CS599: Convex and Combinatorial Optimization Fall 2013
 Lecture 26: Maximizing Monotone Submodular Functions

Instructor: Shaddin Dughmi

Outline

(2) Cardinality Constraint

(3) Matroid Constraint

Recall: Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constriants)	

Recall: Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constriants)	

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset)=0$.

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset)=0$.
- We denote $n=|X|$

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

```
maximize f(S)
subject to S\in\mathcal{I}
```

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset)=0$.
- We denote $n=|X|$

Representation

As before, we work in the value oracle model. Namely, we only assume we have access to a subroutine evaluating $f(S)$ in constant time.

Examples

Maximum Coverage

X is the left hand side of a graph, and $f(S)$ is the total number of neighbors of S.

- Can think of $i \in X$ as a set, and $f(S)$ as the total "coverage" of S. Goal is to cover as much of the RHS as possible with k LHS nodes.

Social Influence

- X is the family of nodes in a social network
- A meme, idea, or product is adopted at a set of nodes S
- $f(S)$ is the expected number of nodes in the network which end up adopting the idea.
- Goal is to obtain maximum influence subject to a constraint
- Cardinality
- Transversal
- ...

Combinatorial Allocation

- G is a set of goods
- $f_{i}(B)$ is submodular utility of agent $i \in N$ for bundle $B \subseteq G$
- Allocation: A partition $\left(B_{1}, \ldots, B_{n}\right)$ of G among agents.
- Aggregate utility is $\sum_{i} f_{i}\left(B_{i}\right)$.

Combinatorial Allocation

- G is a set of goods
- $f_{i}(B)$ is submodular utility of agent $i \in N$ for bundle $B \subseteq G$
- Allocation: A partition $\left(B_{1}, \ldots, B_{n}\right)$ of G among agents.
- Aggregate utility is $\sum_{i} f_{i}\left(B_{i}\right)$.
- Let $X=G \times N$ be the set of good/agent pairs
- Allocations correspond to subsets S of X in which at most one "copy" of each good is chosen
- Partition matroid constraint
- $f(S)=\sum_{i \in N} f_{i}(\{j \in G:(j, i) \in X\})$
- Submodular

Complexity

Theorem

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of $1-1$ /e.

- Holds even for max coverage

Complexity

Theorem

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of $1-1 / e$.

- Holds even for max coverage

Goal

An algorithm in the value oracle model which

- Runs in time poly (n)
- Returns a feasible set $S^{*} \in \mathcal{I}$ satisfying

$$
f\left(S^{*}\right) \geq(1-1 / e) \max _{S \in \mathcal{I}} f(S)
$$

Complexity

Theorem

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of $1-1$ /e.

- Holds even for max coverage

Goal

An algorithm in the value oracle model which

- Runs in time poly (n)
- Returns a feasible set $S^{*} \in \mathcal{I}$ satisfying

$$
f\left(S^{*}\right) \geq(1-1 / e) \max _{S \in \mathcal{I}} f(S)
$$

Holds for arbitrary matroid, but much simpler for uniform matroids.

Outline

(9) Introduction

(2) Cardinality Constraint
(3) Matroid Constraint

Subject to a Cardinality Constraint

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X with $|X|=n$, and an integer $k \leq n$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & |S| \leq k
\end{array}
$$

- k-uniform matroid constraint

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm for maximizing modular functions over a matroid.

The Greedy Algorithm
(1) $S \leftarrow \emptyset$
(2) While $|S| \leq k$

- Choose $e \in X$ maximizing $f(S \bigcup\{e\})$
- $S \leftarrow S \bigcup\{e\}$

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm for maximizing modular functions over a matroid.

The Greedy Algorithm

(1) $S \leftarrow \emptyset$
(2) While $|S| \leq k$

- Choose $e \in X$ maximizing $f(S \bigcup\{e\})$
- $S \leftarrow S \bigcup\{e\}$

Theorem

The greedy algorithm is a (1-1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Contraction/Conditioning

Let $f: 2^{X} \rightarrow \mathbb{R}$ and $A \subseteq X$. Define $f_{A}(S)=f(A \bigcup S)-f(A)$.
Lemma
If f is monotone and submodular, then f_{A} is monotone, submodular, and normalized for any A.

