CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 25: Unconstrained Submodular Function
Minimization

Instructor: Shaddin Dughmi



Announcements



ﬂ Introduction



Recall: Optimizing Submodular Functions

@ As our examples suggest, optimization problems involving
submodular functions are very common

@ These can be classified on two axes: constrained/unconstrained
and maximization/minimization

I | Maximization \ Minimization |
Unconstrained NP-hard Polynomial time
+ approximation via convex opt
Constrained Usually NP-hard Usually NP-hard to apx.

1 —1/e (mono, matroid) | Few easy special cases
O(1) (“nice” constriants)
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Problem Definition
Given a submodular function f : 2X — R on a finite ground set X,

minimize  f(S5)
subjectto S C X

@ We denote n = | X|
@ We assume f(S) is a rational number with at most b bits
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posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S) in constant time.

Introduction 2/17



Problem Definition
Given a submodular function f : 2X — R on a finite ground set X,

minimize  f(S5)
subjectto S C X

@ We denote n = | X|
@ We assume f(S) is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S) in constant time.

An algorithm which runs in time polynomial in n and b.

Introduction 2/17




Problem Definition
Given a submodular function f : 2X — R on a finite ground set X,

minimize  f(S5)
subjectto S C X

@ We denote n = | X|
@ We assume f(S) is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S) in constant time.

An algorithm which runs in time polynomial in n and b.

Note: weakly polynomial. There are strongly polytime algorithms.
Introduction 2/17




Given a graph G = (V, E), find a set S C V minimizing the number of
edges crossing the cut (S,V '\ 5).
@ GG may be directed or undirected.

@ Extends to hypergraphs.

Introduction 3/17



Given a graph G = (V, E), find a set S C V minimizing the number of
edges crossing the cut (S,V '\ 5).
@ GG may be directed or undirected.

@ Extends to hypergraphs.

Densest Subgraph

Given an undirected graph G = (V, E), find a set S C V maximizing
the average internal degree.
@ Reduces to supermodular maximization via binary search for the
right density.
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© The Convex Closure and the Lovasz Extension



Continuous Extensions of a Set Function

A set function f on X = {1,...,n} with can be thought of as a map

from the vertices {0,1}" of the n-dimensional hypercube to the real
numbers.
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Continuous Extensions of a Set Function

A set function f on X = {1,...,n} with can be thought of as a map
from the vertices {0,1}" of the n-dimensional hypercube to the real
numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function

Given a set function f : {0,1}" — R, an extension of f to the
hypercube [0, 1]™ is a function g : [0, 1]" — R satisfying g(z) = f(x) for
every z € {0,1}".
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Continuous Extensions of a Set Function

A set function f on X = {1,...,n} with can be thought of as a map
from the vertices {0, 1}" of the n-dimensional hypercube to the real
numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function

Given a set function f : {0,1}" — R, an extension of f to the
hypercube [0, 1]" is a function g : [0, 1]" — R satisfying g(z) = f(x) for
every z € {0,1}".

Long story short...

We will exhibit an extension which is convex when f is submodular,
and can be minimized efficiently. We will then show that minimizing it
yields a solution to the submodular minimization problem.
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The Convex Closure

Convex Closure

Given a set function f : {0,1}" — R, the convex closure
f~:[0,1]™ — R of f is the point-wise greatest convex function
under-estimating f on {0,1}".
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The Convex Closure

Convex Closure

Given a set function f : {0,1}" — R, the convex closure
f~:[0,1]™ — R of f is the point-wise greatest convex function
under-estimating f on {0,1}".

Geometric Intuition
What you would get by placing a blanket under the plot of f and pulling
up.

f@) =0
F{1}) =r({2h) =1
f({L,2h) =1

[~ (z1,22) = max(z1, z2)
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The Convex Closure

Convex Closure

Given a set function f : {0,1}" — R, the convex closure
f~:[0,1]™ — R of f is the point-wise greatest convex function
under-estimating f on {0,1}".

The convex closure exists for any set function.

@ If g1,92 : [0,1]" — R are convex under-estimators of f, then so is
max {g1, g2}
@ Holds for infinite set of convex under-estimators

@ Therefore f~ = max{g : g is a convex underestimator of f} is the
point-wise greatest convex underestimator of f.
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The value of the convex closure at = € [0, 1]" is the solution of the
following optimization problem:

minimize 3, cro13n Ay f (¥)
subjectto 3 con Ay ==
yeoym =1
Ay >0, fory € {0,1}".

Interpretation

@ The minimum expected value of f over all distributions on {0,1}"
with expectation x.

