CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 26: Maximizing Monotone Submodular
Functions

Instructor: Shaddin Dughmi

6 Introduction

Recall: Optimizing Submodular Functions

@ As our examples suggest, optimization problems involving
submodular functions are very common

@ These can be classified on two axes: constrained/unconstrained
and maximization/minimization

I | Maximization \ Minimization |
Unconstrained NP-hard Polynomial time
+ approximation via convex opt
Constrained Usually NP-hard Usually NP-hard to apx.

1 —1/e (mono, matroid) | Few easy special cases
O(1) (“nice” constriants)

Introduction 1/22

Recall: Optimizing Submodular Functions

@ As our examples suggest, optimization problems involving
submodular functions are very common

@ These can be classified on two axes: constrained/unconstrained
and maximization/minimization

I | Maximization \ Minimization |
Unconstrained NP-hard Polynomial time
+ approximation via convex opt
Constrained Usually NP-hard Usually NP-hard to apx.

1 —1/e (mono, matroid) | Few easy special cases
O(1) (“nice” constriants)

Introduction 1/22

Problem Definition

Given a non-decreasing and normalized submodular function
f:2%¥ — R, on afinite ground set X, and a matroid M = (X, 7)

maximize f(5)
subjectto Se€Z

@ Non-decreasing: f(S) < f(T)forSC T
@ Normalized: f(0) = 0.

Introduction 2/22

Problem Definition

Given a non-decreasing and normalized submodular function
f:2%¥ — R, on afinite ground set X, and a matroid M = (X, 7)

maximize f(5)
subjectto Se€Z

@ Non-decreasing: f(S) < f(T)forSC T
@ Normalized: f(0) = 0.
@ We denote n = | X|

Introduction 2/22

Problem Definition

Given a non-decreasing and normalized submodular function
f:2%¥ — R, on afinite ground set X, and a matroid M = (X, 7)

maximize f(5)
subjectto Se€Z

@ Non-decreasing: f(S) < f(T)forSC T
@ Normalized: f(0) = 0.
@ We denote n = | X|

Representation

As before, we work in the value oracle model. Namely, we only assume
we have access to a subroutine evaluating f(S) in constant time.

Introduction 2/22

Maximum Coverage

X is the left hand side of a graph, and f(.S) is the total number of
neighbors of S.

@ Can think of i € X as a set, and f(.S) as the total “coverage” of S.
Goal is to cover as much of the RHS as possible with ¥ LHS nodes.

Introduction 3/22

Social Influence

@ X is the family of nodes in a social network

@ A meme, idea, or product is adopted at a set of nodes S

@ f(S) is the expected number of nodes in the network which end
up adopting the idea.

@ Goal is to obtain maximum influence subject to a constraint

o Cardinality
@ Transversal
o ...

Introduction 4/22

Combinatorial Allocation

@ G is a set of goods

@ fi(B) is submodular utility of agent i € N for bundle B C G
@ Allocation: A partition (B, ..., B,) of G among agents.

@ Aggregate utility is), fi(B;).

Introduction 5/22

Combinatorial Allocation

@ G is a set of goods

@ f:(B) is submodular utility of agent i € N for bundle B C G
@ Allocation: A partition (B, ..., By,) of G among agents.

@ Aggregate utility is), fi(B;).

@ Let X = @G x N be the set of good/agent pairs

@ Allocations correspond to subsets S of X in which at most one
“copy” of each good is chosen

e Partition matroid constraint

° f(5) =2ien fil{li € G: (j,1) € X})

e Submodular

Introduction 5/22

Complexity

Maximizing a submodular function subject to a matroid constraint is
NP-hard, and NP-hard to approximate to within any better than a factor
of1 —1/e.

@ Holds even for max coverage

Introduction 6/22

Complexity

Maximizing a submodular function subject to a matroid constraint is
NP-hard, and NP-hard to approximate to within any better than a factor
of1 —1/e.

@ Holds even for max coverage

An algorithm in the value oracle model which

@ Runs in time poly(n)

@ Returns a feasible set S* € 7 satisfying
f(S*) > (1 —1/e) maxgez f(5).

Introduction 6/22

Complexity

Maximizing a submodular function subject to a matroid constraint is
NP-hard, and NP-hard to approximate to within any better than a factor
of1 —1/e.