Contraction/Conditioning

Let $f: 2^{X} \rightarrow \mathbb{R}$ and $A \subseteq X$. Define $f_{A}(S)=f(A \cup S)-f(A)$.

Lemma

If f is monotone and submodular, then f_{A} is monotone, submodular, and normalized for any A.

Proof

- Normalized: trivial

Contraction/Conditioning

Let $f: 2^{X} \rightarrow \mathbb{R}$ and $A \subseteq X$. Define $f_{A}(S)=f(A \bigcup S)-f(A)$.

Lemma

If f is monotone and submodular, then f_{A} is monotone, submodular, and normalized for any A.

Proof

- Normalized: trivial
- Monotone:
- Let $S \subseteq T$
- $f_{A}(S)=f(S \cup A)-f(A) \leq f(T \cup A)-f(A)=f_{A}(T)$.

Contraction/Conditioning

Let $f: 2^{X} \rightarrow \mathbb{R}$ and $A \subseteq X$. Define $f_{A}(S)=f(A \bigcup S)-f(A)$.

Lemma

If f is monotone and submodular, then f_{A} is monotone, submodular, and normalized for any A.

Proof

- Normalized: trivial
- Monotone:

$$
\begin{aligned}
& \text { Let } S \subseteq T \\
& \text { - } f_{A}(S)=f(S \cup A)-f(A) \leq f(T \cup A)-f(A)=f_{A}(T) \text {. }
\end{aligned}
$$

- Submodular:

$$
\begin{aligned}
f_{A}(S)+f_{A}(T) & =f(S \cup A)-f(A)+f(T \cup A)-f(A) \\
& \geq f(S \cup T \cup A)-f(A)+f((S \cap T) \cup A)-f(A) \\
& =f_{A}(S \cup T)-f_{A}(S \cap T)
\end{aligned}
$$

Lemma

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \geq \frac{1}{|A|} f(A)$.

Lemma

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \geq \frac{1}{|A|} f(A)$.

Proof

- If A_{1}, A_{2} partition A, then

$$
f\left(A_{1}\right)+f\left(A_{2}\right) \geq f\left(A_{1} \cup A_{2}\right)+f\left(A_{1} \cap A_{2}\right)=f(A)
$$

Lemma

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \geq \frac{1}{|A|} f(A)$.

Proof

- If A_{1}, A_{2} partition A, then

$$
f\left(A_{1}\right)+f\left(A_{2}\right) \geq f\left(A_{1} \cup A_{2}\right)+f\left(A_{1} \cap A_{2}\right)=f(A)
$$

- Applying recursively, we get

$$
\sum_{j \in A} f(\{j\}) \geq f(A)
$$

Lemma

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \geq \frac{1}{|A|} f(A)$.

Proof

- If A_{1}, A_{2} partition A, then

$$
f\left(A_{1}\right)+f\left(A_{2}\right) \geq f\left(A_{1} \cup A_{2}\right)+f\left(A_{1} \cap A_{2}\right)=f(A)
$$

- Applying recursively, we get

$$
\sum_{j \in A} f(\{j\}) \geq f(A)
$$

- Therefore, $\max _{j \in A} f(\{j\}) \geq \frac{1}{|A|} f(A)$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- Let S be the working set in the algorithm

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- Let S be the working set in the algorithm
- Let S^{*} be optimal solution with $f\left(S^{*}\right)=O P T$.