@ Equivalently: the minimum expected value of f for a random set
S C X including each i € X with probability ;.

@ The upper bound on f~(x) implied by applying Jensen’s inequality
to every convex combination {0, 1}".

4
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The value of the convex closure at = € [0, 1]" is the solution of the
following optimization problem:

minimize 3, cro13n Ay f (¥)
subjectto 3 con Ay ==

ye{0,1}" Ay =1
Ay >0, fory € {0,1}".

Implication

@ [~ is a convex extension of f.
@ f~(x) has no “integrality gap”
e Forevery z € [0, 1]", there is a random integer vector y € {0,1}"

suchthat E, f(y) = f~ (z).
e Therefore, there is an integer vector y such that f(y) < f~(x).
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The value of the convex closure at = € [0, 1]" is the solution of the
following optimization problem:

minimize 3, cro13n Ay f (¥)
subjectto 3 con Ay ==

ye{0,1}" Ay =1
Ay >0,
fy=o0
F{1}) = f({2}) =1
f{1.2}) =

When r1 < o
(@1, 22) = 21 f({1,2})
+ (z2 —z1) F({2})
+ (1 —x2) f(0)
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The value of the convex closure at = € [0, 1]" is the solution of the
following optimization problem:

minimize 3, cro13n Ay f (¥)
subjectto 3 con Ay ==
yeoym =1
Ay >0, fory € {0,1}".

v

@ OPT(x)is at least f~(x) for every z: By Jensen’s inequality

N
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The value of the convex closure at = € [0, 1]" is the solution of the
following optimization problem:

minimize 3, cro13n Ay f (¥)
subjectto 3 con Ay ==
yeoym =1
Ay >0, fory € {0,1}".

v

@ OPT(x)is at least f~(x) for every z: By Jensen’s inequality

@ To show that OPT(x) is equal to f~(z), suffices to show that is a
convex under-estimate of f

@ Under-estimate: OPT'(x) = f(x) for z € {0,1}"

N
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The value of the convex closure at = € [0, 1]" is the solution of the
following optimization problem:

minimize 3, cro13n Ay f (¥)
subjectto 3 con Ay ==
yeoym =1
Ay >0, fory € {0,1}".

v

@ OPT(x)is at least f~(x) for every z: By Jensen’s inequality

@ To show that OPT(x) is equal to f~(z), suffices to show that is a
convex under-estimate of f

@ Under-estimate: OPT'(x) = f(x) for z € {0,1}"

@ Convex: The value of a minimization LP is convex in its right hand
side constants (check)

N
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Using the Convex Closure

The minimum of f~ is equal to the minimum of f, and moreover is
attained at minimizers y € {0,1}" of f.
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Using the Convex Closure

The minimum of f~ is equal to the minimum of f, and moreover is
attained at minimizers y € {0,1}" of f.

® f~(y) = f(y) forevery y € {0,1}"
@ Therefore min, ¢ 1j» /™ (2) < minyego 1y f(y)
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Using the Convex Closure

The minimum of f~ is equal to the minimum of f, and moreover is
attained at minimizers y € {0,1}" of f.

® f~(y) = f(y) forevery y € {0,1}"
@ Therefore min, ¢ 1j» /™ (2) < minyego 1y f(y)

@ For every z, f~(z) is the expected value of f(y), for a random
variable y € {0,1}" with expectation z.

@ Therefore, min,cp 1= f~(2) > minyego 1y~ ()

\
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Using the Convex Closure

The minimum of f~ is equal to the minimum of f, and moreover is
attained at minimizers y € {0,1}" of f.

Good News?

We reduced minimizing set function f to minimizing a convex function
f~ over a convex set [0,1]™. Are we done?
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attained at minimizers y € {0,1}" of f.

We reduced minimizing set function f to minimizing a convex function
f~ over a convex set [0,1]™. Are we done?

v

In general, it is hard to evaluate f~ efficiently, let alone its derivative.
This is indispensible for convex optimization algorithms.
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Using the Convex Closure

The minimum of f~ is equal to the minimum of f, and moreover is
attained at minimizers y € {0,1}" of f.

Good News?

We reduced minimizing set function f to minimizing a convex function
f~ over a convex set [0,1]™. Are we done?

| A

Problem

In general, it is hard to evaluate f— efficiently, let alone its derivative.
This is indispensible for convex optimization algorithms.