@ Holds even for max coverage

An algorithm in the value oracle model which

@ Runs in time poly(n)

@ Returns a feasible set S* € 7 satisfying
f(S*) > (1 —1/e) maxgez f(5).

Holds for arbitrary matroid, but much simpler for uniform matroids.

Introduction 6/22

e Cardinality Constraint

Subject to a Cardinality Constraint

Problem Definition

Given a non-decreasing and normalized submodular function
f:2% — R, on a finite ground set X with | X| = n, and an integer
k<n

maximize f(95)

subjectto |S| <k

@ k-uniform matroid constraint

Cardinality Constraint 7/22

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm
for maximizing modular functions over a matroid.

The Greedy Algorithm

Q S0

Q@ While |S| <k
e Choose e € X maximizing f(SJ{e})
o S+ SU{e}

Cardinality Constraint 8/22

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm
for maximizing modular functions over a matroid.

The Greedy Algorithm
Q@ S0
Q While S| < &

o Choose e € X maximizing f(S U {e})
o S+ SU{e}

v

The greedy algorithm is a (1 — 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Cardinality Constraint 8/22

Contraction/Conditioning
Let f:2%X — Rand A C X. Define fa(S) = f(AUS) — f(A).

If fis monotone and submodular, then f4 is monotone, submodular,
and normalized for any A.

Cardinality Constraint 9/22

Contraction/Conditioning
Let f: 2% — Rand A C X. Define f4(S) = f(AUS) — f(A).

If fis monotone and submodular, then f4 is monotone, submodular,
and normalized for any A.

@ Normalized: trivial

Cardinality Constraint 9/22

Contraction/Conditioning
Let f: 2% — Rand A C X. Define f4(S) = f(AUS) — f(A).

If fis monotone and submodular, then f4 is monotone, submodular,
and normalized for any A.

@ Normalized: trivial
@ Monotone:
o letSCT
o fa(S)=f(SUA) - f(A) < f(TUA) - f(A) = fa(T).

Cardinality Constraint 9/22

Contraction/Conditioning
Let f: 2% — Rand A C X. Define f4(S) = f(AUS) — f(A).

If fis monotone and submodular, then f4 is monotone, submodular,
and normalized for any A.

@ Normalized: trivial
@ Monotone:
o letSCT

o fa(S)=f(SUA) - f(A) < fF(TUA) - f(A) = fa(T).
@ Submodular:

fa(8) + fa(T) = fF(SUA) = f(A) + F(TUA) - f(A)

> f(SUTUA)— f(A)+ f((SNT)U A) - f(A)
= fa(SUT) — fa(SNT)

Cardinality Constraint 9/22

If fis normalized and submodular, and A C X, then thereis j € A
such that f({j}) > |A‘ f(A).

Cardinality Constraint 10/22

Lemma

If fis normalized and submodular, and A C X, then thereis j € A
such that f({j}) > |A‘ f(A).

@ If A1, Ay partition A, then

f(A1) + f(A2) > f(A1U A2) + f(A1 N A2) = f(A)

.

Cardinality Constraint

10/22

Lemma

If fis normalized and submodular, and A C X, then thereis j € A
such that f({j}) > |A‘ f(A).

@ If A1, Ay partition A, then

f(A1) + f(A2) > f(A1 U Ag) + f(A1 N A) = f(A)

@ Applying recursively, we get

> I = f(4)

JEA

.

Cardinality Constraint 10/22

Lemma

If fis normalized and submodular, and A C X, then thereis j € A
such that f({j}) > |A‘ f(A).

@ If A1, Ay partition A, then

f(A1) + f(A2) > f(A1 U Ag) + f(A1 N A) = f(A)

@ Applying recursively, we get

> I = f(4)

JEA

@ Therefore, max;eca f({j}) > ﬁf(A)

.

Cardinality Constraint 10/22

The greedy algorithm is a (1 — 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
@ Let S be the working set in the algorithm

Cardinality Constraint 11/22

The greedy algorithm is a (1 — 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

@ Let S be the working set in the algorithm
@ Let S* be optimal solution with f(S*) = OPT.

Cardinality Constraint 11/22

The greedy algorithm is a (1 — 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

@ Let S be the working set in the algorithm
@ Let S* be optimal solution with f(S*) = OPT.