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- Let S be the working set in the algorithm
- Let S^{*} be optimal solution with $f\left(S^{*}\right)=O P T$.
- We will show that the suboptimality $O P T-f(S)$ shrinks by a factor of $(1-1 / k)$ each iteration

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- Let S be the working set in the algorithm
- Let S^{*} be optimal solution with $f\left(S^{*}\right)=O P T$.
- We will show that the suboptimality $O P T-f(S)$ shrinks by a factor of $(1-1 / k)$ each iteration
- After k iterations, it has shrunk to $(1-1 / k)^{k} \leq 1 / e$ from its original value

$$
\begin{aligned}
& O P T-f(S) \leq \frac{1}{e} O P T \\
& (1-1 / e) O P T \leq f(S)
\end{aligned}
$$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$
- By our lemmas, there is $j \in S^{*}$ s.t.

$$
f_{S}(\{j\}) \geq \frac{1}{\left|S^{*}\right|} f_{S}\left(S^{*}\right)
$$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$
- By our lemmas, there is $j \in S^{*}$ s.t.

$$
\begin{aligned}
f_{S}(\{j\}) & \geq \frac{1}{\left|S^{*}\right|} f_{S}\left(S^{*}\right) \\
& =\frac{1}{k}\left(f\left(S \cup S^{*}\right)-f(S)\right)
\end{aligned}
$$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$
- By our lemmas, there is $j \in S^{*}$ s.t.

$$
\begin{aligned}
f_{S}(\{j\}) & \geq \frac{1}{\left|S^{*}\right|} f_{S}\left(S^{*}\right) \\
& =\frac{1}{k}\left(f\left(S \cup S^{*}\right)-f(S)\right) \\
& \geq \frac{1}{k}(O P T-f(S))
\end{aligned}
$$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$
- By our lemmas, there is $j \in S^{*}$ s.t.

$$
\begin{aligned}
f_{S}(\{j\}) & \geq \frac{1}{\left|S^{*}\right|} f_{S}\left(S^{*}\right) \\
& =\frac{1}{k}\left(f\left(S \cup S^{*}\right)-f(S)\right) \\
& \geq \frac{1}{k}(O P T-f(S))
\end{aligned}
$$

- Therefore, suboptimality decreases by factor of $1-\frac{1}{k}$, as needed.

Outline

(1) Introduction

(2) Cardinality Constraint

(3) Matroid Constraint

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

- The discrete greedy algorithm is no longer a $1-1$ /e approximation
- It is, however, a $1 / 2$ approximation

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

- The discrete greedy algorithm is no longer a $1-1$ /e approximation
- It is, however, a $1 / 2$ approximation
- Nevertheless, a continuous greedy algorithm gives $1-1 / e$

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\operatorname{maximize} & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

- The discrete greedy algorithm is no longer a $1-1 / e$ approximation
- It is, however, a $1 / 2$ approximation
- Nevertheless, a continuous greedy algorithm gives $1-1$ /e
- Approach resembles that for minimization
- Define a continous extension of f
- Optimize continuous extension over matroid polytope
- Extract an integer point

The Multilinear Extension

Multilinear Extension

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, its multilinear extension $F:[0,1]^{n} \rightarrow \mathbb{R}$ evaluated at $x \in[0,1]^{n}$ gives the expected value of $f(S)$ for the random set S which includes each i independently with probability x_{i}.

$$
F(x)=\sum_{S \subseteq X} f(S) \prod_{i \in S} x_{i} \prod_{i \neq S}\left(1-x_{i}\right)
$$

The Multilinear Extension

Multilinear Extension

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, its multilinear extension $F:[0,1]^{n} \rightarrow \mathbb{R}$ evaluated at $x \in[0,1]^{n}$ gives the expected value of $f(S)$ for the random set S which includes each i independently with probability x_{i}.

$$
F(x)=\sum_{S \subseteq X} f(S) \prod_{i \in S} x_{i} \prod_{i \neq S}\left(1-x_{i}\right)
$$

- For each point x, evaluates f on the independent distribution $D(x)$

The Multilinear Extension

Multilinear Extension

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, its multilinear extension $F:[0,1]^{n} \rightarrow \mathbb{R}$ evaluated at $x \in[0,1]^{n}$ gives the expected value of $f(S)$ for the random set S which includes each i independently with probability x_{i}.

$$
F(x)=\sum_{S \subseteq X} f(S) \prod_{i \in S} x_{i} \prod_{i \neq S}\left(1-x_{i}\right)
$$

- For each point x, evaluates f on the independent distribution $D(x)$
- Clearly an extension of f

