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Recall: Optimizing Submodular Functions

As our examples suggest, optimization problems involving
submodular functions are very common
These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constriants)
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Problem Definition
Given a submodular function f : 2X → R on a finite ground set X,

minimize f(S)
subject to S ⊆ X

We denote n = |X|
We assume f(S) is a rational number with at most b bits

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S) in constant time.

Goal
An algorithm which runs in time polynomial in n and b.

Note: weakly polynomial. There are strongly polytime algorithms.
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Examples

Minimum Cut
Given a graph G = (V,E), find a set S ⊆ V minimizing the number of
edges crossing the cut (S, V \ S).

G may be directed or undirected.
Extends to hypergraphs.

Densest Subgraph
Given an undirected graph G = (V,E), find a set S ⊆ V maximizing
the average internal degree.

Reduces to supermodular maximization via binary search for the
right density.
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Continuous Extensions of a Set Function

Recall
A set function f on X = {1, . . . , n} with can be thought of as a map
from the vertices {0, 1}n of the n-dimensional hypercube to the real
numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function
Given a set function f : {0, 1}n → R, an extension of f to the
hypercube [0, 1]n is a function g : [0, 1]n → R satisfying g(x) = f(x) for
every x ∈ {0, 1}n.

Long story short. . .
We will exhibit an extension which is convex when f is submodular,
and can be minimized efficiently. We will then show that minimizing it
yields a solution to the submodular minimization problem.

The Convex Closure and the Lovasz Extension 4/17
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The Convex Closure

Convex Closure
Given a set function f : {0, 1}n → R, the convex closure
f− : [0, 1]n → R of f is the point-wise greatest convex function
under-estimating f on {0, 1}n.
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Convex Closure
Given a set function f : {0, 1}n → R, the convex closure
f− : [0, 1]n → R of f is the point-wise greatest convex function
under-estimating f on {0, 1}n.

Geometric Intuition
What you would get by placing a blanket under the plot of f and pulling
up.

f(∅) = 0
f({1}) = f({2}) = 1
f({1, 2}) = 1

f−(x1, x2) = max(x1, x2)
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The Convex Closure

Convex Closure
Given a set function f : {0, 1}n → R, the convex closure
f− : [0, 1]n → R of f is the point-wise greatest convex function
under-estimating f on {0, 1}n.

Claim
The convex closure exists for any set function.

Proof
If g1, g2 : [0, 1]n → R are convex under-estimators of f , then so is
max {g1, g2}
Holds for infinite set of convex under-estimators
Therefore f− = max {g : g is a convex underestimator of f} is the
point-wise greatest convex underestimator of f .
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Claim
The value of the convex closure at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

Interpretation
The minimum expected value of f over all distributions on {0, 1}n
with expectation x.
Equivalently: the minimum expected value of f for a random set
S ⊆ X including each i ∈ X with probability xi.
The upper bound on f−(x) implied by applying Jensen’s inequality
to every convex combination {0, 1}n.
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subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

Implication
f− is a convex extension of f .
f−(x) has no “integrality gap”

For every x ∈ [0, 1]n, there is a random integer vector y ∈ {0, 1}n
such that Ey f(y) = f−(x).
Therefore, there is an integer vector y such that f(y) ≤ f−(x).
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Claim
The value of the convex closure at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

f(∅) = 0
f({1}) = f({2}) = 1
f({1, 2}) = 1

When x1 ≤ x2
f−(x1, x2) = x1f({1, 2})

+ (x2 − x1)f({2})
+ (1− x2)f(∅)
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Claim
The value of the convex closure at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

Proof
OPT (x) is at least f−(x) for every x: By Jensen’s inequality

To show that OPT (x) is equal to f−(x), suffices to show that is a
convex under-estimate of f
Under-estimate: OPT (x) = f(x) for x ∈ {0, 1}n

Convex: The value of a minimization LP is convex in its right hand
side constants (check)
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Using the Convex Closure

Fact
The minimum of f− is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Proof

f−(y) = f(y) for every y ∈ {0, 1}n

Therefore minx∈[0,1]n f
−(x) ≤ miny∈{0,1}n f(y)

For every x, f−(x) is the expected value of f(y), for a random
variable y ∈ {0, 1}n with expectation x.
Therefore, minx∈[0,1]n f

−(x) ≥ miny∈{0,1}n f(y)
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Using the Convex Closure

Fact
The minimum of f− is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Good News?
We reduced minimizing set function f to minimizing a convex function
f− over a convex set [0, 1]n. Are we done?

Problem
In general, it is hard to evaluate f− efficiently, let alone its derivative.
This is indispensible for convex optimization algorithms.

We will show that, when f is submodular, f− is in fact equivalent to
another extension which is easier to evaluate.
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Chain Distributions

Chain Distribution
A chain distribution on the ground set X is a distribution over S ⊆ X
who’s support forms a chain in the inclusion order.