We will show that, when f is submodular, f~ is in fact equivalent to
another extension which is easier to evaluate.
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Chain Distributions

Chain Distribution

A chain distribution on the ground set X is a distribution over S C X
who’s support forms a chain in the inclusion order.
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Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set X = {1,...,n}. The chain distribution with
marginals = € [0, 1]" is the unique chain distribution D*(z) satisfying
Prg. pe(yli € S]=; foralli € X.
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Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set X = {1,...,n}. The chain distribution with
marginals = € [0, 1]" is the unique chain distribution D*(z) satisfying
Prg. pe(yli € S]=; foralli € X.

D*(x) is the distribution given by
the following process:

@ Sortxy > x9...> 2,

o LetS; ={z1,...,z;}

@ Let Pr[S;| =z —zin1
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The Lovasz Extension

Definition
The Lovasz extension of a set function f is defined as follows.

£ —
@)= B HS)

i.e. the Lovasz extension at x is the expected value of a set drawn from
the unique chain distribution with marginals z.

@ f%is an extension, since the chain distribution with marginals
y € {0,1}" is the point distribution at y.
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The Lovasz Extension

Definition
The Lovasz extension of a set function f is defined as follows.

£ —
@)= B HS)

i.e. the Lovasz extension at x is the expected value of a set drawn from
the unique chain distribution with marginals z.

@ f* is an extension, since the chain distribution with marginals
y € {0,1}" is the point distribution at y.

@ f%(x) is the expected value of f on some distribution on {0,1}"
with marginals z, therefore f~(x) > f~(x).

@ Together, those imply: if * is convex, then f* = f.
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Equivalence of the Convex Closure and Lovasz

Extension

If f is submodular, then f~ = f~. I

Converse holds: if f is not submodular, then f* is not convex.
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Equivalence of the Convex Closure and Lovasz

Extension

If f is submodular, then f~ = f~.

Converse holds: if f is not submodular, then f* is not convex.

@ Recall: f~(z) evaluates f on the “lowest” distribution with
marginals x

@ It turns out that, when f is submodular, this lowest distribution is
the chain distribution D*(x).
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Equivalence of the Convex Closure and Lovasz

Extension

If f is submodular, then f~ = f~.

Converse holds: if f is not submodular, then f* is not convex.

@ Recall: f~(z) evaluates f on the “lowest” distribution with
marginals x
@ It turns out that, when f is submodular, this lowest distribution is
the chain distribution D*(x).
@ Contingent on marginals x, submodularity implies that cost is
minimized by “packing” as many elements together as possible
e diminishing marginal returns

@ This gives the chain distribution
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It suffices to show that the chain distribution with marginals z is in fact
the “lowest” distribution with marginals z.

Proof (Special case)
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It suffices to show that the chain distribution with marginals z is in fact
the “lowest” distribution with marginals z.

Proof (Special case)

@ Consider a distribution D on two “crossing” sets A and B, with
probability 0.5 each.

Prla =

Bol—

Pr[s] =1

%f(A) + %f(B)

The Convex Closure and the Lovasz Extension 11/17



It suffices to show that the chain distribution with marginals z is in fact
the “lowest” distribution with marginals z.

Proof (Special case)
@ Consider a distribution D on two “crossing” sets A and B, with
probability 0.5 each.

@ “uncrossing” implies that replacing them with A B and A B,
with probability 0.5 each, gives a chain distribution with lower

expected value of f.

PI‘[JD/;] = Pr'xU,‘ﬂ

() +3(8) 244N 8) + 41 (aUp)
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Proof (Slightly Less Special Case)
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Proof (Slightly Less Special Case)

@ Consider a distribution D on two “crossing” sets A and B, with
probabilities p < q.

Prl4 =, Pr(s] =,

pf(A) + qf(B)
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Proof (Slightly Less Special Case)

@ Consider a distribution D on two “crossing” sets A and B, with
probabilities p < q.

@ Can “uncross” a probability mass of p of each, decreasing the
expected value of f

Pr[u] =4-p

Pr[.\ﬂ/:}:w Prla| Js|=»

vi(4) +ar(8) = pr(a()B) +or(al JB) + (4-0)1(8)
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Proof (Slightly Less Special Case)

@ Consider a distribution D on two “crossing” sets A and B, with
probabilities p < q.

