
CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 26: Maximizing Monotone Submodular
Functions

Instructor: Shaddin Dughmi

Outline

1 Introduction

2 Cardinality Constraint

3 Matroid Constraint

Recall: Optimizing Submodular Functions

As our examples suggest, optimization problems involving
submodular functions are very common
These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constriants)

Introduction 1/22

Recall: Optimizing Submodular Functions

As our examples suggest, optimization problems involving
submodular functions are very common
These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constriants)

Introduction 1/22

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

Non-decreasing: f(S) ≤ f(T) for S ⊆ T
Normalized: f(∅) = 0.

We denote n = |X|

Representation
As before, we work in the value oracle model. Namely, we only assume
we have access to a subroutine evaluating f(S) in constant time.

Introduction 2/22

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

Non-decreasing: f(S) ≤ f(T) for S ⊆ T
Normalized: f(∅) = 0.
We denote n = |X|

Representation
As before, we work in the value oracle model. Namely, we only assume
we have access to a subroutine evaluating f(S) in constant time.

Introduction 2/22

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

Non-decreasing: f(S) ≤ f(T) for S ⊆ T
Normalized: f(∅) = 0.
We denote n = |X|

Representation
As before, we work in the value oracle model. Namely, we only assume
we have access to a subroutine evaluating f(S) in constant time.

Introduction 2/22

Examples

Maximum Coverage
X is the left hand side of a graph, and f(S) is the total number of
neighbors of S.

Can think of i ∈ X as a set, and f(S) as the total “coverage” of S.
Goal is to cover as much of the RHS as possible with k LHS nodes.

Introduction 3/22

Social Influence
X is the family of nodes in a social network
A meme, idea, or product is adopted at a set of nodes S
f(S) is the expected number of nodes in the network which end
up adopting the idea.
Goal is to obtain maximum influence subject to a constraint

Cardinality
Transversal
. . .

Introduction 4/22

Combinatorial Allocation
G is a set of goods
fi(B) is submodular utility of agent i ∈ N for bundle B ⊆ G
Allocation: A partition (B1, . . . , Bn) of G among agents.
Aggregate utility is

∑
i fi(Bi).

Let X = G×N be the set of good/agent pairs
Allocations correspond to subsets S of X in which at most one
“copy” of each good is chosen

Partition matroid constraint
f(S) =

∑
i∈N fi({j ∈ G : (j, i) ∈ X})

Submodular

Introduction 5/22

Combinatorial Allocation
G is a set of goods
fi(B) is submodular utility of agent i ∈ N for bundle B ⊆ G
Allocation: A partition (B1, . . . , Bn) of G among agents.
Aggregate utility is

∑
i fi(Bi).

Let X = G×N be the set of good/agent pairs
Allocations correspond to subsets S of X in which at most one
“copy” of each good is chosen

Partition matroid constraint
f(S) =

∑
i∈N fi({j ∈ G : (j, i) ∈ X})

Submodular

Introduction 5/22

Complexity

Theorem
Maximizing a submodular function subject to a matroid constraint is
NP-hard, and NP-hard to approximate to within any better than a factor
of 1− 1/e.

Holds even for max coverage

Goal
An algorithm in the value oracle model which

Runs in time poly(n)

Returns a feasible set S∗ ∈ I satisfying
f(S∗) ≥ (1− 1/e)maxS∈I f(S).

Holds for arbitrary matroid, but much simpler for uniform matroids.

Introduction 6/22

Complexity

Theorem
Maximizing a submodular function subject to a matroid constraint is
NP-hard, and NP-hard to approximate to within any better than a factor
of 1− 1/e.

Holds even for max coverage

Goal
An algorithm in the value oracle model which

Runs in time poly(n)

Returns a feasible set S∗ ∈ I satisfying
f(S∗) ≥ (1− 1/e)maxS∈I f(S).

Holds for arbitrary matroid, but much simpler for uniform matroids.

Introduction 6/22

Complexity

Theorem
Maximizing a submodular function subject to a matroid constraint is
NP-hard, and NP-hard to approximate to within any better than a factor
of 1− 1/e.

Holds even for max coverage

Goal
An algorithm in the value oracle model which

Runs in time poly(n)

Returns a feasible set S∗ ∈ I satisfying
f(S∗) ≥ (1− 1/e)maxS∈I f(S).

Holds for arbitrary matroid, but much simpler for uniform matroids.

