
(2) If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
(3) If A, B are acyclic, and $|B|>|A|$, then there is $e \in B \backslash A$ such that $A \bigcup\{e\}$ is acyclic

- Sub-lemma: if C is acyclic, then $|C|=n-\#$ components (C).
- Induction
- When $|B|>|A|$, this means \#components $(B)<\#$ components (A)
- Can't be that all $e \in B$ are "inside" connected components of A
- Some $e \in B$ must "go between" connected components of A.

Lemma

(1) The empty set is acyclic
(2) If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.

- Converse: if B cyclic then so is A
(3) If A, B are acyclic, and $|B|>|A|$, then there is $e \in B \backslash A$ such that $A \bigcup\{e\}$ is acyclic
- Inductively: can extend A by adding $|B|-|A|$ elements from $B \backslash A$
- Sub-lemma: if C is acyclic, then $|C|=n-\#$ components (C).
- Induction
- When $|B|>|A|$, this means \#components $(B)<\#$ components (A)
- Can't be that all $e \in B$ are "inside" connected components of A
- Some $e \in B$ must "go between" connected components of A.

Proof

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_{i}^{*} which "agrees" with the algorithm's choices on edges e_{1}, \ldots, e_{i}.

- i.e. if B_{i} denotes the algorithm's choice up to iteration i, then

$$
B_{i}=B_{i}^{*} \bigcap\left\{e_{1}, \ldots, e_{i}\right\}
$$

Proof

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_{i}^{*} which "agrees" with the algorithm's choices on edges e_{1}, \ldots, e_{i}.

- i.e. if B_{i} denotes the algorithm's choice up to iteration i, then

$$
B_{i}=B_{i}^{*} \bigcap\left\{e_{1}, \ldots, e_{i}\right\}
$$

- Assume true for step $i-1$, and consider step i

Proof

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_{i}^{*} which "agrees" with the algorithm's choices on edges e_{1}, \ldots, e_{i}.

- i.e. if B_{i} denotes the algorithm's choice up to iteration i, then

$$
B_{i}=B_{i}^{*} \bigcap\left\{e_{1}, \ldots, e_{i}\right\}
$$

- Assume true for step $i-1$, and consider step i
- If $e_{i} \notin B_{i}$, then $B_{i-1} \bigcup\left\{e_{i}\right\}$ is cyclic. Since $B_{i-1} \subseteq B_{i-1}^{*}$, then $e_{i} \notin B_{i-1}^{*}$ (Property 2). So take $B_{i}^{*}=B_{i-1}^{*}$.

Proof

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_{i}^{*} which "agrees" with the algorithm's choices on edges e_{1}, \ldots, e_{i}.

- i.e. if B_{i} denotes the algorithm's choice up to iteration i, then

$$
B_{i}=B_{i}^{*} \bigcap\left\{e_{1}, \ldots, e_{i}\right\}
$$

- Assume true for step $i-1$, and consider step i
- If $e_{i} \notin B_{i}$, then $B_{i-1} \bigcup\left\{e_{i}\right\}$ is cyclic. Since $B_{i-1} \subseteq B_{i-1}^{*}$, then $e_{i} \notin B_{i-1}^{*}$ (Property 2). So take $B_{i}^{*}=B_{i-1}^{*}$.
- If $e_{i} \in B_{i}$ and $e_{i} \notin B_{i}^{*}$, extend B_{i} to the size of B_{i-1}^{*} (property 3)
- Recall that $B_{i-1}=B_{i} \backslash\left\{e_{i}\right\} \subseteq B_{i-1}^{*}$
- $B_{i}^{*}=B_{i-1}^{*} \bigcup\left\{e_{i}\right\} \backslash\left\{e_{k}\right\}$ for some $k>i$
- B_{i}^{*} has weight no less than B_{i-1}^{*}, so optimal.

To prove optimality of the greedy algorithm, all we needed was the following.

Matroids

A set system $M=(\mathcal{X}, \mathcal{I})$ is a matroid if
(1) $\emptyset \in \mathcal{I}$
(2) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (Downward Closure)
(3) If $A, B \in \mathcal{I}$ and $|B|>|A|$, then $\exists x \in B \backslash A$ such that $A \bigcup\{x\} \in \mathcal{I}$ (Exchange Property)

To prove optimality of the greedy algorithm, all we needed was the following.

Matroids

A set system $M=(\mathcal{X}, \mathcal{I})$ is a matroid if
(1) $\emptyset \in \mathcal{I}$
(2) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (Downward Closure)
(3) If $A, B \in \mathcal{I}$ and $|B|>|A|$, then $\exists x \in B \backslash A$ such that $A \bigcup\{x\} \in \mathcal{I}$ (Exchange Property)

- Three conditions above are called the matroid axioms
- $A \in \mathcal{I}$ is called an independent set of the matroid.

To prove optimality of the greedy algorithm, all we needed was the following.