@ We will show that the suboptimality OPT — f(S) shrinks by a
factor of (1 — 1/k) each iteration

Cardinality Constraint 11/22

The greedy algorithm is a (1 — 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

@ Let S be the working set in the algorithm
@ Let S* be optimal solution with f(S*) = OPT.

@ We will show that the suboptimality OPT — f(S) shrinks by a
factor of (1 — 1/k) each iteration

@ After k iterations, it has shrunk to (1 — 1/k)* < 1/e from its original
value

OPT — f(8) < éOPT

(1—1/e)OPT < f(S)

Cardinality Constraint 11/22

The greedy algorithm is a (1 — 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
@ By definition, in each iteration f(S) increases by max; fs({j})

Cardinality Constraint

11/22

The greedy algorithm is a (1 — 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

@ By definition, in each iteration f(.S) increases by max; fs({j})
@ By our lemmas, there is j € S* s.t.

1
5%

fs({7}) = == fs(S™)

Cardinality Constraint

11/22

The greedy algorithm is a (1 — 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

@ By definition, in each iteration f(.S) increases by max; fs({j})
@ By our lemmas, there is j € S* s.t.

1
5%

= 25U - 1(5))

fs({7}) = == fs(S™)

Cardinality Constraint

11/22

The greedy algorithm is a (1 — 1/e) approximation algorithm for

maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

@ By definition, in each iteration f(.S) increases by max; fs({j})
@ By our lemmas, there is j € S* s.t.

1

fs({i}) = |S*|fs(5*)
= 25U - 1(5))
> (OPT - f(8))

Cardinality Constraint 11/22

The greedy algorithm is a (1 — 1/e) approximation algorithm for

maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

@ By definition, in each iteration f(.S) increases by max; fs({j})
@ By our lemmas, there is j € S* s.t.

1

fs({i}) = |S*|fs(5*)
= 25U - 1(5))
> (OPT - f(8))

@ Therefore, suboptimality decreases by factor of 1 — % as needed.

Cardinality Constraint

v

11/22

© Matroid Constraint

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function
f:2% — R, on a finite ground set X, and a matroid M = (X,7)

maximize f(S5)
subjectto SeZ

Matroid Constraint 12/22

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function
f:2% — R, on a finite ground set X, and a matroid M = (X,7)

maximize f(S5)
subjectto SeZ

@ The discrete greedy algorithm is no longera 1 —1/e
approximation

e ltis, however, a 1/2 approximation

Matroid Constraint 12/22

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function
f:2% — R, on a finite ground set X, and a matroid M = (X,7)

maximize f(S5)
subjectto SeZ

@ The discrete greedy algorithm is no longera 1 —1/e
approximation

e ltis, however, a 1/2 approximation
@ Nevertheless, a continuous greedy algorithm gives 1 — 1/e

Matroid Constraint 12/22

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function
f:2% — R, on a finite ground set X, and a matroid M = (X,7)

maximize f(S5)
subjectto SeZ

@ The discrete greedy algorithm is no longera 1 —1/e
approximation

e ltis, however, a 1/2 approximation
@ Nevertheless, a continuous greedy algorithm gives 1 — 1/e
@ Approach resembles that for minimization

e Define a continous extension of f
@ Optimize continuous extension over matroid polytope
o Extract an integer point

Matroid Constraint 12/22

The Multilinear Extension

Muliilinear Extension

Given a set function f : {0,1}" — R, its multilinear extension
F :]0,1]" — R evaluated at = € [0, 1]™ gives the expected value of f(.5)
for the random set S which includes each i independently with

probability z;.
F@) =Y f(S)][] -=)

SCX i€S i#S

Matroid Constraint 13/22

The Multilinear Extension

Muliilinear Extension

Given a set function f : {0,1}" — R, its multilinear extension
F :]0,1]" — R evaluated at = € [0, 1]™ gives the expected value of f(.5)
for the random set S which includes each i independently with

probability z;.
F@) =Y f(S)][] -=)

SCX i€S i#S

v

@ For each point z, evaluates f on the independent distribution D(x)

Matroid Constraint 13/22

The Multilinear Extension

Muliilinear Extension

Given a set function f : {0,1}" — R, its multilinear extension
F :]0,1]" — R evaluated at = € [0, 1]™ gives the expected value of f(.5)
for the random set S which includes each i independently with

probability z;.
F@) =Y f(S)][] -=)