Introduction 6/22

Outline

1 Introduction

2 Cardinality Constraint

3 Matroid Constraint

Subject to a Cardinality Constraint

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X with |X| = n, and an integer
k ≤ n

maximize f(S)
subject to |S| ≤ k

k-uniform matroid constraint

Cardinality Constraint 7/22

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm
for maximizing modular functions over a matroid.

The Greedy Algorithm
1 S ← ∅
2 While |S| ≤ k

Choose e ∈ X maximizing f(S
⋃
{e})

S ← S
⋃
{e}

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Cardinality Constraint 8/22

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm
for maximizing modular functions over a matroid.

The Greedy Algorithm
1 S ← ∅
2 While |S| ≤ k

Choose e ∈ X maximizing f(S
⋃
{e})

S ← S
⋃
{e}

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Cardinality Constraint 8/22

Contraction/Conditioning

Let f : 2X → R and A ⊆ X. Define fA(S) = f(A
⋃
S)− f(A).

Lemma
If f is monotone and submodular, then fA is monotone, submodular,
and normalized for any A.

Proof
Normalized: trivial
Monotone:

Let S ⊆ T
fA(S) = f(S ∪A)− f(A) ≤ f(T ∪A)− f(A) = fA(T).

Submodular:

fA(S) + fA(T) = f(S ∪A)− f(A) + f(T ∪A)− f(A)
≥ f(S ∪ T ∪A)− f(A) + f((S ∩ T) ∪A)− f(A)
= fA(S ∪ T)− fA(S ∩ T)

Cardinality Constraint 9/22

Contraction/Conditioning

Let f : 2X → R and A ⊆ X. Define fA(S) = f(A
⋃
S)− f(A).

Lemma
If f is monotone and submodular, then fA is monotone, submodular,
and normalized for any A.

Proof
Normalized: trivial

Monotone:
Let S ⊆ T
fA(S) = f(S ∪A)− f(A) ≤ f(T ∪A)− f(A) = fA(T).

Submodular:

fA(S) + fA(T) = f(S ∪A)− f(A) + f(T ∪A)− f(A)
≥ f(S ∪ T ∪A)− f(A) + f((S ∩ T) ∪A)− f(A)
= fA(S ∪ T)− fA(S ∩ T)

Cardinality Constraint 9/22

Contraction/Conditioning

Let f : 2X → R and A ⊆ X. Define fA(S) = f(A
⋃
S)− f(A).

Lemma
If f is monotone and submodular, then fA is monotone, submodular,
and normalized for any A.

Proof
Normalized: trivial
Monotone:

Let S ⊆ T
fA(S) = f(S ∪A)− f(A) ≤ f(T ∪A)− f(A) = fA(T).

Submodular:

fA(S) + fA(T) = f(S ∪A)− f(A) + f(T ∪A)− f(A)
≥ f(S ∪ T ∪A)− f(A) + f((S ∩ T) ∪A)− f(A)
= fA(S ∪ T)− fA(S ∩ T)

Cardinality Constraint 9/22

Contraction/Conditioning

Let f : 2X → R and A ⊆ X. Define fA(S) = f(A
⋃
S)− f(A).

Lemma
If f is monotone and submodular, then fA is monotone, submodular,
and normalized for any A.

Proof
Normalized: trivial
Monotone:

Let S ⊆ T
fA(S) = f(S ∪A)− f(A) ≤ f(T ∪A)− f(A) = fA(T).

Submodular:

fA(S) + fA(T) = f(S ∪A)− f(A) + f(T ∪A)− f(A)
≥ f(S ∪ T ∪A)− f(A) + f((S ∩ T) ∪A)− f(A)
= fA(S ∪ T)− fA(S ∩ T)

Cardinality Constraint 9/22

Lemma
If f is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that f({j}) ≥ 1

|A|f(A).

Proof
If A1, A2 partition A, then

f(A1) + f(A2) ≥ f(A1 ∪A2) + f(A1 ∩A2) = f(A)

Applying recursively, we get∑
j∈A

f({j}) ≥ f(A)

Therefore, maxj∈A f({j}) ≥ 1
|A|f(A)

Cardinality Constraint 10/22

Lemma
If f is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that f({j}) ≥ 1

|A|f(A).

Proof
If A1, A2 partition A, then

f(A1) + f(A2) ≥ f(A1 ∪A2) + f(A1 ∩A2) = f(A)

Applying recursively, we get∑
j∈A

f({j}) ≥ f(A)

Therefore, maxj∈A f({j}) ≥ 1
|A|f(A)

Cardinality Constraint 10/22

Lemma
If f is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that f({j}) ≥ 1

|A|f(A).