The Multilinear Extension

Multilinear Extension

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, its multilinear extension $F:[0,1]^{n} \rightarrow \mathbb{R}$ evaluated at $x \in[0,1]^{n}$ gives the expected value of $f(S)$ for the random set S which includes each i independently with probability x_{i}.

$$
F(x)=\sum_{S \subseteq X} f(S) \prod_{i \in S} x_{i} \prod_{i \neq S}\left(1-x_{i}\right)
$$

- For each point x, evaluates f on the independent distribution $D(x)$
- Clearly an extension of f
- Not concave (or convex) in general
- Recall f with $f(\emptyset)=0$ and $f(\{1\})=f(\{2\})=f(\{1,2\})=1$
- $F(x)=1-\left(1-x_{1}\right)\left(1-x_{2}\right)$

Easy Properties of the Multilinear Extension

Normalized
 When f is normalized, $F(0)=0$

Follows from the fact that F is an extension of f

Easy Properties of the Multilinear Extension

Normalized

When f is normalized, $F(0)=0$
Follows from the fact that F is an extension of f

Nondecreasing

When f is monotone non-decreasing, $F(x) \leq F(y)$ whenever $x \preceq y$ component-wise.

Increasing the probability of selecting each element increases the expected value.

Up-concavity

Even though F is not concave, it is concave in "upwards" directions.

Up-concavity

Assume f is submodular. For every $\vec{a} \in[0,1]^{n}$ and $\vec{d} \in[0,1]^{n}$ satisfying $d \succeq 0$, the function $F(\vec{a}+\vec{d} t)$ is a concave function of $t \in \mathbb{R}$.

- This follows almost directly from diminishing marginal returns interpretation of submodularity.
- Proof sketch:
- Up concave \equiv mixed derivatives $\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}$ negative everywhere
- Negative mixed derivatives follow from diminishing marginal returns

Cross-convexity

Nevertheless, F is convex in "cross" directions.

Cross-convexity

Assume f is submodular. For every $a \in[0,1]^{n}$ and $\vec{d}=e_{i}-e_{j}$ for some $i, j \in X$, the function $F(\vec{a}+\vec{d} t)$ is a convex function of $t \in \mathbb{R}$.

- i.e. trading off one item's probability for anothers gives a convex curve
- Follows from submodularity: as we "remove" j, the marginal benefit of "adding" i increases

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a $1-1$ /e approximation to the following continuous (non-convex) optimization problem.

$$
\begin{array}{ll}
\text { maximize } & F(x) \\
\text { subject to } & x \in \mathcal{P}(\mathcal{M})
\end{array}
$$

- i.e. Computes x^{*} s.t. $F\left(x^{*}\right) \geq(1-1 / e) \max \{F(x): x \in \mathcal{P}(\mathcal{M})\}$

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a $1-1$ /e approximation to the following continuous (non-convex) optimization problem.

$$
\begin{array}{ll}
\text { maximize } & F(x) \\
\text { subject to } & x \in \mathcal{P}(\mathcal{M})
\end{array}
$$

- i.e. Computes x^{*} s.t. $F\left(x^{*}\right) \geq(1-1 / e) \max \{F(x): x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x): x \in \mathcal{P}(\mathcal{M})\} \geq \max \{f(S): S \in \mathcal{I}\}$

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a $1-1$ /e approximation to the following continuous (non-convex) optimization problem.

$$
\begin{array}{ll}
\text { maximize } & F(x) \\
\text { subject to } & x \in \mathcal{P}(\mathcal{M})
\end{array}
$$

- i.e. Computes x^{*} s.t. $F\left(x^{*}\right) \geq(1-1 / e) \max \{F(x): x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x): x \in \mathcal{P}(\mathcal{M})\} \geq \max \{f(S): S \in \mathcal{I}\}$
- $D\left(x^{*}\right)$ is a distribution over sets with expected value at least ($1-1 / e$) of our target
- Are we done?

