CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 25: Unconstrained Submodular Function Minimization

Instructor: Shaddin Dughmi

2 The Convex Closure and the Lovasz Extension

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constriants)	

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constriants)	

Given a submodular function $f: 2^X \to \mathbb{R}$ on a finite ground set X,

 $\begin{array}{ll} \mbox{minimize} & f(S) \\ \mbox{subject to} & S \subseteq X \end{array}$

- We denote n = |X|
- We assume f(S) is a rational number with at most b bits

Given a submodular function $f: 2^X \to \mathbb{R}$ on a finite ground set X,

 $\begin{array}{ll} \mbox{minimize} & f(S) \\ \mbox{subject to} & S \subseteq X \end{array}$

- We denote n = |X|
- We assume f(S) is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating f(S) in constant time.

Given a submodular function $f: 2^X \to \mathbb{R}$ on a finite ground set X,

 $\begin{array}{ll} \text{minimize} & f(S) \\ \text{subject to} & S \subseteq X \end{array}$

- We denote n = |X|
- We assume f(S) is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating f(S) in constant time.

Goal

An algorithm which runs in time polynomial in n and b.

Given a submodular function $f: 2^X \to \mathbb{R}$ on a finite ground set X,

 $\begin{array}{ll} \text{minimize} & f(S) \\ \text{subject to} & S \subseteq X \end{array}$

- We denote n = |X|
- We assume f(S) is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating f(S) in constant time.

Goal

An algorithm which runs in time polynomial in n and b.

Note: weakly polynomial. There are strongly polytime algorithms.

Minimum Cut

Given a graph G = (V, E), find a set $S \subseteq V$ minimizing the number of edges crossing the cut $(S, V \setminus S)$.

- *G* may be directed or undirected.
- Extends to hypergraphs.

Minimum Cut

Given a graph G = (V, E), find a set $S \subseteq V$ minimizing the number of edges crossing the cut $(S, V \setminus S)$.

- *G* may be directed or undirected.
- Extends to hypergraphs.

Densest Subgraph

Given an undirected graph G = (V, E), find a set $S \subseteq V$ maximizing the average internal degree.

 Reduces to supermodular maximization via binary search for the right density.

2 The Convex Closure and the Lovasz Extension

Continuous Extensions of a Set Function

Recall

A set function f on $X = \{1, ..., n\}$ with can be thought of as a map from the vertices $\{0, 1\}^n$ of the *n*-dimensional hypercube to the real numbers.

Continuous Extensions of a Set Function

Recall

A set function f on $X = \{1, ..., n\}$ with can be thought of as a map from the vertices $\{0, 1\}^n$ of the *n*-dimensional hypercube to the real numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function

Given a set function $f : \{0, 1\}^n \to \mathbb{R}$, an extension of f to the hypercube $[0, 1]^n$ is a function $g : [0, 1]^n \to \mathbb{R}$ satisfying g(x) = f(x) for every $x \in \{0, 1\}^n$.

Continuous Extensions of a Set Function

Recall

A set function f on $X = \{1, ..., n\}$ with can be thought of as a map from the vertices $\{0, 1\}^n$ of the *n*-dimensional hypercube to the real numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function

Given a set function $f : \{0, 1\}^n \to \mathbb{R}$, an extension of f to the hypercube $[0, 1]^n$ is a function $g : [0, 1]^n \to \mathbb{R}$ satisfying g(x) = f(x) for every $x \in \{0, 1\}^n$.

Long story short...

We will exhibit an extension which is convex when f is submodular, and can be minimized efficiently. We will then show that minimizing it yields a solution to the submodular minimization problem.

The Convex Closure

Convex Closure

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, the convex closure $f^- : [0,1]^n \to \mathbb{R}$ of f is the point-wise greatest convex function under-estimating f on $\{0,1\}^n$.

The Convex Closure

Convex Closure

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, the convex closure $f^- : [0,1]^n \to \mathbb{R}$ of f is the point-wise greatest convex function under-estimating f on $\{0,1\}^n$.

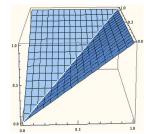
Geometric Intuition

What you would get by placing a blanket under the plot of f and pulling up.

$$\begin{split} f(\emptyset) &= 0 \\ f(\{1\}) &= f(\{2\}) = 1 \\ f(\{1,2\}) &= 1 \end{split}$$

$$f^{-}(x_1, x_2) = \max(x_1, x_2)$$

The Convex Closure and the Lovasz Extension



5/17

The Convex Closure

Convex Closure

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, the convex closure $f^- : [0,1]^n \to \mathbb{R}$ of f is the point-wise greatest convex function under-estimating f on $\{0,1\}^n$.