Matroids

A set system $M=(\mathcal{X}, \mathcal{I})$ is a matroid if
(1) $\emptyset \in \mathcal{I}$
(2) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (Downward Closure)
(3) If $A, B \in \mathcal{I}$ and $|B|>|A|$, then $\exists x \in B \backslash A$ such that $A \bigcup\{x\} \in \mathcal{I}$ (Exchange Property)

- Three conditions above are called the matroid axioms
- $A \in \mathcal{I}$ is called an independent set of the matroid.
- The matroid whose independent sets are acyclic subgraphs is called a graphic matroid
- Other examples abound!

Example: Linear Matroid

- \mathcal{X} is a finite set of vectors $\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \mathbb{R}^{n}$
- $S \in \mathcal{I}$ iff the vectors in S are linearly independent
- Downward closure: If a set of vectors is linearly independent, then every subset of it is also
- Exchange property: Can always extend a low-dimension independent set S by adding vectors from a higher dimension independent set T

Example: Uniform Matroid

- \mathcal{X} is an arbitrary finite set $\{1, \ldots, n\}$.
- $S \in \mathcal{I}$ iff $|S| \leq k$.
- Downward closure: If a set S has $|S| \leq k$ then the same holds for $T \subseteq S$.
- Exchange property: If $|S|<|T| \leq k$, then there is an element in $T \backslash S$, and we can add it to S while preserving independence.

Example: Partition Matroid

- \mathcal{X} is the disjoint union of classes X_{1}, \ldots, X_{m}
- Each class X_{j} has an upperbound k_{j}.
- $S \in \mathcal{I}$ iff $\left|S \bigcap X_{j}\right| \leq k_{j}$ for all j
- This is the "disjoint union" of a number of uniform matroids

Example: Transversal Matroid

- Described by a bipartite graph $E \subseteq L \times R$
- $\mathcal{X}=L$
- $S \in \mathcal{I}$ iff there is a bipartite matching which matches S
- Downward closure: If we can match S, then we can match $T \subseteq S$.
- Exchange property: If $|T|>|S|$ is matchable, then an augmenting path/alternating path amends the extends the matching of S to some $x \in T \backslash S$.

The Greedy Algorithm on Matroids

The Greedy Algorithm

(1) $B \leftarrow \emptyset$
(2) Sort nonnegative elements of \mathcal{X} in decreasing order of weight - $\{1, \ldots, n\}$ with $w_{1} \geq w_{2}, \geq \ldots \geq w_{n} \geq 0$.
(3) For $i=1$ to n :

- if $B \bigcup\{i\} \in \mathcal{I}$, add i to B.

Theorem

The greedy algorithm returns the maximum weight set for every choice of weights if and only if the set system $(\mathcal{X}, \mathcal{I})$ is a matroid.

We already saw the "if" direction. We will skip "only if".

The Greedy Algorithm on Matroids

The Greedy Algorithm

(1) $B \leftarrow \emptyset$
(2) Sort nonnegative elements of \mathcal{X} in decreasing order of weight - $\{1, \ldots, n\}$ with $w_{1} \geq w_{2}, \geq \ldots \geq w_{n} \geq 0$.
(3) For $i=1$ to n :

- if $B \bigcup\{i\} \in \mathcal{I}$, add i to B.

The Greedy Algorithm on Matroids

The Greedy Algorithm

(1) $B \leftarrow \emptyset$
(2) Sort nonnegative elements of \mathcal{X} in decreasing order of weight

- $\{1, \ldots, n\}$ with $w_{1} \geq w_{2}, \geq \ldots \geq w_{n} \geq 0$.
(3) For $i=1$ to n :
- if $B \bigcup\{i\} \in \mathcal{I}$, add i to B.
- To implement this, we need an independence oracle for step 3 - A subroutine which checks whether $S \in \mathcal{I}$ or not.
- Runs in time $O(n \log n)+n T$, where T is runtime of the independence oracle.

The Greedy Algorithm on Matroids

The Greedy Algorithm

(1) $B \leftarrow \emptyset$
(2) Sort nonnegative elements of \mathcal{X} in decreasing order of weight

- $\{1, \ldots, n\}$ with $w_{1} \geq w_{2}, \geq \ldots \geq w_{n} \geq 0$.
(3) For $i=1$ to n :
- if $B \bigcup\{i\} \in \mathcal{I}$, add i to B.
- To implement this, we need an independence oracle for step 3
- A subroutine which checks whether $S \in \mathcal{I}$ or not.
- Runs in time $O(n \log n)+n T$, where T is runtime of the independence oracle.
- For most "natural" matroids, indepenendence oracle is easy to implement efficiently
- Graphic matroid
- Linear matroid
- Uniform/partition matroid
- Transversal matroid

Outline

(1) Matroids and The Greedy Algorithm

(2) Basic Terminology and Properties
(3) The Matroid Polytope
(4) Matroid Intersection

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M}=(\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M}=(\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M}=(\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set
- A base of $S \subseteq \mathcal{X}$ in \mathcal{M} is maximal independent subset of S
- I.e. a base of the matroid after deleting \bar{S}.

