CS599: Convex and Combinatorial Optimization Fall 2013
 Lecture 24: Introduction to Submodular Functions

Instructor: Shaddin Dughmi

Announcements

Introduction

- We saw how matroids form a class of feasible sets over which optimization of modular objectives is tractable
- If matroids are discrete analogues of convex sets, then submodular functions are discrete analogues of convex/concave functions
- Submodular functions behave like convex functions sometimes (minimization) and concave other times (maximization)
- Today we will introduce submodular functions, go through some examples, and mention some of their properties

Outline

(1) Introduction to Submodular Functions

Set Functions

- A set function takes as input a set, and outputs a real number
- Inputs are subsets of some ground set X
- $f: 2^{X} \rightarrow \mathbb{R}$
- We will focus on set functions where X is finite, and denote $n=|X|$

Set Functions

- A set function takes as input a set, and outputs a real number
- Inputs are subsets of some ground set X
- $f: 2^{X} \rightarrow \mathbb{R}$
- We will focus on set functions where X is finite, and denote $n=|X|$
- Equivalently: map points in the hypercube $\{0,1\}^{n}$ to the real numbers
- Can be plotted as 2^{n} points in $n+1$ dimensional space

Set Functions

- We have already seen modular set functions
- Associate a weight w_{i} with each $i \in X$, and set $f(S)=\sum_{i \in S} w_{i}$
- Discrete analogue of linear functions

Set Functions

- We have already seen modular set functions
- Associate a weight w_{i} with each $i \in X$, and set $f(S)=\sum_{i \in S} w_{i}$
- Discrete analogue of linear functions
- Direct definition of modularity: $f(A)+f(B)=f(A \cap B)+f(A \cup B)$

Set Functions

- We have already seen modular set functions
- Associate a weight w_{i} with each $i \in X$, and set $f(S)=\sum_{i \in S} w_{i}$
- Discrete analogue of linear functions
- Direct definition of modularity: $f(A)+f(B)=f(A \cap B)+f(A \cup B)$
- Supmodular/supermodular functions are weak analogues to convex/concave functions (in no particular order!)

Set Functions

- We have already seen modular set functions
- Associate a weight w_{i} with each $i \in X$, and set $f(S)=\sum_{i \in S} w_{i}$
- Discrete analogue of linear functions
- Direct definition of modularity: $f(A)+f(B)=f(A \cap B)+f(A \cup B)$
- Supmodular/supermodular functions are weak analogues to convex/concave functions (in no particular order!)
- Other possibly useful properties a set function may have:
- Monotone increasing or decreasing
- Nonnegative: $f(A) \geq 0$ for all $S \subseteq X$
- Normalized: $f(\emptyset)=0$.

Submodular Functions

Definition 1

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is submodular if and only if

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

for all $A, B \subseteq X$.

- "Uncrossing" two sets reduces their total function value

Submodular Functions

Definition 2

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is submodular if and only if

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A))
$$

for all $A \subseteq B \subseteq X$.

- The marginal value of an additional element exhibits "diminishing marginal returns"
- Should remind of concavity

Supermodular Functions

Definition 0

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if $-f$ is submodular.

Supermodular Functions

Definition 0

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if $-f$ is submodular.

Definition 1

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if

$$
f(A)+f(B) \leq f(A \cap B)+f(A \cup B)
$$

for all $A, B \subseteq X$.

Supermodular Functions

Definition 0

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if $-f$ is submodular.

Definition 1

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if

$$
f(A)+f(B) \leq f(A \cap B)+f(A \cup B)
$$

for all $A, B \subseteq X$.

Definition 2

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if

$$
f(B \cup\{i\})-f(B) \geq f(A \cup\{i\})-f(A))
$$

for all $A \subseteq B \subseteq X$.

Examples

Many common examples are monotone, normalized, and submodular. We mention some.

Coverage Functions

X is the left hand side of a graph, and $f(S)$ is the total number of neighbors of S.

- Can think of $i \in X$ as a set, and $f(S)$ as the total "coverage" of S.

Examples

Many common examples are monotone, normalized, and submodular. We mention some.

Coverage Functions

X is the left hand side of a graph, and $f(S)$ is the total number of neighbors of S.

- Can think of $i \in X$ as a set, and $f(S)$ as the total "coverage" of S.

Probability

X is a set of probability events, and $f(S)$ is the probability at least one of them occurs.