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a $1-1$ /e approximation to the following continuous (non-convex) optimization problem.

$$
\begin{array}{ll}
\text { maximize } & F(x) \\
\text { subject to } & x \in \mathcal{P}(\mathcal{M})
\end{array}
$$

- i.e. Computes x^{*} s.t. $F\left(x^{*}\right) \geq(1-1 / e) \max \{F(x): x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x): x \in \mathcal{P}(\mathcal{M})\} \geq \max \{f(S): S \in \mathcal{I}\}$
- $D\left(x^{*}\right)$ is a distribution over sets with expected value at least ($1-1 / e$) of our target
- Are we done?

No! $D\left(x^{*}\right)$ may be mostly supported on infeasible sets (i.e. not independent in matroid \mathcal{M}).

Algorithm Outline

Step B: Pipage Rounding

"Rounds" x^{*} to some vertex y^{*} of the matroid polytope (i.e. an independent set) satisfying

$$
F\left(y^{*}\right) \geq F\left(x^{*}\right)
$$

Algorithm Outline

Step B: Pipage Rounding

"Rounds" x^{*} to some vertex y^{*} of the matroid polytope (i.e. an independent set) satisfying

$$
F\left(y^{*}\right) \geq F\left(x^{*}\right)
$$

- A-priori, not obvious that such a y^{*} exists
- The following "continuous" descent algorithm works for an arbitrary nondecreasing and up-concave function F, and solvable downwards-closed polytope $\mathcal{P} \subseteq \mathbb{R}_{+}^{n}$.
- Continuously moves a particle inside the matroid polytope, starting at 0 , for a total of 1 time unit.
- Position at time t given by $x(t)$.
- Discretized to time steps of ϵ, which we will assume to be arbitrarily small for convenience of analysis, but may be taken to be $1 / \operatorname{poly}(n)$ in the actual implementation.
- The following "continuous" descent algorithm works for an arbitrary nondecreasing and up-concave function F, and solvable downwards-closed polytope $\mathcal{P} \subseteq \mathbb{R}_{+}^{n}$.
- Continuously moves a particle inside the matroid polytope, starting at 0 , for a total of 1 time unit.
- Position at time t given by $x(t)$.
- Discretized to time steps of ϵ, which we will assume to be arbitrarily small for convenience of analysis, but may be taken to be $1 / \operatorname{poly}(n)$ in the actual implementation.

Continuous Greedy Algorithm (F, \mathcal{P}, ϵ)

(1) $x(0) \leftarrow \overrightarrow{0}$
(2) For $t \in[0, \epsilon, 2 \epsilon, \ldots, 1-\epsilon]$

- $x(t+\epsilon) \leftarrow x(t)+\epsilon \operatorname{argmax}_{y \in \mathcal{P}}\{\nabla F(x(t)) \cdot y\}$
(3) Return $x(1)$

Continuous Greedy Algorithm (F, \mathcal{P}, ϵ)

(1) $x(0) \leftarrow \overrightarrow{0}$
(2) For $t \in[0, \epsilon, 2 \epsilon, \ldots, 1-\epsilon]$

- $x(t+\epsilon) \leftarrow x(t)+\epsilon \operatorname{argmax}_{y \in \mathcal{P}}\{\nabla F(x(t)) \cdot y\}$
(3) Return $x(1)$
- I.e. When the particule is at x, it moves in direction y maximizing the linear function $\nabla F(x) \cdot y$ over $y \in \mathcal{P}$
- The direction is actually a vertex of our matroid polytope
- This is NOT gradient descent

Continuous Greedy Algorithm (F, \mathcal{P}, ϵ)

(1) $x(0) \leftarrow \overrightarrow{0}$
(2) For $t \in[0, \epsilon, 2 \epsilon, \ldots, 1-\epsilon]$

- $x(t+\epsilon) \leftarrow x(t)+\epsilon \operatorname{argmax}_{y \in \mathcal{P}}\{\nabla F(x(t)) \cdot y\}$
(3) Return $x(1)$
- I.e. When the particule is at x, it moves in direction y maximizing the linear function $\nabla F(x) \cdot y$ over $y \in \mathcal{P}$
- The direction is actually a vertex of our matroid polytope
- This is NOT gradient descent
- Observe: Algorithm forms a convex combination of $\frac{1}{\epsilon}$ vertices of the polytope \mathcal{P}, each with weight ϵ.
- $x(1) \in \mathcal{P}$.