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M}=(\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set
- A base of $S \subseteq \mathcal{X}$ in \mathcal{M} is maximal independent subset of S
- I.e. a base of the matroid after deleting \bar{S}.
- A circuit $S \subseteq \mathcal{X}$ is a minimal dependent subset of \mathcal{X}

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M}=(\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set
- A base of $S \subseteq \mathcal{X}$ in \mathcal{M} is maximal independent subset of S
- I.e. a base of the matroid after deleting \bar{S}.
- A circuit $S \subseteq \mathcal{X}$ is a minimal dependent subset of \mathcal{X}

What are these for:

- Graphic matroid
- Linear matroid
- Uniform matroid
- Partition matroid
- Transversal matroid

Rank

Lemma

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S=\mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension

Rank

Lemma

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S=\mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension
- Follows directly from the exchange property.

Rank

Lemma

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S=\mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension
- Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank

- The Rank of $S \subseteq \mathcal{X}$ in \mathcal{M} is the size of the maximal independent subsets (i.e. bases) of S.
- The rank of \mathcal{M} is the size of the bases of \mathcal{M}.
- The function $\operatorname{rank}_{\mathcal{M}}(S): 2^{\mathcal{X}} \rightarrow \mathbb{N}$ is called the rank function of \mathcal{M}.

Rank

Lemma

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S=\mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension
- Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank

- The Rank of $S \subseteq \mathcal{X}$ in \mathcal{M} is the size of the maximal independent subsets (i.e. bases) of S.
- The rank of \mathcal{M} is the size of the bases of \mathcal{M}.
- The function $\operatorname{rank}_{\mathcal{M}}(S): 2^{\mathcal{X}} \rightarrow \mathbb{N}$ is called the rank function of \mathcal{M}.
E.g.: Graphic matroid, linear matroid, transversal matroid

Span

Span

Given $S \subseteq \mathcal{X}, \operatorname{span}(S)=\{i \in \mathcal{X}: \operatorname{rank}(S)=\operatorname{rank}(S \bigcup\{i\})\}$

- i.e. the elements which would form a circuit if added to a base of S
- e.g.: Linear matroid, graphic matroid, uniform matroid.

Span

Span

Given $S \subseteq \mathcal{X}, \operatorname{span}(S)=\{i \in \mathcal{X}: \operatorname{rank}(S)=\operatorname{rank}(S \bigcup\{i\})\}$

- i.e. the elements which would form a circuit if added to a base of S
- e.g.: Linear matroid, graphic matroid, uniform matroid.

Observation

i is selected by the greedy algorithm iff $i \notin \operatorname{span}(\{1, \ldots, i-1\})$

Operations preserving Matroidness

Given $\mathcal{M}=(\mathcal{X}, \mathcal{I})$, consider the following operations:

- Deletion: For $B \subseteq \mathcal{X}$, we define $\mathcal{M} \backslash B=\left(\mathcal{X}^{\prime}, \mathcal{I}^{\prime}\right)$ with $\mathcal{X}^{\prime}=X \backslash B$,

$$
\mathcal{I}^{\prime}=\left\{S \subseteq X^{\prime}: S \in \mathcal{I}\right\}
$$

- Graphic: deleting edges from the graph

Operations preserving Matroidness

Given $\mathcal{M}=(\mathcal{X}, \mathcal{I})$, consider the following operations:

- Deletion: For $B \subseteq \mathcal{X}$, we define $\mathcal{M} \backslash B=\left(\mathcal{X}^{\prime}, \mathcal{I}^{\prime}\right)$ with $\mathcal{X}^{\prime}=X \backslash B$,

$$
\mathcal{I}^{\prime}=\left\{S \subseteq X^{\prime}: S \in \mathcal{I}\right\}
$$

- Graphic: deleting edges from the graph
- Disjoint union: Given $M_{1}=\left(\mathcal{X}_{1}, \mathcal{I}_{2}\right)$ and $M_{2}=\left(\mathcal{X}_{2}, \mathcal{I}_{2}\right)$ with $\mathcal{X}_{1} \cap \mathcal{X}_{2}=\emptyset$, we define

$$
M_{1} \oplus M_{2}=\left(\mathcal{X}_{1} \bigcup \mathcal{X}_{2},\left\{A_{1} \bigcup A_{2}: A_{1} \in \mathcal{I}_{1}, A_{2} \in \mathcal{I}_{2}\right\}\right)
$$

- Graphic: combining two node-disjoint graphs

Operations preserving Matroidness

Given $\mathcal{M}=(\mathcal{X}, \mathcal{I})$, consider the following operations:

- Deletion: For $B \subseteq \mathcal{X}$, we define $\mathcal{M} \backslash B=\left(\mathcal{X}^{\prime}, \mathcal{I}^{\prime}\right)$ with $\mathcal{X}^{\prime}=X \backslash B$,

$$
\mathcal{I}^{\prime}=\left\{S \subseteq X^{\prime}: S \in \mathcal{I}\right\}
$$