Proof
If A1, A2 partition A, then

f(A1) + f(A2) ≥ f(A1 ∪A2) + f(A1 ∩A2) = f(A)

Applying recursively, we get∑
j∈A

f({j}) ≥ f(A)

Therefore, maxj∈A f({j}) ≥ 1
|A|f(A)

Cardinality Constraint 10/22

Lemma
If f is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that f({j}) ≥ 1

|A|f(A).

Proof
If A1, A2 partition A, then

f(A1) + f(A2) ≥ f(A1 ∪A2) + f(A1 ∩A2) = f(A)

Applying recursively, we get∑
j∈A

f({j}) ≥ f(A)

Therefore, maxj∈A f({j}) ≥ 1
|A|f(A)

Cardinality Constraint 10/22

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
Let S be the working set in the algorithm

Let S∗ be optimal solution with f(S∗) = OPT .
We will show that the suboptimality OPT − f(S) shrinks by a
factor of (1− 1/k) each iteration
After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its original
value

OPT − f(S) ≤ 1

e
OPT

(1− 1/e)OPT ≤ f(S)

Cardinality Constraint 11/22

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
Let S be the working set in the algorithm
Let S∗ be optimal solution with f(S∗) = OPT .

We will show that the suboptimality OPT − f(S) shrinks by a
factor of (1− 1/k) each iteration
After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its original
value

OPT − f(S) ≤ 1

e
OPT

(1− 1/e)OPT ≤ f(S)

Cardinality Constraint 11/22

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
Let S be the working set in the algorithm
Let S∗ be optimal solution with f(S∗) = OPT .
We will show that the suboptimality OPT − f(S) shrinks by a
factor of (1− 1/k) each iteration

After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its original
value

OPT − f(S) ≤ 1

e
OPT

(1− 1/e)OPT ≤ f(S)

Cardinality Constraint 11/22

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
Let S be the working set in the algorithm
Let S∗ be optimal solution with f(S∗) = OPT .
We will show that the suboptimality OPT − f(S) shrinks by a
factor of (1− 1/k) each iteration
After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its original
value

OPT − f(S) ≤ 1

e
OPT

(1− 1/e)OPT ≤ f(S)

Cardinality Constraint 11/22

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})

By our lemmas, there is j ∈ S∗ s.t.

fS({j}) ≥
1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Cardinality Constraint 11/22

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})
By our lemmas, there is j ∈ S∗ s.t.

fS({j}) ≥
1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Cardinality Constraint 11/22

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})
By our lemmas, there is j ∈ S∗ s.t.

fS({j}) ≥
1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Cardinality Constraint 11/22

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})
By our lemmas, there is j ∈ S∗ s.t.

fS({j}) ≥
1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Cardinality Constraint 11/22

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})
By our lemmas, there is j ∈ S∗ s.t.

fS({j}) ≥
1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Cardinality Constraint 11/22

Outline

1 Introduction

2 Cardinality Constraint

3 Matroid Constraint

From Uniform to Arbitrary Matroid

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

The discrete greedy algorithm is no longer a 1− 1/e
approximation

It is, however, a 1/2 approximation

Nevertheless, a continuous greedy algorithm gives 1− 1/e

Approach resembles that for minimization
Define a continous extension of f
Optimize continuous extension over matroid polytope
Extract an integer point

Matroid Constraint 12/22

From Uniform to Arbitrary Matroid

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

The discrete greedy algorithm is no longer a 1− 1/e
approximation

It is, however, a 1/2 approximation

Nevertheless, a continuous greedy algorithm gives 1− 1/e

Approach resembles that for minimization
Define a continous extension of f
Optimize continuous extension over matroid polytope
Extract an integer point

Matroid Constraint 12/22

From Uniform to Arbitrary Matroid

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

The discrete greedy algorithm is no longer a 1− 1/e
approximation

It is, however, a 1/2 approximation

Nevertheless, a continuous greedy algorithm gives 1− 1/e

Approach resembles that for minimization
Define a continous extension of f
Optimize continuous extension over matroid polytope
Extract an integer point

Matroid Constraint 12/22

From Uniform to Arbitrary Matroid

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

The discrete greedy algorithm is no longer a 1− 1/e
approximation

It is, however, a 1/2 approximation

Nevertheless, a continuous greedy algorithm gives 1− 1/e

Approach resembles that for minimization
Define a continous extension of f
Optimize continuous extension over matroid polytope
Extract an integer point

Matroid Constraint 12/22

The Multilinear Extension

Multilinear Extension
Given a set function f : {0, 1}n → R, its multilinear extension
F : [0, 1]n → R evaluated at x ∈ [0, 1]n gives the expected value of f(S)
for the random set S which includes each i independently with
probability xi.

