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Announcements



Introduction

We saw how matroids form a class of feasible sets over which
optimization of modular objectives is tractable
If matroids are discrete analogues of convex sets, then
submodular functions are discrete analogues of convex/concave
functions

Submodular functions behave like convex functions sometimes
(minimization) and concave other times (maximization)

Today we will introduce submodular functions, go through some
examples, and mention some of their properties



Outline

1 Introduction to Submodular Functions



Set Functions

A set function takes as input a set, and outputs a real number
Inputs are subsets of some ground set X
f : 2X → R

We will focus on set functions where X is finite, and denote
n = |X|

Equivalently: map points in the hypercube {0, 1}n to the real
numbers

Can be plotted as 2n points in n+ 1 dimensional space
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Set Functions

We have already seen modular set functions

Associate a weight wi with each i ∈ X, and set f(S) =
∑

i∈S wi

Discrete analogue of linear functions

Direct definition of modularity: f(A) + f(B) = f(A ∩B) + f(A ∪B)

Supmodular/supermodular functions are weak analogues to
convex/concave functions (in no particular order!)
Other possibly useful properties a set function may have:

Monotone increasing or decreasing
Nonnegative: f(A) ≥ 0 for all S ⊆ X
Normalized: f(∅) = 0.
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Submodular Functions

Definition 1
A set function f : 2X → R is submodular if and only if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

for all A,B ⊆ X.

“Uncrossing” two sets reduces
their total function value

A
B

≥
A

B
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Submodular Functions

Definition 2
A set function f : 2X → R is submodular if and only if

f(B ∪ {i})− f(B) ≤ f(A ∪ {i})− f(A))

for all A ⊆ B ⊆ X.

The marginal value of an
additional element exhibits
“diminishing marginal returns”
Should remind of concavity

A

B

i
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Supermodular Functions

Definition 0
A set function f : 2X → R is supermodular if and only if −f is
submodular.

Definition 1
A set function f : 2X → R is supermodular if and only if

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

for all A,B ⊆ X.

Definition 2
A set function f : 2X → R is supermodular if and only if

f(B ∪ {i})− f(B) ≥ f(A ∪ {i})− f(A))

for all A ⊆ B ⊆ X.
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Examples

Many common examples are monotone, normalized, and submodular.
We mention some.

Coverage Functions
X is the left hand side of a graph, and f(S) is the total number of
neighbors of S.

Can think of i ∈ X as a set, and f(S) as the total “coverage” of S.

Probability
X is a set of probability events, and f(S) is the probability at least one
of them occurs.
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Examples

Social Influence
X is the family of nodes in a social network
A meme, idea, or product is adopted at a set of nodes S
The idea propagates through the network through some random
diffusion process

Many different models

f(S) is the expected number of nodes in the network which end
up adopting the idea.

Utility Functions
When X is a set of goods, f(S) can represent the utility of an agent for
a bundle of these goods. Utilities which exhibit diminishing marginal
returns are natural in many settings.
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Examples

Entropy
X is a set of random events, and f(S) is the entropy of events S.

Matroid Rank
The rank function of a matroid is monotone, submodular, and
normalized.

Clustering Quality
X is the set of nodes in a graph G, and f(S) = E(S) is the internal
connectedness of cluster S.

Supermodular
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Examples

There are fewer examples of non-monotone submodular/supermodular
functions, which are nontheless fundamental.

Graph Cuts
X is the set of nodes in a graph G, and f(S) is the number of edges
crossing the cut (S,X \ S).

Submodular
Non-monotone.

Graph Density

X is the set of nodes in a graph G, and f(S) = E(S)
|S| where E(S) is the

number of edges with both endpoints in S.
Non-monotone
Neither submodular nor supermodular
However, maximizing it reduces to maximizing supermodular
function E(S)− α|S| for various α > 0 (binary search)
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Equivalence of Both Definitions

Definition 1

f(A)+ f(B) ≥ f(A∩B)+ f(A∪B)

A
B

Definition 2

f(B∪{i})−f(B) ≤ f(A∪{i})−f(A))

A

B

i
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Definition 1⇒ Definition 2
To prove (2), let A′ = A

⋃
{i} and B′ = B and apply (1)

f(A ∪ {i}) + f(B) = f(A′) + f(B′)

≥ f(A′ ∩B′) + f(A′ ∪B′)

= f(A) + f(B ∪ {i})
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A
B

Definition 2

f(B∪{i})−f(B) ≤ f(A∪{i})−f(A))

A

B

i

Definition 2⇒ Definition 1
To prove (1), start with A = B and repeatedly elements to one but
not the other
At each step, (2) implies that the LHS of inequality (1) increases
more than the RHS
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Operations Preserving Submodularity

Nonnegative-weighted combinations (a.k.a. conic combinations):
If f1, . . . , fk are submodular, and w1, . . . , wk ≥ 0, then
g(S) =

∑
iwifi(S) is also submodular

Special case: adding or subtracting a modular function

Restriction: If f is a submodular function on X, and T ⊆ X, then
g(S) = f(S ∩ T ) is submodular
Contraction (a.k.a conditioning): If f is a submodular function on
X, and T ⊆ X, then fT (S) = f(S ∪ T ) is submodular
Reflection: If f is a submodular function on X, then
f(S) = f(X \ S) is also submodular
Others: Dilworth trucation, convolution with modular functions, . . .

Note
The minimum or maximum of two submodular functions is not
necessarily submodular
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Optimizing Submodular Functions

As our examples suggest, optimization problems involving
submodular functions are very common
These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constriants)

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S).
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