Claim

The convex closure exists for any set function.

- If g₁, g₂ : [0,1]ⁿ → ℝ are convex under-estimators of f, then so is max {g₁, g₂}
- Holds for infinite set of convex under-estimators
- Therefore $f^- = \max \{g : g \text{ is a convex underestimator of } f\}$ is the point-wise greatest convex underestimator of f.

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

Interpretation

- The minimum expected value of *f* over all distributions on $\{0,1\}^n$ with expectation *x*.
- Equivalently: the minimum expected value of f for a random set $S \subseteq X$ including each $i \in X$ with probability x_i .
- The upper bound on $f^{-}(x)$ implied by applying Jensen's inequality to every convex combination $\{0, 1\}^{n}$.

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \quad \text{for } y \in \{0,1\}^n \,. \end{array}$$

Implication

• f^- is a convex extension of f.

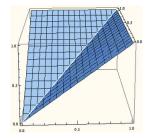
- $f^{-}(x)$ has no "integrality gap"
 - For every $x \in [0,1]^n$, there is a random integer vector $y \in \{0,1\}^n$ such that $\mathbf{E}_y f(y) = f^-(x)$.
 - Therefore, there is an integer vector y such that $f(y) \leq f^{-}(x)$.

The value of the convex closure at $x \in [0, 1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \geq 0, \end{array} \quad \text{for } y \in \{0,1\}^n \,. \end{array}$$

$$\begin{array}{l} f(\emptyset) = 0 \\ f(\{1\}) = f(\{2\}) = 1 \\ f(\{1,2\}) = 1 \end{array}$$

When $x_1 \le x_2$ $f^-(x_1, x_2) = x_1 f(\{1, 2\})$ $+ (x_2 - x_1) f(\{2\})$ $+ (1 - x_2) f(\emptyset)$



The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

Proof

• OPT(x) is at least $f^{-}(x)$ for every x: By Jensen's inequality

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

- OPT(x) is at least $f^{-}(x)$ for every x: By Jensen's inequality
- To show that OPT(x) is equal to $f^{-}(x)$, suffices to show that is a convex under-estimate of f

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

- OPT(x) is at least $f^{-}(x)$ for every x: By Jensen's inequality
- To show that OPT(x) is equal to $f^{-}(x)$, suffices to show that is a convex under-estimate of f
- Under-estimate: OPT(x) = f(x) for $x \in \{0, 1\}^n$

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

- OPT(x) is at least $f^{-}(x)$ for every x: By Jensen's inequality
- To show that OPT(x) is equal to $f^{-}(x)$, suffices to show that is a convex under-estimate of f
- Under-estimate: OPT(x) = f(x) for $x \in \{0, 1\}^n$
- Convex: The value of a minimization LP is convex in its right hand side constants (check)

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

•
$$f^-(y) = f(y)$$
 for every $y \in \{0,1\}^n$

• Therefore
$$\min_{x \in [0,1]^n} f^-(x) \le \min_{y \in \{0,1\}^n} f(y)$$

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

- $f^-(y) = f(y)$ for every $y \in \{0,1\}^n$
- Therefore $\min_{x \in [0,1]^n} f^-(x) \le \min_{y \in \{0,1\}^n} f(y)$
- For every x, f⁻(x) is the expected value of f(y), for a random variable y ∈ {0,1}ⁿ with expectation x.
- Therefore, $\min_{x \in [0,1]^n} f^-(x) \ge \min_{y \in \{0,1\}^n} f(y)$

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Good News?

We reduced minimizing set function f to minimizing a convex function f^- over a convex set $[0, 1]^n$. Are we done?

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Good News?

We reduced minimizing set function f to minimizing a convex function f^- over a convex set $[0, 1]^n$. Are we done?

Problem

In general, it is hard to evaluate f^- efficiently, let alone its derivative. This is indispensible for convex optimization algorithms.

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Good News?

We reduced minimizing set function f to minimizing a convex function f^- over a convex set $[0, 1]^n$. Are we done?

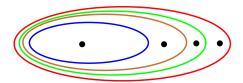
Problem

In general, it is hard to evaluate f^- efficiently, let alone its derivative. This is indispensible for convex optimization algorithms.

We will show that, when f is submodular, f^- is in fact equivalent to another extension which is easier to evaluate.