Examples

Social Influence

- X is the family of nodes in a social network
- A meme, idea, or product is adopted at a set of nodes S
- The idea propagates through the network through some random diffusion process
- Many different models
- $f(S)$ is the expected number of nodes in the network which end up adopting the idea.

Examples

Social Influence

- X is the family of nodes in a social network
- A meme, idea, or product is adopted at a set of nodes S
- The idea propagates through the network through some random diffusion process
- Many different models
- $f(S)$ is the expected number of nodes in the network which end up adopting the idea.

Utility Functions

When X is a set of goods, $f(S)$ can represent the utility of an agent for a bundle of these goods. Utilities which exhibit diminishing marginal returns are natural in many settings.

Examples

Entropy

X is a set of random events, and $f(S)$ is the entropy of events S.

Examples

Entropy

X is a set of random events, and $f(S)$ is the entropy of events S.

Matroid Rank

The rank function of a matroid is monotone, submodular, and normalized.

Examples

Entropy

X is a set of random events, and $f(S)$ is the entropy of events S.

Matroid Rank

The rank function of a matroid is monotone, submodular, and normalized.

Clustering Quality

X is the set of nodes in a graph G, and $f(S)=E(S)$ is the internal connectedness of cluster S.

- Supermodular

Examples

There are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental.

Graph Cuts

X is the set of nodes in a graph G, and $f(S)$ is the number of edges crossing the cut ($S, X \backslash S$).

- Submodular
- Non-monotone.

Examples

There are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental.

Graph Cuts

X is the set of nodes in a graph G, and $f(S)$ is the number of edges crossing the cut ($S, X \backslash S$).

- Submodular
- Non-monotone.

Graph Density

X is the set of nodes in a graph G, and $f(S)=\frac{E(S)}{|S|}$ where $E(S)$ is the number of edges with both endpoints in S.

- Non-monotone
- Neither submodular nor supermodular

Examples

There are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental.

Graph Cuts

X is the set of nodes in a graph G, and $f(S)$ is the number of edges crossing the cut ($S, X \backslash S$).

- Submodular
- Non-monotone.

Graph Density

X is the set of nodes in a graph G, and $f(S)=\frac{E(S)}{|S|}$ where $E(S)$ is the number of edges with both endpoints in S.

- Non-monotone
- Neither submodular nor supermodular
- However, maximizing it reduces to maximizing supermodular function $E(S)-\alpha|S|$ for various $\alpha>0$ (binary search)

Equivalence of Both Definitions

Definition 1

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

Definition 2

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A))
$$

Equivalence of Both Definitions

Definition 1

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

Definition 2

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A))
$$

Definition $1 \Rightarrow$ Definition 2

- To prove (2), let $A^{\prime}=A \bigcup\{i\}$ and $B^{\prime}=B$ and apply (1)

$$
\begin{aligned}
f(A \cup\{i\})+f(B) & =f\left(A^{\prime}\right)+f\left(B^{\prime}\right) \\
& \geq f\left(A^{\prime} \cap B^{\prime}\right)+f\left(A^{\prime} \cup B^{\prime}\right) \\
& =f(A)+f(B \cup\{i\})
\end{aligned}
$$

Equivalence of Both Definitions

```
Definition 1
\(f(A)+f(B) \geq f(A \cap B)+f(A \cup B)\)
```


Definition 2

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A))
$$

Definition $2 \Rightarrow$ Definition 1

- To prove (1), start with $A=B$ and repeatedly elements to one but not the other
- At each step, (2) implies that the LHS of inequality (1) increases more than the RHS

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_{T}(S)=f(S \cup T)$ is submodular

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_{T}(S)=f(S \cup T)$ is submodular
- Reflection: If f is a submodular function on X, then $\bar{f}(S)=f(X \backslash S)$ is also submodular

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_{T}(S)=f(S \cup T)$ is submodular
- Reflection: If f is a submodular function on X, then $\bar{f}(S)=f(X \backslash S)$ is also submodular
- Others: Dilworth trucation, convolution with modular functions, ...

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_{T}(S)=f(S \cup T)$ is submodular
- Reflection: If f is a submodular function on X, then $\bar{f}(S)=f(X \backslash S)$ is also submodular
- Others: Dilworth trucation, convolution with modular functions, ...

Note

The minimum or maximum of two submodular functions is not necessarily submodular

Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constriants)	

Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constriants)	

Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constriants)	

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating $f(S)$.