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- Denote $y(t)=\operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$
- $\frac{d \vec{x}}{d t}=y(t)$

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- Denote $y(t)=\operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$
- $\frac{d \vec{x}}{d t}=y(t)$
- Let $x_{\text {opt }}$ be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing $F(x)$.
- $F\left(x_{o p t}\right)=f\left(x_{o p t}\right)=O P T$

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- Denote $y(t)=\operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$

$$
\text { - } \frac{d \vec{x}}{d t}=y(t)
$$

- Let $x_{\text {opt }}$ be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing $F(x)$.
- $F\left(x_{o p t}\right)=f\left(x_{o p t}\right)=O P T$

$$
\frac{d F(x(t))}{d t}
$$

$$
\geq O P T-F(x(t))
$$

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- Denote $y(t)=\operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$

$$
\text { - } \frac{d \vec{x}}{d t}=y(t)
$$

- Let $x_{\text {opt }}$ be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing $F(x)$.
- $F\left(x_{o p t}\right)=f\left(x_{o p t}\right)=O P T$

$$
\frac{d F(x(t))}{d t}=\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t}
$$

$$
\geq O P T-F(x(t))
$$

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- Denote $y(t)=\operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$

$$
\text { - } \frac{d \vec{x}}{d t}=y(t)
$$

- Let $x_{\text {opt }}$ be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing $F(x)$.
- $F\left(x_{o p t}\right)=f\left(x_{o p t}\right)=O P T$

$$
\begin{aligned}
\frac{d F(x(t))}{d t} & =\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t} \\
& =\nabla F(x(t)) \cdot y(t)
\end{aligned}
$$

$$
\geq O P T-F(x(t))
$$

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- Denote $y(t)=\operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$

$$
\text { - } \frac{d \vec{x}}{d t}=y(t)
$$

- Let $x_{\text {opt }}$ be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing $F(x)$.
- $F\left(x_{o p t}\right)=f\left(x_{o p t}\right)=O P T$

$$
\begin{aligned}
\frac{d F(x(t))}{d t} & =\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t} \\
& =\nabla F(x(t)) \cdot y(t) \\
& \geq \nabla F(x(t)) \cdot\left[x_{o p t}-x(t)\right]^{+}
\end{aligned}
$$

$$
\geq O P T-F(x(t))
$$

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- Denote $y(t)=\operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$

$$
\text { - } \frac{d \vec{x}}{d t}=y(t)
$$

- Let $x_{o p t}$ be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing $F(x)$.
- $F\left(x_{o p t}\right)=f\left(x_{o p t}\right)=O P T$

$$
\begin{aligned}
\frac{d F(x(t))}{d t} & =\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t} \\
& =\nabla F(x(t)) \cdot y(t) \\
& \geq \nabla F(x(t)) \cdot\left[x_{o p t}-x(t)\right]^{+} \\
& =\nabla F(x(t)) \cdot\left[\max \left(x_{o p t}, x(t)\right)-x(t)\right]
\end{aligned}
$$

$$
\geq O P T-F(x(t))
$$

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- Denote $y(t)=\operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$
- $\frac{d \vec{x}}{d t}=y(t)$
- Let $x_{o p t}$ be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing $F(x)$.
- $F\left(x_{o p t}\right)=f\left(x_{o p t}\right)=O P T$

$$
\begin{aligned}
\frac{d F(x(t))}{d t} & =\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t} \\
& =\nabla F(x(t)) \cdot y(t) \\
& \geq \nabla F(x(t)) \cdot\left[x_{o p t}-x(t)\right]^{+} \\
& =\nabla F(x(t)) \cdot\left[\max \left(x_{o p t}, x(t)\right)-x(t)\right] \\
& \geq F\left(\max \left(x_{o p t}, x(t)\right)\right)-F(x(t)) \\
& \geq O P T-F(x(t))
\end{aligned}
$$