Chain Distribution

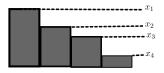
A chain distribution on the ground set X is a distribution over $S \subseteq X$ who's support forms a chain in the inclusion order.

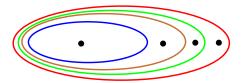


Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set $X = \{1, ..., n\}$. The chain distribution with marginals $x \in [0, 1]^n$ is the unique chain distribution $D^{\mathcal{L}}(x)$ satisfying $\mathbf{Pr}_{S \sim D^{\mathcal{L}}(x)}[i \in S] = x_i$ for all $i \in X$.

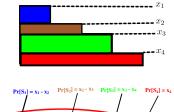


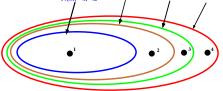


Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set $X = \{1, ..., n\}$. The chain distribution with marginals $x \in [0, 1]^n$ is the unique chain distribution $D^{\mathcal{L}}(x)$ satisfying $\mathbf{Pr}_{S \sim D^{\mathcal{L}}(x)}[i \in S] = x_i$ for all $i \in X$.

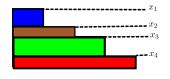


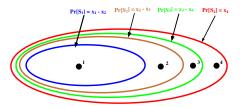


Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set $X = \{1, ..., n\}$. The chain distribution with marginals $x \in [0, 1]^n$ is the unique chain distribution $D^{\mathcal{L}}(x)$ satisfying $\mathbf{Pr}_{S \sim D^{\mathcal{L}}(x)}[i \in S] = x_i$ for all $i \in X$.





 $D^{\mathcal{L}}(x)$ is the distribution given by the following process:

- Sort $x_1 \ge x_2 \ldots \ge x_n$
- Let $S_i = \{x_1, \dots, x_i\}$
- Let $\Pr[S_i] = x_i x_{i+1}$

Definition

The Lovasz extension of a set function f is defined as follows.

$$f^{\mathcal{L}}(x) = \mathop{\mathbf{E}}_{S \sim D^{\mathcal{L}}(x)} f(S)$$

i.e. the Lovasz extension at x is the expected value of a set drawn from the unique chain distribution with marginals x.

Observations

• $f^{\mathcal{L}}$ is an extension, since the chain distribution with marginals $y \in \{0,1\}^n$ is the point distribution at y.

Definition

The Lovasz extension of a set function f is defined as follows.

$$f^{\mathcal{L}}(x) = \mathop{\mathbf{E}}_{S \sim D^{\mathcal{L}}(x)} f(S)$$

i.e. the Lovasz extension at x is the expected value of a set drawn from the unique chain distribution with marginals x.

Observations

- $f^{\mathcal{L}}$ is an extension, since the chain distribution with marginals $y \in \{0,1\}^n$ is the point distribution at y.
- $f^{\mathcal{L}}(x)$ is the expected value of f on some distribution on $\{0, 1\}^n$ with marginals x, therefore $f^{\mathcal{L}}(x) \ge f^{-}(x)$.

Definition

The Lovasz extension of a set function f is defined as follows.

$$f^{\mathcal{L}}(x) = \mathop{\mathbf{E}}_{S \sim D^{\mathcal{L}}(x)} f(S)$$

i.e. the Lovasz extension at x is the expected value of a set drawn from the unique chain distribution with marginals x.

Observations

- $f^{\mathcal{L}}$ is an extension, since the chain distribution with marginals $y \in \{0,1\}^n$ is the point distribution at y.
- $f^{\mathcal{L}}(x)$ is the expected value of f on some distribution on $\{0, 1\}^n$ with marginals x, therefore $f^{\mathcal{L}}(x) \ge f^-(x)$.
- Together, those imply: if $f^{\mathcal{L}}$ is convex, then $f^{\mathcal{L}} = f^{-}$.

Equivalence of the Convex Closure and Lovasz Extension

Theorem

If f is submodular, then $f^{\mathcal{L}} = f^{-}$.

Converse holds: if f is not submodular, then $f^{\mathcal{L}}$ is not convex.

Equivalence of the Convex Closure and Lovasz Extension

Theorem

If f is submodular, then $f^{\mathcal{L}} = f^{-}$.

Converse holds: if f is not submodular, then $f^{\mathcal{L}}$ is not convex.

Intuition

- Recall: *f*⁻(*x*) evaluates *f* on the "lowest" distribution with marginals *x*
- It turns out that, when f is submodular, this lowest distribution is the chain distribution $D^{\mathcal{L}}(x)$.