- Graphic: deleting edges from the graph
- Disjoint union: Given $M_{1}=\left(\mathcal{X}_{1}, \mathcal{I}_{2}\right)$ and $M_{2}=\left(\mathcal{X}_{2}, \mathcal{I}_{2}\right)$ with $\mathcal{X}_{1} \cap \mathcal{X}_{2}=\emptyset$, we define

$$
M_{1} \oplus M_{2}=\left(\mathcal{X}_{1} \bigcup \mathcal{X}_{2},\left\{A_{1} \bigcup A_{2}: A_{1} \in \mathcal{I}_{1}, A_{2} \in \mathcal{I}_{2}\right\}\right)
$$

- Graphic: combining two node-disjoint graphs
- Contraction: Given $B \subseteq \mathcal{X}$, let $M / B=\left(X^{\prime}, \mathcal{I}^{\prime}\right)$ with $X^{\prime}=X \backslash B$,

$$
\mathcal{I}^{\prime}=\left\{S \subseteq X^{\prime}: B \bigcup S \in \mathcal{I}\right\}
$$

- i.e. Think of B as always being included
- Graphic: contract the connected components of B

Operations preserving Matroidness

Given $\mathcal{M}=(\mathcal{X}, \mathcal{I})$, consider the following operations:

- Deletion: For $B \subseteq \mathcal{X}$, we define $\mathcal{M} \backslash B=\left(\mathcal{X}^{\prime}, \mathcal{I}^{\prime}\right)$ with $\mathcal{X}^{\prime}=X \backslash B$,

$$
\mathcal{I}^{\prime}=\left\{S \subseteq X^{\prime}: S \in \mathcal{I}\right\}
$$

- Graphic: deleting edges from the graph
- Disjoint union: Given $M_{1}=\left(\mathcal{X}_{1}, \mathcal{I}_{2}\right)$ and $M_{2}=\left(\mathcal{X}_{2}, \mathcal{I}_{2}\right)$ with $\mathcal{X}_{1} \cap \mathcal{X}_{2}=\emptyset$, we define

$$
M_{1} \oplus M_{2}=\left(\mathcal{X}_{1} \bigcup \mathcal{X}_{2},\left\{A_{1} \bigcup A_{2}: A_{1} \in \mathcal{I}_{1}, A_{2} \in \mathcal{I}_{2}\right\}\right)
$$

- Graphic: combining two node-disjoint graphs
- Contraction: Given $B \subseteq \mathcal{X}$, let $M / B=\left(X^{\prime}, \mathcal{I}^{\prime}\right)$ with $X^{\prime}=X \backslash B$,

$$
\mathcal{I}^{\prime}=\left\{S \subseteq X^{\prime}: B \bigcup S \in \mathcal{I}\right\}
$$

- i.e. Think of B as always being included
- Graphic: contract the connected components of B
- Others: truncation, dual, union...

Matroids as an Algebra of Tractable Discrete Problems

- Optimization over matroids is "easy", in the same way that optimization over convex sets is "easy"

Matroids as an Algebra of Tractable Discrete Problems

- Optimization over matroids is "easy", in the same way that optimization over convex sets is "easy"
- Operations preserving set convexity are analogous to operations preserving matroid structure

Matroids as an Algebra of Tractable Discrete Problems

- Optimization over matroids is "easy", in the same way that optimization over convex sets is "easy"
- Operations preserving set convexity are analogous to operations preserving matroid structure
- Arguably, matroids and submodular functions are discrete analogues of convex sets and convex functions, respectively.
- Less exhaustive

Outline

(4) Matroids and The Greedy Algorithm

(2) Basic Terminology and Properties
(3) The Matroid Polytope
(4) Matroid Intersection

Viewing Matroids Polyhedrally

- As is often the case with tractable discrete problems, we can view their feasible set as a polyhedron

Viewing Matroids Polyhedrally

- As is often the case with tractable discrete problems, we can view their feasible set as a polyhedron
- For $\mathcal{M}=(\mathcal{X}, \mathcal{I})$, the convex hull of independent sets can be written as a polytope in a natural way
- The polytope is "solvable", and admits a polytime separation oracle

Viewing Matroids Polyhedrally

- As is often the case with tractable discrete problems, we can view their feasible set as a polyhedron
- For $\mathcal{M}=(\mathcal{X}, \mathcal{I})$, the convex hull of independent sets can be written as a polytope in a natural way
- The polytope is "solvable", and admits a polytime separation oracle
- This perspective will be crucial for more advanced applications of matroids
- Optimization of linear functions over matroid intersections
- Optimization of submodular functions over matroids

The Matroid Polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

- Assigns a variable x_{i} to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
- $0 \leq x_{i} \leq 1$ since the rank of a singleton is at most 1 .