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i 6=S

(1− xi)

For each point x, evaluates f on the independent distribution D(x)

Clearly an extension of f
Not concave (or convex) in general

Recall f with f(∅) = 0 and f({1}) = f({2}) = f({1, 2}) = 1
F (x) = 1− (1− x1)(1− x2)

Matroid Constraint 13/22

The Multilinear Extension

Multilinear Extension
Given a set function f : {0, 1}n → R, its multilinear extension
F : [0, 1]n → R evaluated at x ∈ [0, 1]n gives the expected value of f(S)
for the random set S which includes each i independently with
probability xi.

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i 6=S

(1− xi)

For each point x, evaluates f on the independent distribution D(x)

Clearly an extension of f
Not concave (or convex) in general

Recall f with f(∅) = 0 and f({1}) = f({2}) = f({1, 2}) = 1
F (x) = 1− (1− x1)(1− x2)

Matroid Constraint 13/22

The Multilinear Extension

Multilinear Extension
Given a set function f : {0, 1}n → R, its multilinear extension
F : [0, 1]n → R evaluated at x ∈ [0, 1]n gives the expected value of f(S)
for the random set S which includes each i independently with
probability xi.

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i 6=S

(1− xi)

For each point x, evaluates f on the independent distribution D(x)

Clearly an extension of f

Not concave (or convex) in general
Recall f with f(∅) = 0 and f({1}) = f({2}) = f({1, 2}) = 1
F (x) = 1− (1− x1)(1− x2)

Matroid Constraint 13/22

The Multilinear Extension

Multilinear Extension
Given a set function f : {0, 1}n → R, its multilinear extension
F : [0, 1]n → R evaluated at x ∈ [0, 1]n gives the expected value of f(S)
for the random set S which includes each i independently with
probability xi.

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i 6=S

(1− xi)

For each point x, evaluates f on the independent distribution D(x)

Clearly an extension of f
Not concave (or convex) in general

Recall f with f(∅) = 0 and f({1}) = f({2}) = f({1, 2}) = 1
F (x) = 1− (1− x1)(1− x2)

Matroid Constraint 13/22

Easy Properties of the Multilinear Extension

Normalized
When f is normalized, F (0) = 0

Follows from the fact that F is an extension of f

Nondecreasing
When f is monotone non-decreasing, F (x) ≤ F (y) whenever x � y
component-wise.

Increasing the probability of selecting each element increases the
expected value.

Matroid Constraint 14/22

Easy Properties of the Multilinear Extension

Normalized
When f is normalized, F (0) = 0

Follows from the fact that F is an extension of f

Nondecreasing
When f is monotone non-decreasing, F (x) ≤ F (y) whenever x � y
component-wise.

Increasing the probability of selecting each element increases the
expected value.

Matroid Constraint 14/22

Up-concavity

Even though F is not concave, it is concave in “upwards” directions.

Up-concavity

Assume f is submodular. For every ~a ∈ [0, 1]n and ~d ∈ [0, 1]n satisfying
d � 0, the function F (~a+ ~d t) is a concave function of t ∈ R.

This follows almost directly from diminishing marginal returns
interpretation of submodularity.
Proof sketch:

Up concave ≡ mixed derivatives ∂2F
∂xi∂xj

negative everywhere
Negative mixed derivatives follow from diminishing marginal returns

Matroid Constraint 15/22

Cross-convexity

Nevertheless, F is convex in “cross” directions.

Cross-convexity

Assume f is submodular. For every a ∈ [0, 1]n and ~d = ei − ej for some
i, j ∈ X, the function F (~a+ ~d t) is a convex function of t ∈ R.

i.e. trading off one item’s probability for anothers gives a convex
curve
Follows from submodularity: as we “remove” j, the marginal
benefit of “adding” i increases

Xj=1 Xi=1ε

Matroid Constraint 16/22

Algorithm Outline

Step A: Continuous Greedy Algorithm
Computes a 1− 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F (x)
subject to x ∈ P(M)

i.e. Computes x∗ s.t. F (x∗) ≥ (1− 1/e)max {F (x) : x ∈ P(M)}

Note: max {F (x) : x ∈ P(M)} ≥ max {f(S) : S ∈ I}
D(x∗) is a distribution over sets with expected value at least
(1− 1/e) of our target
Are we done?