Equivalence of the Convex Closure and Lovasz Extension

Theorem

If f is submodular, then $f^{\mathcal{L}} = f^{-}$.

Converse holds: if f is not submodular, then $f^{\mathcal{L}}$ is not convex.

Intuition

- Recall: *f*⁻(*x*) evaluates *f* on the "lowest" distribution with marginals *x*
- It turns out that, when f is submodular, this lowest distribution is the chain distribution $D^{\mathcal{L}}(x)$.
- Contingent on marginals x, submodularity implies that cost is minimized by "packing" as many elements together as possible
 - diminishing marginal returns
- This gives the chain distribution

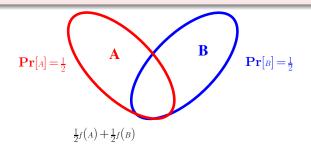
It suffices to show that the chain distribution with marginals x is in fact the "lowest" distribution with marginals x.

Proof (Special case)

It suffices to show that the chain distribution with marginals x is in fact the "lowest" distribution with marginals x.

Proof (Special case)

• Consider a distribution \mathcal{D} on two "crossing" sets A and B, with probability 0.5 each.



It suffices to show that the chain distribution with marginals x is in fact the "lowest" distribution with marginals x.

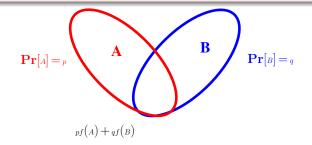
Proof (Special case)

- Consider a distribution \mathcal{D} on two "crossing" sets A and B, with probability 0.5 each.
- "uncrossing" implies that replacing them with A ∩ B and A ∪ B, with probability 0.5 each, gives a chain distribution with lower expected value of f.

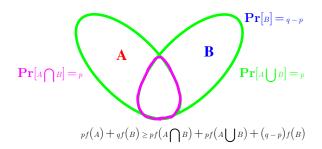


The Convex Closure and the Lovasz Extension

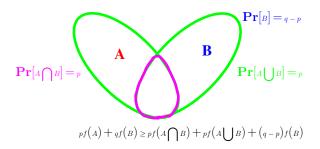
 Consider a distribution D on two "crossing" sets A and B, with probabilities p ≤ q.



- Consider a distribution D on two "crossing" sets A and B, with probabilities p ≤ q.
- Can "uncross" a probability mass of *p* of each, decreasing the expected value of *f*

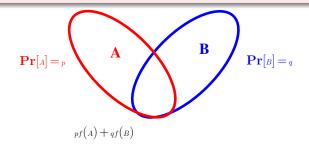


- Consider a distribution D on two "crossing" sets A and B, with probabilities p ≤ q.
- Can "uncross" a probability mass of *p* of each, decreasing the expected value of *f*
- Now a chain distribution

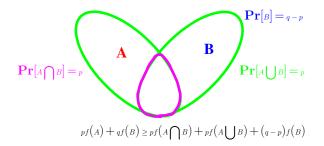


The Convex Closure and the Lovasz Extension

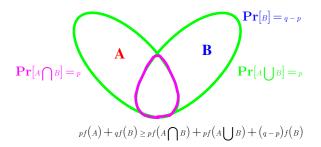
• Consider a distribution \mathcal{D} which includes two "crossing" sets A and B in its support



- Consider a distribution \mathcal{D} which includes two "crossing" sets A and B in its support
- Can "uncross" a probability mass of $\min(\mathbf{Pr}[A], \mathbf{Pr}[B])$ of each, decreasing expected value of f



- Consider a distribution \mathcal{D} which includes two "crossing" sets A and B in its support
- Can "uncross" a probability mass of $\min(\mathbf{Pr}[A], \mathbf{Pr}[B])$ of each, decreasing expected value of f
- Decreases number of crossing pairs of sets in the support.
 - Closer to being a chain distribution.