DL(x) is the distribution given by
the following process:

Sort x1 ≥ x2 . . . ≥ xn
Let Si = {x1, . . . , xi}
Let Pr[Si] = xi − xi+1
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Chain Distributions

Chain Distribution with Given Marginals
Fix the ground set X = {1, . . . , n}. The chain distribution with
marginals x ∈ [0, 1]n is the unique chain distribution DL(x) satisfying
PrS∼DL(x)[i ∈ S] = xi for all i ∈ X.

DL(x) is the distribution given by
the following process:
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The Lovasz Extension

Definition
The Lovasz extension of a set function f is defined as follows.

fL(x) = E
S∼DL(x)

f(S)

i.e. the Lovasz extension at x is the expected value of a set drawn from
the unique chain distribution with marginals x.

Observations
fL is an extension, since the chain distribution with marginals
y ∈ {0, 1}n is the point distribution at y.

fL(x) is the expected value of f on some distribution on {0, 1}n
with marginals x, therefore fL(x) ≥ f−(x).
Together, those imply: if fL is convex, then fL = f−.
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Equivalence of the Convex Closure and Lovasz
Extension

Theorem
If f is submodular, then fL = f−.

Converse holds: if f is not submodular, then fL is not convex.

Intuition
Recall: f−(x) evaluates f on the “lowest” distribution with
marginals x
It turns out that, when f is submodular, this lowest distribution is
the chain distribution DL(x).
Contingent on marginals x, submodularity implies that cost is
minimized by “packing” as many elements together as possible

diminishing marginal returns

This gives the chain distribution
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It suffices to show that the chain distribution with marginals x is in fact
the “lowest” distribution with marginals x.

Proof (Special case)

Consider a distribution D on two “crossing” sets A and B, with
probability 0.5 each.
“uncrossing” implies that replacing them with A

⋂
B and A

⋃
B,

with probability 0.5 each, gives a chain distribution with lower
expected value of f .

A B

1
2
f(A)+ 1

2
f(B) ≥ 1

2
f(A

⋂
B)+ 1

2
f(A

⋃
B)

Pr[A
⋂

B] = 1
2

Pr[A
⋃

B] = 1
2
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Proof (Slightly Less Special Case)

Consider a distribution D on two “crossing” sets A and B, with
probabilities p ≤ q.
Can “uncross” a probability mass of p of each, decreasing the
expected value of f
Now a chain distribution

A B
Pr[A

⋂
B] = p

pf(A)+ qf(B) ≥ pf(A
⋂

B)+ pf(A
⋃

B)+(q − p)f(B)

Pr[A
⋃

B] = p

Pr[B] = q − p
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Proof (General Case)

Consider a distribution D which includes two “crossing” sets A
and B in its support
Can “uncross” a probability mass of min(Pr[A],Pr[B]) of each,
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Minimizing the Lovasz Extension

Because fL = f−, we know the following:

Fact
The minimum of fL is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Therefore, minimizing f reduces to the following convex optimization
problem

Minimizing the Lovasz Extension

minimize fL(x)
subject to x ∈ [0, 1]n
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Recall: Solvability of Convex Optimization

Weak Solvability
An algorithm weakly solves our optimization problem if it takes in
approximation parameter ε > 0, runs in poly(n, log 1

ε ) time, and returns
x ∈ [0, 1]n which is ε-optimal:

fL(x) ≤ min
y∈[0,1]n

fL(y) + ε[ max
y∈[0,1]n

fL(y)− min
y∈[0,1]n

fL(y)]
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Recall: Solvability of Convex Optimization

Polynomial Solvability of CP
In order to weakly minimize fL, we need the following operations to
run in poly(n) time:

1 Compute a starting ellipsoid E ⊇ [0, 1]n with
vol(E)

vol([0,1]n) = O(exp(n)).

2 A separation oracle for the feasible set [0, 1]n

3 A first order oracle for fL: evaluates fL(x) and a subgradient of
fL at x.

1 and 2 are trivial.
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First order Oracle for fL

Pr[S1] = x1 - x2
Pr[S4] = x4 

4321

Pr[S3] = x3 - x4Pr[S2] = x2 - x3

Recall: the chain distribution with marginals x
Sort x1 ≥ x2 . . . ≥ xn
Let Si = {x1, . . . , xi}
Let Pr[Si] = xi − xi+1

Can evaluate fL(x) =
∑

i f(Si)(xi − xi+1)

fL is peicewise linear, so can compute a sub-gradient.
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Recovering an Optimal Set

We can get an ε-optimal solution x∗ to the optimization problem in
poly(n, log 1

ε ) time.

Minimizing the Lovasz Extension

minimize fL(x)
subject to x ∈ [0, 1]n

Set ε < 2−b, runtime is poly(n, b).
minS f(S) ≤ fL(x∗) < min2S f(S)

fL(x∗) is the expectation f over a distribution of sets
It must include an optimal set in its support

We can identify this set by examining the chain distribution with
marginals x∗
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