The Matroid Polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

- Assigns a variable x_{i} to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
- $0 \leq x_{i} \leq 1$ since the rank of a singleton is at most 1 .
- The 0-1 indicator vector x_{I} for independent set $I \in \mathcal{I}$ is in the above polytope

The Matroid Polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

- Assigns a variable x_{i} to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
- $0 \leq x_{i} \leq 1$ since the rank of a singleton is at most 1 .
- The 0-1 indicator vector x_{I} for independent set $I \in \mathcal{I}$ is in the above polytope
- In fact, we will show that $\mathcal{P}(\mathcal{M})$ is precisely the convex hull of independent sets \mathcal{I}

The Matroid Polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

- Assigns a variable x_{i} to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
- $0 \leq x_{i} \leq 1$ since the rank of a singleton is at most 1 .
- The 0-1 indicator vector x_{I} for independent set $I \in \mathcal{I}$ is in the above polytope
- In fact, we will show that $\mathcal{P}(\mathcal{M})$ is precisely the convex hull of independent sets \mathcal{I}
- Note: polytope has $2^{\mid \mathcal{X |}}$ constraints.

Integrality of the Matroid Polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

Theorem

$\mathcal{P}(\mathcal{M})=$ convexhull $\left\{x_{I}: I \in \mathcal{I}\right\}$

Integrality of the Matroid Polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

Theorem

$\mathcal{P}(\mathcal{M})=$ convexhull $\left\{x_{I}: I \in \mathcal{I}\right\}$

- It is clear that $\mathcal{P}(\mathcal{M}) \supseteq$ convexhull $\left\{x_{I}: I \in \mathcal{I}\right\}$

Integrality of the Matroid Polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

Theorem

$\mathcal{P}(\mathcal{M})=$ convexhull $\left\{x_{I}: I \in \mathcal{I}\right\}$

- It is clear that $\mathcal{P}(\mathcal{M}) \supseteq$ convexhull $\left\{x_{I}: I \in \mathcal{I}\right\}$
- To show that $\mathcal{P}(\mathcal{M}) \subseteq$ convexhull $\left\{x_{I}: I \in \mathcal{I}\right\}$, we will show that every vertex of $\mathcal{P}(\mathcal{M})$ equals x_{I} for some $I \in \mathcal{I}$.

Integrality of the Matroid Polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

Theorem

$\mathcal{P}(\mathcal{M})=$ convexhull $\left\{x_{I}: I \in \mathcal{I}\right\}$

- It is clear that $\mathcal{P}(\mathcal{M}) \supseteq$ convexhull $\left\{x_{I}: I \in \mathcal{I}\right\}$
- To show that $\mathcal{P}(\mathcal{M}) \subseteq$ convexhull $\left\{x_{I}: I \in \mathcal{I}\right\}$, we will show that every vertex of $\mathcal{P}(\mathcal{M})$ equals x_{I} for some $I \in \mathcal{I}$.
- Recall: suffices to show that every linear function $w^{T} x$ is maximized over $\mathcal{P}(\mathcal{M})$ at some x_{I} for $I \in \mathcal{I}$.

Recall:The Greedy Algorithm

(1) $B \leftarrow \emptyset$
(2) Sort nonnegative elements of \mathcal{X} in decreasing order of weight - $\{1, \ldots, n\}$ with $w_{1} \geq w_{2}, \geq \ldots \geq w_{n} \geq 0$.
(3) For $i=1$ to n :

- if $B \bigcup\{i\} \in \mathcal{I}$, add i to B.

Theorem

The greedy algorithm returns the maximum weight set for every choice of weights if and only if the set system $(\mathcal{X}, \mathcal{I})$ is a matroid.

Recall:The Greedy Algorithm

(1) $B \leftarrow \emptyset$
(2) Sort nonnegative elements of \mathcal{X} in decreasing order of weight - $\{1, \ldots, n\}$ with $w_{1} \geq w_{2}, \geq \ldots \geq w_{n} \geq 0$.
(3) For $i=1$ to n :

- if $B \bigcup\{i\} \in \mathcal{I}$, add i to B.

Theorem

The greedy algorithm returns the maximum weight set for every choice of weights if and only if the set system $(\mathcal{X}, \mathcal{I})$ is a matroid.

- We can think of the greedy algorithm as computing the indicator vector $x^{*}=x_{B} \in \mathcal{P}(\mathcal{M})$
- We will show that x^{*} maximizes $w^{\top} x$ over $x \in \mathcal{P}(\mathcal{M})$.

Recall: Observation

i is selected by the greedy algorithm iff $i \notin \operatorname{span}(\{1, \ldots, i-1\})$

- i.e. if $\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]=1$.

Recall: Observation

i is selected by the greedy algorithm iff $i \notin \operatorname{span}(\{1, \ldots, i-1\})$

- i.e. if $\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]=1$.
- Therefore, $x_{i}^{*}=\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]$

$$
\sum_{i} w_{i} x_{i}^{*}=\sum_{i} w_{i}(\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1])
$$

Recall: Observation

i is selected by the greedy algorithm iff $i \notin \operatorname{span}(\{1, \ldots, i-1\})$

- i.e. if $\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]=1$.
- Therefore, $x_{i}^{*}=\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]$

$$
\sum_{i} w_{i} x_{i}^{*}=\sum_{i} w_{i}(\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1])
$$

- Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$
$\sum_{i} w_{i} x_{i}=$

Recall: Observation

i is selected by the greedy algorithm iff $i \notin \operatorname{span}(\{1, \ldots, i-1\})$