No! D(x∗) may be mostly supported on infeasible sets (i.e. not
independent in matroidM).

Matroid Constraint 17/22

Algorithm Outline

Step A: Continuous Greedy Algorithm
Computes a 1− 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F (x)
subject to x ∈ P(M)

i.e. Computes x∗ s.t. F (x∗) ≥ (1− 1/e)max {F (x) : x ∈ P(M)}
Note: max {F (x) : x ∈ P(M)} ≥ max {f(S) : S ∈ I}

D(x∗) is a distribution over sets with expected value at least
(1− 1/e) of our target
Are we done?

No! D(x∗) may be mostly supported on infeasible sets (i.e. not
independent in matroidM).

Matroid Constraint 17/22

Algorithm Outline

Step A: Continuous Greedy Algorithm
Computes a 1− 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F (x)
subject to x ∈ P(M)

i.e. Computes x∗ s.t. F (x∗) ≥ (1− 1/e)max {F (x) : x ∈ P(M)}
Note: max {F (x) : x ∈ P(M)} ≥ max {f(S) : S ∈ I}
D(x∗) is a distribution over sets with expected value at least
(1− 1/e) of our target
Are we done?

No! D(x∗) may be mostly supported on infeasible sets (i.e. not
independent in matroidM).

Matroid Constraint 17/22

Algorithm Outline

Step A: Continuous Greedy Algorithm
Computes a 1− 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F (x)
subject to x ∈ P(M)

i.e. Computes x∗ s.t. F (x∗) ≥ (1− 1/e)max {F (x) : x ∈ P(M)}
Note: max {F (x) : x ∈ P(M)} ≥ max {f(S) : S ∈ I}
D(x∗) is a distribution over sets with expected value at least
(1− 1/e) of our target
Are we done?

No! D(x∗) may be mostly supported on infeasible sets (i.e. not
independent in matroidM).

Matroid Constraint 17/22

Algorithm Outline

Step B: Pipage Rounding
“Rounds” x∗ to some vertex y∗ of the matroid polytope (i.e. an
independent set) satisfying

F (y∗) ≥ F (x∗)

A-priori, not obvious that such a y∗ exists

Matroid Constraint 18/22

Algorithm Outline

Step B: Pipage Rounding
“Rounds” x∗ to some vertex y∗ of the matroid polytope (i.e. an
independent set) satisfying

F (y∗) ≥ F (x∗)

A-priori, not obvious that such a y∗ exists

Matroid Constraint 18/22

The following “continuous” descent algorithm works for an
arbitrary nondecreasing and up-concave function F , and solvable
downwards-closed polytope P ⊆ Rn+.
Continuously moves a particle inside the matroid polytope,
starting at 0, for a total of 1 time unit.

Position at time t given by x(t).
Discretized to time steps of ε, which we will assume to be
arbitrarily small for convenience of analysis, but may be taken to
be 1/ poly(n) in the actual implementation.

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

I.e. When the particule is at x, it moves in direction y maximizing
the linear function 5F (x) · y over y ∈ P

The direction is actually a vertex of our matroid polytope
This is NOT gradient descent

Observe: Algorithm forms a convex combination of 1
ε vertices of

the polytope P, each with weight ε.
x(1) ∈ P.

Matroid Constraint 19/22

The following “continuous” descent algorithm works for an
arbitrary nondecreasing and up-concave function F , and solvable
downwards-closed polytope P ⊆ Rn+.
Continuously moves a particle inside the matroid polytope,
starting at 0, for a total of 1 time unit.

Position at time t given by x(t).
Discretized to time steps of ε, which we will assume to be
arbitrarily small for convenience of analysis, but may be taken to
be 1/ poly(n) in the actual implementation.

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

I.e. When the particule is at x, it moves in direction y maximizing
the linear function 5F (x) · y over y ∈ P

The direction is actually a vertex of our matroid polytope
This is NOT gradient descent

Observe: Algorithm forms a convex combination of 1
ε vertices of

the polytope P, each with weight ε.
x(1) ∈ P.

Matroid Constraint 19/22

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

I.e. When the particule is at x, it moves in direction y maximizing
the linear function 5F (x) · y over y ∈ P

The direction is actually a vertex of our matroid polytope
This is NOT gradient descent

Observe: Algorithm forms a convex combination of 1
ε vertices of

the polytope P, each with weight ε.
x(1) ∈ P.