@ Can “uncross” a probability mass of p of each, decreasing the
expected value of f

@ Now a chain distribution

Pr[b’] =q-p

Pr[.‘ﬂ/f}:p Prlal Js|=»

vi(4) +ar(8) = pr(a()B) +or(al JB) + (4-0)1(8)
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Proof (General Case)
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Proof (General Case)

@ Consider a distribution D which includes two “crossing” sets A
and B in its support

pf(4) +ar(B)
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Proof (General Case)

@ Consider a distribution D which includes two “crossing” sets A
and B in its support

@ Can “uncross” a probability mass of min(Pr[A], Pr[B]) of each,
decreasing expected value of f

Pr[.lﬂrs}:// PI‘:\UJ‘:::,

pi(4) +ar(8) 2 pr(a()8) +or(al JB) + (4-)1(8)
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Proof (General Case)
@ Consider a distribution D which includes two “crossing” sets A
and B in its support
@ Can “uncross” a probability mass of min(Pr[A], Pr[B]) of each,
decreasing expected value of f
@ Decreases number of crossing pairs of sets in the support.
o Closer to being a chain distribution.

PI'[I?] =q-p

Pr[.lﬂrs}:// Pr:\U”::

pi(4) +as(8) = pr(a()B) +er(al JB) + (a-0)s(B)
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e Wrapping up



Minimizing the Lovasz Extension

Because f£ = f—, we know the following:

The minimum of f£ is equal to the minimum of f, and moreover is
attained at minimizers y € {0,1}" of f.

Wrapping up 14/17



Minimizing the Lovasz Extension

Because f£ = f—, we know the following:

The minimum of f£ is equal to the minimum of f, and moreover is
attained at minimizers y € {0,1}" of f.

Therefore, minimizing f reduces to the following convex optimization
problem

Minimizing the Lovasz Extension

minimize  f*(x)
subjectto z € [0,1]™
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Recall: Solvability of Convex Optimization

Weak Solvability

An algorithm weakly solves our optimization problem if it takes in
approximation parameter ¢ > 0, runs in poly(n, log %) time, and returns
x € [0,1]™ which is e-optimal:

i) < min £ Ll — min  FE
f (ﬁ)—yéﬂ){%nf (y)+6[yg[lgﬁnf () yéﬂ){%nf ()]
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Recall: Solvability of Convex Optimization

Polynomial Solvability of CP

In order to weakly minimize f~, we need the following operations to
run in poly(n) time:
@ Compute a starting ellipsoid £ 2 [0, 1]™ with
waioaty = Olexp(n)).
@ A separation oracle for the feasible set [0, 1]™

© Afirst order oracle for f~: evaluates f*(z) and a subgradient of
f~ at x.

Wrapping up 15/17



Recall: Solvability of Convex Optimization

Polynomial Solvability of CP

In order to weakly minimize f~, we need the following operations to
run in poly(n) time:
@ Compute a starting ellipsoid £ 2 [0, 1]™ with
waioaty = Olexp(n)).
@ A separation oracle for the feasible set [0, 1]™

© Afirst order oracle for f~: evaluates f*(z) and a subgradient of
f~ at x.

1 and 2 are trivial.
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First order Oracle for f*

@ Recall: the chain distribution with marginals «

e Sortx1 >uws... >,
] LetSi:{.’El,...,l‘i}
o Let PI‘[Sz] =T; — Tj+1
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First order Oracle for f*

@ Recall: the chain distribution with marginals «

e Sortx1 >uws... >,
] LetSi:{.’El,...,l‘i}
o Let PI‘[Sz] =T; — Tj+1

@ Can evaluate f~(z) =", f(Si) (@i — zit1)
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First order Oracle for f*

@ Recall: the chain distribution with marginals «
e Sortx1 >uws... >,
o Let S; = {.’El,...,l‘i}
o Let PI‘[Sz] =T; — Tj+1
@ Can evaluate f~(z) =", f(Si) (@i — zit1)
@ f~ is peicewise linear, so can compute a sub-gradient.
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Recovering an Optimal Set

We can get an e-optimal solution z* to the optimization problem in
poly(n, log 1) time.

Minimizing the Lovasz Extension

minimize  f*(x)
subjectto z € [0,1]"
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We can get an e-optimal solution z* to the optimization problem in
poly(n, log 1) time.

Minimizing the Lovasz Extension

minimize  f*(x)
subjectto z € [0,1]"

@ Set e < 27°, runtime is poly(n, b).
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@ ming f(S) < fX(z*) < min2g £(S)

@ f£(z*) is the expectation f over a distribution of sets
o It must include an optimal set in its support
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Recovering an Optimal Set

We can get an e-optimal solution z* to the optimization problem in
poly(n, log 1) time.

Minimizing the Lovasz Extension

minimize  f*(x)
subjectto z € [0,1]"

@ Set e < 27°, runtime is poly(n, b).

@ ming f(S) < fX(z*) < min2g £(S)

@ f£(z*) is the expectation f over a distribution of sets
o It must include an optimal set in its support

@ We can identify this set by examining the chain distribution with
marginals x*

Wrapping up 17117
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