- i.e. if $\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]=1$.
- Therefore, $x_{i}^{*}=\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]$

$$
\sum_{i} w_{i} x_{i}^{*}=\sum_{i} w_{i}(\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1])
$$

- Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$
\sum_{i} w_{i} x_{i}=\sum_{i}\left(w_{i}-w_{i+1}\right) x(1: i)
$$

Recall: Observation

i is selected by the greedy algorithm iff $i \notin \operatorname{span}(\{1, \ldots, i-1\})$

- i.e. if $\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]=1$.
- Therefore, $x_{i}^{*}=\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]$

$$
\sum_{i} w_{i} x_{i}^{*}=\sum_{i} w_{i}(\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1])
$$

- Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$
\begin{aligned}
\sum_{i} w_{i} x_{i} & =\sum_{i}\left(w_{i}-w_{i+1}\right) x(1: i) \\
& \leq \sum_{i}\left(w_{i}-w_{i+1}\right) \operatorname{rank}(1: i)
\end{aligned}
$$

Recall: Observation

i is selected by the greedy algorithm iff $i \notin \operatorname{span}(\{1, \ldots, i-1\})$

- i.e. if $\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]=1$.
- Therefore, $x_{i}^{*}=\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1]$

$$
\sum_{i} w_{i} x_{i}^{*}=\sum_{i} w_{i}(\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1])
$$

- Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$
\begin{aligned}
\sum_{i} w_{i} x_{i} & =\sum_{i}\left(w_{i}-w_{i+1}\right) x(1: i) \\
& \leq \sum_{i}\left(w_{i}-w_{i+1}\right) \operatorname{rank}(1: i) \\
& =\sum_{i} w_{i}(\operatorname{rank}[1: i]-\operatorname{rank}[1: i-1])
\end{aligned}
$$

The Matroid Base Polytope

- The matroid polytope is the convex hull of independent sets
- Graphic: convex hull of forests
- What if we wish to consider only "full-rank" sets?
- Graphic: spanning trees

The Matroid Base Polytope

- The matroid polytope is the convex hull of independent sets
- Graphic: convex hull of forests
- What if we wish to consider only "full-rank" sets?
- Graphic: spanning trees

Polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} \\
\sum_{i \in \mathcal{X}} x_{i}=\operatorname{rank}(\mathcal{M}) & \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X}
\end{array}
$$

- The 0-1 indicator vector x_{B} for a base B of \mathcal{M} is in above polytope

The Matroid Base Polytope

- The matroid polytope is the convex hull of independent sets
- Graphic: convex hull of forests
- What if we wish to consider only "full-rank" sets?
- Graphic: spanning trees

Polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} \\
\sum_{i \in \mathcal{X}} x_{i}=\operatorname{rank}(\mathcal{M}) & \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X}
\end{array}
$$

- The 0-1 indicator vector x_{B} for a base B of \mathcal{M} is in above polytope
- In fact, we will show that $\mathcal{P}(\mathcal{M})$ is precisely the convex hull of bases of \mathcal{M}

Polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{aligned}
& \sum_{i \in \mathcal{X}} x_{i}=\operatorname{rank}(\mathcal{M}) \\
& x_{i} \geq 0,
\end{aligned} \quad \text { for } i \in \mathcal{X}
$$

Theorem

$\mathcal{P}_{\text {base }}(\mathcal{M})=$ convexhull $\left\{x_{B}: B\right.$ is a base of $\left.\mathcal{M}\right\}$

Polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} \\
\sum_{i \in \mathcal{X}} x_{i}=\operatorname{rank}(\mathcal{M}) & \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X}
\end{array}
$$

Theorem

$\mathcal{P}_{\text {base }}(\mathcal{M})=$ convexhull $\left\{x_{B}: B\right.$ is a base of $\left.\mathcal{M}\right\}$

- As before, one direction is obvious: $\mathcal{P}_{\text {base }}(\mathcal{M}) \supseteq$ convexhull $\left\{x_{B}: B\right.$ is a base of $\left.\mathcal{M}\right\}$

Polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
\sum_{i \in \mathcal{X}} x_{i}=\operatorname{rank}(\mathcal{M}) & \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

Theorem

$\mathcal{P}_{\text {base }}(\mathcal{M})=$ convexhull $\left\{x_{B}: B\right.$ is a base of $\left.\mathcal{M}\right\}$

- As before, one direction is obvious: $\mathcal{P}_{\text {base }}(\mathcal{M}) \supseteq$ convexhull $\left\{x_{B}: B\right.$ is a base of $\left.\mathcal{M}\right\}$
- For the other direction, take $x \in \mathcal{P}_{\text {base }}(\mathcal{M})$

Polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
\sum_{i \in \mathcal{X}} x_{i}=\operatorname{rank}(\mathcal{M}) & \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

Theorem

$\mathcal{P}_{\text {base }}(\mathcal{M})=$ convexhull $\left\{x_{B}: B\right.$ is a base of $\left.\mathcal{M}\right\}$

- As before, one direction is obvious: $\mathcal{P}_{\text {base }}(\mathcal{M}) \supseteq$ convexhull $\left\{x_{B}: B\right.$ is a base of $\left.\mathcal{M}\right\}$
- For the other direction, take $x \in \mathcal{P}_{\text {base }}(\mathcal{M})$
- Since $x \in \mathcal{P}(\mathcal{M}), x$ is a convex combination of independent sets I_{1}, \ldots, I_{k} of \mathcal{M}.

Polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} \\
\sum_{i \in \mathcal{X}} x_{i}=\operatorname{rank}(\mathcal{M}) & \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X}
\end{array}
$$

Theorem

$\mathcal{P}_{\text {base }}(\mathcal{M})=$ convexhull $\left\{x_{B}: B\right.$ is a base of $\left.\mathcal{M}\right\}$

- As before, one direction is obvious: $\mathcal{P}_{\text {base }}(\mathcal{M}) \supseteq$ convexhull $\left\{x_{B}: B\right.$ is a base of $\left.\mathcal{M}\right\}$
- For the other direction, take $x \in \mathcal{P}_{\text {base }}(\mathcal{M})$
- Since $x \in \mathcal{P}(\mathcal{M}), x$ is a convex combination of independent sets I_{1}, \ldots, I_{k} of \mathcal{M}.
- Since $\|x\|_{1}=\operatorname{rank}(\mathcal{M})$, and $\left\|x_{I_{\ell}}\right\|_{1} \leq \operatorname{rank}(\mathcal{M})$ for all ℓ, it must be that $\left\|x_{I_{1}}\right\|_{1}=\left\|x_{I_{2}}\right\|_{1}=\ldots=\left\|x_{I_{k}}\right\|_{1}=\operatorname{rank}(\mathcal{M})$

Solvability of Matroid Polytopes

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

- When given an independence oracle for \mathcal{M}, we can maximize linear functions over $\mathcal{P}(\mathcal{M})$ in $O(n \log n)$ time
- By integrality, same as finding max-weight independent set of \mathcal{M}.

Solvability of Matroid Polytopes

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X}
\end{array}
$$

- When given an independence oracle for \mathcal{M}, we can maximize linear functions over $\mathcal{P}(\mathcal{M})$ in $O(n \log n)$ time
- By integrality, same as finding max-weight independent set of \mathcal{M}.
- Therefore, by equivalence of separation and optimization, can also implement a separation oracle for $\mathcal{P}(\mathcal{M})$

Solvability of Matroid Polytopes

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X}, \mathcal{I})$

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

- When given an independence oracle for \mathcal{M}, we can maximize linear functions over $\mathcal{P}(\mathcal{M})$ in $O(n \log n)$ time
- By integrality, same as finding max-weight independent set of \mathcal{M}.
- Therefore, by equivalence of separation and optimization, can also implement a separation oracle for $\mathcal{P}(\mathcal{M})$
- A more direct proof: reduces to submodular function minimization
- $\operatorname{ran} k_{\mathcal{M}}$ is a submodular set function.

Outline

(1) Matroids and The Greedy Algorithm

(2) Basic Terminology and Properties
(3) The Matroid Polytope
(4) Matroid Intersection

Matroid Intersection

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

Matroid Intersection

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

- i.e. a set is feasible if it is independent in both matroids

Matroid Intersection

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

- i.e. a set is feasible if it is independent in both matroids
- In general, does not produce a matroid

Matroid Intersection

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

- i.e. a set is feasible if it is independent in both matroids
- In general, does not produce a matroid
- Nevertheless, it will turn out that maximizing linear functions over a matroid intersection is tractable

Matroid Intersection

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

- i.e. a set is feasible if it is independent in both matroids
- In general, does not produce a matroid
- Nevertheless, it will turn out that maximizing linear functions over a matroid intersection is tractable
- However, maximizing linear functions over the intersection of 3 or more matroids is NP-hard

Examples

Bipartite Matching

Given a bipartite graph G, a set of edges F is a bipartite matching if and only if each node is incident on at most one edge in F.

Examples

Bipartite Matching

Given a bipartite graph G, a set of edges F is a bipartite matching if and only if each node is incident on at most one edge in F.

Arborescence

Given a directed graph G, a set of edges is an r-arborescence is a tree directed away from the root r.

Examples

Bipartite Matching

Given a bipartite graph G, a set of edges F is a bipartite matching if and only if each node is incident on at most one edge in F.

Arborescence

Given a directed graph G, a set of edges is an r-arborescence is a tree directed away from the root r.

- Others: orientations of graphs, colorful spanning trees, ...

The Matroid Intersection Polytope

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

- Optimizing a modular function over $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}$ is equivalent to optimizing a linear function over convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$.
- As it turns out, this is a solvable polytope.

Theorem

$\mathcal{P}\left(M_{1}\right) \bigcap \mathcal{P}\left(M_{2}\right)=$ convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$

The Matroid Intersection Polytope

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

- Optimizing a modular function over $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}$ is equivalent to optimizing a linear function over convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$.
- As it turns out, this is a solvable polytope.