Theorem

Let F be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $v(t)=F(x(t))$ satisfies $\frac{d v}{d t} \geq O P T-v$.
- Differential equation $\frac{d v}{d t}=O P T-v$ with boundary condition $v(0)=0$ has a unique solution

$$
v(t)=O P T\left(1-e^{-t}\right)
$$

- $v(1) \geq O P T(1-1 / e)$

Implementation Details

Continuous Greedy Algorithm (F, \mathcal{P}, ϵ)

(1) $x(0) \leftarrow \overrightarrow{0}$
(2) For $t \in[0, \epsilon, 2 \epsilon, \ldots, 1-\epsilon]$

- $x(t+\epsilon) \leftarrow x(t)+\epsilon \operatorname{argmax}_{y \in \mathcal{P}}\{\nabla F(x(t)) \cdot y\}$
(3) Return $x(1)$
- $\nabla F(x)$ is not readily available, but can be estimated "accurately enough" using $\operatorname{poly}(n)$ random samples from $D(x)$, w.h.p.
- Step 2 can be implemented because \mathcal{P} is solvable
- Discretization: Taking $\epsilon=1 / O\left(n^{2}\right)$ is "fine enough"
- Both the above introduce error into the approximation guarantee, yielding $1-1 / e-1 / O(n)$ w.h.p
- This can be shaved off to $1-1 / e$ with some additional "tricks".
- The following algorithm takes x in matroid base polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$, and non-decreasing cross-convex function F, and outputs integral y with $F(y) \geq F(x)$

PipageRounding (\mathcal{M}, x, F)

Whle x contains a fractional entry
(1) Let T be the minimum-size tight set containing some fractional x_{i}

- i.e. $x(T)=\operatorname{rank}_{\mathcal{M}}(T)$, and $i \in T$.
(2) Let $j \in T$ be such that $j \neq i$ and x_{j} is fractional.
(3) Let $x(\mu)=x+\mu\left(e_{i}-e_{j}\right)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
(4) $x \leftarrow x(\mu)$.

PipageRounding ($\mathcal{M}, x, F)$

Whle x contains a fractional entry
(1) Let T be the minimum-size tight set containing some fractional x_{i}

- i.e. $x(T)=\operatorname{rank}_{\mathcal{M}}(T)$, and $i \in T$.
(2) Let $j \in T$ be such that $j \neq i$ and x_{j} is fractional.
(0) Let $x(\mu)=x+\mu\left(e_{i}-e_{j}\right)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
(0) $x \leftarrow x(\mu)$.

Step 1

- T exists because tight sets with respect to $x \in \mathcal{P}(\mathcal{M})$ form a lattice
- Proof:
- Minimizers of a submodular function form a lattice (implied by submodular inequality).
- Tight sets in x are the minimizers of the set function $\operatorname{rank}_{\mathcal{M}}(S)-x(S)$
- This set function is submodular.

PipageRounding (\mathcal{M}, x, F)

Whle x contains a fractional entry
(1) Let T be the minimum-size tight set containing some fractional x_{i}

- i.e. $x(T)=\operatorname{rank}_{\mathcal{M}}(T)$, and $i \in T$.
(2) Let $j \in T$ be such that $j \neq i$ and x_{j} is fractional.
(3) Let $x(\mu)=x+\mu\left(e_{i}-e_{j}\right)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
(4) $x \leftarrow x(\mu)$.

Step 2

- Since rank is integer valued, any tight set containing fractional variable should have another.

PipageRounding ($\mathcal{M}, x, F)$

Whle x contains a fractional entry
(1) Let T be the minimum-size tight set containing some fractional x_{i}

- i.e. $x(T)=\operatorname{rank}_{\mathcal{M}}(T)$, and $i \in T$.
(2) Let $j \in T$ be such that $j \neq i$ and x_{j} is fractional.
(3) Let $x(\mu)=x+\mu\left(e_{i}-e_{j}\right)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
(0) $x \leftarrow x(\mu)$.

Step 3

- Either the number of fractional variables decreases, or a smaller tight set containing x_{i} or x_{j} is created.
- This leads to termination after $O\left(n^{2}\right)$ iterations