Matroid Constraint 19/22

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

I.e. When the particule is at x, it moves in direction y maximizing
the linear function 5F (x) · y over y ∈ P

The direction is actually a vertex of our matroid polytope
This is NOT gradient descent

Observe: Algorithm forms a convex combination of 1
ε vertices of

the polytope P, each with weight ε.
x(1) ∈ P.

Matroid Constraint 19/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt

= 5F (x(t)) · d~x
dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))
≥ OPT − F (x(t))

Matroid Constraint 20/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt

= 5F (x(t)) · d~x
dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))
≥ OPT − F (x(t))

Matroid Constraint 20/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt

= 5F (x(t)) · d~x
dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))
≥ OPT − F (x(t))

Matroid Constraint 20/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt

= 5F (x(t)) · d~x
dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Matroid Constraint 20/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Matroid Constraint 20/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt
= 5F (x(t)) · y(t)

≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Matroid Constraint 20/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt
= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Matroid Constraint 20/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt
= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]

≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Matroid Constraint 20/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt
= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))
≥ OPT − F (x(t))

Matroid Constraint 20/22

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
v(t) = F (x(t)) satisfies dv

dt ≥ OPT − v.

Differential equation dv
dt = OPT − v with boundary condition

v(0) = 0 has a unique solution

v(t) = OPT (1− e−t)

v(1) ≥ OPT (1− 1/e)

Matroid Constraint 20/22

Implementation Details

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

5F (x) is not readily available, but can be estimated “accurately
enough” using poly(n) random samples from D(x), w.h.p.
Step 2 can be implemented because P is solvable
Discretization: Taking ε = 1/O(n2) is “fine enough”
Both the above introduce error into the approximation guarantee,
yielding 1− 1/e− 1/O(n) w.h.p
This can be shaved off to 1− 1/e with some additional “tricks”.

Matroid Constraint 21/22

The following algorithm takes x in matroid base polytope
Pbase(M), and non-decreasing cross-convex function F , and
outputs integral y with F (y) ≥ F (x)

PipageRounding (M,x, F)
Whle x contains a fractional entry

1 Let T be the minimum-size tight set containing some fractional xi
i.e. x(T) = rankM(T), and i ∈ T .

2 Let j ∈ T be such that j 6= i and xj is fractional.
3 Let x(µ) = x+ µ(ei − ej), and maximize F (x(µ)) subject to
x(µ) ∈ P(M).

4 x← x(µ).

Matroid Constraint 22/22

PipageRounding (M,x, F)
Whle x contains a fractional entry

1 Let T be the minimum-size tight set containing some fractional xi
i.e. x(T) = rankM(T), and i ∈ T .

2 Let j ∈ T be such that j 6= i and xj is fractional.
3 Let x(µ) = x+ µ(ei − ej), and maximize F (x(µ)) subject to
x(µ) ∈ P(M).

4 x← x(µ).

Step 1
T exists because tight sets with respect to x ∈ P(M) form a lattice
Proof:

Minimizers of a submodular function form a lattice (implied by
submodular inequality).
Tight sets in x are the minimizers of the set function
rankM(S)− x(S)
This set function is submodular.

Matroid Constraint 22/22

PipageRounding (M,x, F)
Whle x contains a fractional entry

1 Let T be the minimum-size tight set containing some fractional xi
i.e. x(T) = rankM(T), and i ∈ T .

2 Let j ∈ T be such that j 6= i and xj is fractional.
3 Let x(µ) = x+ µ(ei − ej), and maximize F (x(µ)) subject to
x(µ) ∈ P(M).

4 x← x(µ).

Step 2
Since rank is integer valued, any tight set containing fractional
variable should have another.

Matroid Constraint 22/22

PipageRounding (M,x, F)
Whle x contains a fractional entry

1 Let T be the minimum-size tight set containing some fractional xi
i.e. x(T) = rankM(T), and i ∈ T .

2 Let j ∈ T be such that j 6= i and xj is fractional.
3 Let x(µ) = x+ µ(ei − ej), and maximize F (x(µ)) subject to
x(µ) ∈ P(M).

4 x← x(µ).

Step 3
Either the number of fractional variables decreases, or a smaller
tight set containing xi or xj is created.
This leads to termination after O(n2) iterations

Xj=1 Xi=1ε

Matroid Constraint 22/22

	Introduction
	Cardinality Constraint
	Matroid Constraint