Theorem

$\mathcal{P}\left(M_{1}\right) \bigcap \mathcal{P}\left(M_{2}\right)=$ convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$

- One direction is obvious:

$$
\mathcal{P}\left(M_{1}\right) \bigcap \mathcal{P}\left(M_{2}\right) \supseteq \text { convexhull }\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}
$$

The Matroid Intersection Polytope

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

- Optimizing a modular function over $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}$ is equivalent to optimizing a linear function over convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$.
- As it turns out, this is a solvable polytope.

Theorem

$\mathcal{P}\left(M_{1}\right) \bigcap \mathcal{P}\left(M_{2}\right)=$ convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$

- One direction is obvious:

$$
\mathcal{P}\left(M_{1}\right) \bigcap \mathcal{P}\left(M_{2}\right) \supseteq \text { convexhull }\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}
$$

- The other direction is not so obvious

The Matroid Intersection Polytope

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

- Optimizing a modular function over $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}$ is equivalent to optimizing a linear function over convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$.
- As it turns out, this is a solvable polytope.

Theorem

$\mathcal{P}\left(M_{1}\right) \bigcap \mathcal{P}\left(M_{2}\right)=$ convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$

- One direction is obvious:

$$
\mathcal{P}\left(M_{1}\right) \bigcap \mathcal{P}\left(M_{2}\right) \supseteq \text { convexhull }\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}
$$

- The other direction is not so obvious
- It is conceivable that $\mathcal{P}\left(\mathcal{M}_{1}\right) \bigcap \mathcal{P}\left(\mathcal{M}_{2}\right)$ has fractional vertices

The Matroid Intersection Polytope

Matroid Intersection

Given matroids $\mathcal{M}_{1}=\left(\mathcal{X}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{2}\right)$ on the same ground set, we define the set system $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}=\left(\mathcal{X}, \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right)$.

- Optimizing a modular function over $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}$ is equivalent to optimizing a linear function over convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$.
- As it turns out, this is a solvable polytope.

Theorem

$\mathcal{P}\left(M_{1}\right) \bigcap \mathcal{P}\left(M_{2}\right)=$ convexhull $\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}$

- One direction is obvious:

$$
\mathcal{P}\left(M_{1}\right) \bigcap \mathcal{P}\left(M_{2}\right) \supseteq \text { convexhull }\left\{x_{I}: I \in \mathcal{I}_{1} \bigcap \mathcal{I}_{2}\right\}
$$

- The other direction is not so obvious
- It is conceivable that $\mathcal{P}\left(\mathcal{M}_{1}\right) \bigcap \mathcal{P}\left(\mathcal{M}_{2}\right)$ has fractional vertices
- Nevertheless, it is true but hard to prove, so we will skip it.

Optimization over Matroid Intersections

Optimization over Matroid Intersection $\mathcal{M}_{1} \cap \mathcal{M}_{2}$

$$
\operatorname{maximize} \quad \sum_{i \in \mathcal{X}} w_{i} x_{i}
$$

subject to

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}_{1}}(S), & \text { for } S \subseteq \mathcal{X} \\
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}_{2}}(S), & \text { for } S \subseteq \mathcal{X} \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X}
\end{array}
$$

Optimization over Matroid Intersections

Optimization over Matroid Intersection $\mathcal{M}_{1} \cap \mathcal{M}_{2}$
maximize $\sum_{i \in \mathcal{X}} w_{i} x_{i}$
subject to

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}_{1}}(S), & \text { for } S \subseteq \mathcal{X} . \\
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}_{2}}(S), & \text { for } S \subseteq \mathcal{X} . \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X} .
\end{array}
$$

Theorem

Given independence oracles to both matroids \mathcal{M}_{1} and \mathcal{M}_{2}, there is an algorithm for finding the maximum weight set in $\mathcal{M}_{1} \cap \mathcal{M}_{2}$ which runs in poly (n) time.

Optimization over Matroid Intersections

Optimization over Matroid Intersection $\mathcal{M}_{1} \cap \mathcal{M}_{2}$
maximize $\sum_{i \in \mathcal{X}} w_{i} x_{i}$
subject to

$$
\begin{array}{ll}
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}_{1}}(S), & \text { for } S \subseteq \mathcal{X} \\
\sum_{i \in S} x_{i} \leq \operatorname{rank}_{\mathcal{M}_{2}}(S), & \text { for } S \subseteq \mathcal{X} \\
x_{i} \geq 0, & \text { for } i \in \mathcal{X}
\end{array}
$$

Theorem

Given independence oracles to both matroids \mathcal{M}_{1} and \mathcal{M}_{2}, there is an algorithm for finding the maximum weight set in $\mathcal{M}_{1} \bigcap \mathcal{M}_{2}$ which runs in poly (n) time.

Proof: Using equivalence of separation and optimization, and the fact that all coefficients in the LP have poly (n) bits.

NP-hardness of 3-way Matroid Intersection

By a reduction from Hamiltonian Path in directed graphs