2 The Convex Closure and the Lovasz Extension

Minimizing the Lovasz Extension

Because $f^{\mathcal{L}} = f^{-}$, we know the following:

Fact

The minimum of $f^{\mathcal{L}}$ is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Minimizing the Lovasz Extension

Because $f^{\mathcal{L}} = f^{-}$, we know the following:

Fact

The minimum of $f^{\mathcal{L}}$ is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Therefore, minimizing f reduces to the following convex optimization problem

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

Weak Solvability

An algorithm weakly solves our optimization problem if it takes in approximation parameter $\epsilon > 0$, runs in $poly(n, \log \frac{1}{\epsilon})$ time, and returns $x \in [0, 1]^n$ which is ϵ -optimal:

$$f^{\mathcal{L}}(x) \le \min_{y \in [0,1]^n} f^{\mathcal{L}}(y) + \epsilon [\max_{y \in [0,1]^n} f^{\mathcal{L}}(y) - \min_{y \in [0,1]^n} f^{\mathcal{L}}(y)]$$

Polynomial Solvability of CP

In order to weakly minimize $f^{\mathcal{L}}$, we need the following operations to run in poly(n) time:

Compute a starting ellipsoid $E \supseteq [0,1]^n$ with $\frac{\operatorname{vol}(E)}{\operatorname{vol}([0,1]^n)} = O(\exp(n)).$

- **2** A separation oracle for the feasible set $[0, 1]^n$
- A first order oracle for f^L: evaluates f^L(x) and a subgradient of f^L at x.

Polynomial Solvability of CP

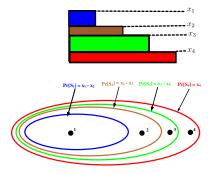
In order to weakly minimize $f^{\mathcal{L}}$, we need the following operations to run in poly(n) time:

Compute a starting ellipsoid $E \supseteq [0, 1]^n$ with $\frac{\operatorname{vol}(E)}{\operatorname{vol}([0, 1]^n)} = O(\exp(n)).$

- 2 A separation oracle for the feasible set $[0,1]^n$
- A first order oracle for f^L: evaluates f^L(x) and a subgradient of f^L at x.

1 and 2 are trivial.

First order Oracle for $f^{\mathcal{L}}$



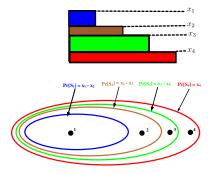
• Recall: the chain distribution with marginals x

• Sort
$$x_1 \ge x_2 \ldots \ge x_n$$

• Let
$$S_i = \{x_1, \dots, x_i\}$$

• Let
$$\Pr[S_i] = x_i - x_{i+1}$$

First order Oracle for $f^{\mathcal{L}}$



• Recall: the chain distribution with marginals x

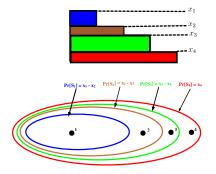
• Sort
$$x_1 \ge x_2 \dots \ge x_n$$

• Let
$$S_i = \{x_1, \dots, x_i\}$$

• Let
$$\mathbf{Pr}[S_i] = x_i - x_{i+1}$$

• Can evaluate $f^{\mathcal{L}}(x) = \sum_{i} f(S_i)(x_i - x_{i+1})$

First order Oracle for $f^{\mathcal{L}}$



• Recall: the chain distribution with marginals x

• Sort
$$x_1 \ge x_2 \ldots \ge x_n$$

• Let
$$S_i = \{x_1, \dots, x_i\}$$

• Let
$$\Pr[S_i] = x_i - x_{i+1}$$

• Can evaluate $f^{\mathcal{L}}(x) = \sum_{i} f(S_i)(x_i - x_{i+1})$

• $f^{\mathcal{L}}$ is peicewise linear, so can compute a sub-gradient.

Wrapping up

We can get an $\epsilon\text{-optimal solution }x^*$ to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

We can get an $\epsilon\text{-optimal solution }x^*$ to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

• Set $\epsilon < 2^{-b}$, runtime is poly(n, b).

We can get an $\epsilon\text{-optimal solution }x^*$ to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

Set ε < 2^{-b}, runtime is poly(n, b).
min_S f(S) ≤ f^L(x*) < min2_S f(S)

We can get an ϵ -optimal solution x^* to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

- Set $\epsilon < 2^{-b}$, runtime is poly(n, b).
- $\min_S f(S) \le f^{\mathcal{L}}(x^*) < \min_{2S} f(S)$
- $f^{\mathcal{L}}(x^*)$ is the expectation f over a distribution of sets
 - It must include an optimal set in its support

We can get an ϵ -optimal solution x^* to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

- Set $\epsilon < 2^{-b}$, runtime is poly(n, b).
- $\min_S f(S) \le f^{\mathcal{L}}(x^*) < \min_{2S} f(S)$
- $f^{\mathcal{L}}(x^*)$ is the expectation f over a distribution of sets
 - It must include an optimal set in its support
- We can identify this set by examining the chain distribution with marginals *x*^{*}