SCX i€S i#S

v

@ For each point z, evaluates f on the independent distribution D(x)
@ Clearly an extension of f

Matroid Constraint 13/22

The Multilinear Extension

Muliilinear Extension

Given a set function f : {0,1}" — R, its multilinear extension
F :]0,1]" — R evaluated at = € [0, 1]™ gives the expected value of f(.5)
for the random set S which includes each i independently with

probability z;.
F@) =Y f(S)][] -=)

SCX i€S i#S

v

@ For each point z, evaluates f on the independent distribution D(x)

@ Clearly an extension of f

@ Not concave (or convex) in general
e Recall f with f(0) =0and f({1}) = f({2}) = F({1,2}) =1
o Fla)=1—(1—21)(1 — 22)

Matroid Constraint 13/22

Easy Properties of the Multilinear Extension

Normalized
When f is normalized, F'(0) =0

Follows from the fact that F' is an extension of f

Matroid Constraint 14/22

Easy Properties of the Multilinear Extension

Normalized
When f is normalized, F'(0) =0

Follows from the fact that F' is an extension of f

Nondecreasing

When f is monotone non-decreasing, F'(z) < F(y) whenever z <y
component-wise.

Increasing the probability of selecting each element increases the
expected value.

Matroid Constraint 14/22

Even though F'is not concave, it is concave in “upwards” directions.

Up-concavity

Assume f is submodular. For every @ € [0,1]" and d € [0, 1] satisfying
d > 0, the function F'(@ + d t) is a concave function of ¢ € R.

@ This follows almost directly from diminishing marginal returns
interpretation of submodularity.
@ Proof sketch:
e Up concave = mixed derivatives 2L negative everywhere
o Negative mixed derivatives follow from diminishing marginal returns

Matroid Constraint 15/22

Cross-convexity

Nevertheless, I is convex in “cross” directions.

Cross-convexity

Assume f is submodular. For every a € [0,1]" and d = e; — e; for some
i,7 € X, the function F(d + d t) is a convex function of ¢ € R.

@ i.e. trading off one item’s probability for anothers gives a convex
curve

@ Follows from submodularity: as we “remove” j, the marginal
benefit of “adding” ¢ increases

Matroid Constraint 16/22

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a 1 — 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F(z)
subjectto = € P(M)

@ i.e. Computes z* s.t. F(z*) > (1 —1/e)max {F(x) :z € P(M)}

Matroid Constraint 17/22

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a 1 — 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F(z)
subjectto = € P(M)

@ i.e. Computes z* s.t. F(z*) > (1 —1/e)max{F(z) : x € P(M)}
@ Note: max {F(z) : x € P(M)} > max{f(S5): S5 €L}

Matroid Constraint 17/22

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a 1 — 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F(z)
subjectto = € P(M)

@ i.e. Computes z* s.t. F(z*) > (1 —1/e)max {F(x) : z € P(M)}
@ Note: max {F(z) : x € P(M)} > max{f(S5): S5 €L}
@ D(z*) is a distribution over sets with expected value at least
(1 —1/e) of our target
@ Are we done?

Matroid Constraint 17/22

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a 1 — 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F(z)
subjectto = € P(M)

@ i.e. Computes z* s.t. F(z*) > (1 —1/e)max {F(x) : z € P(M)}
@ Note: max {F(z) : x € P(M)} > max{f(S5): S5 €L}
@ D(z*) is a distribution over sets with expected value at least
(1 —1/e) of our target
@ Are we done?

No! D(z*) may be mostly supported on infeasible sets (i.e. not
independent in matroid M). J

Matroid Constraint 17/22

Algorithm Outline

Step B: Pipage Rounding

“Rounds” xz* to some vertex y* of the matroid polytope (i.e. an
independent set) satisfying

Fy*) > F(z7)

Matroid Constraint 18/22

Algorithm Outline

Step B: Pipage Rounding

“Rounds” xz* to some vertex y* of the matroid polytope (i.e. an
independent set) satisfying

Fy*) > F(z7)

@ A-priori, not obvious that such a y* exists

Matroid Constraint 18/22

@ The following “continuous” descent algorithm works for an
arbitrary nondecreasing and up-concave function F’, and solvable
downwards-closed polytope P C R}.

@ Continuously moves a particle inside the matroid polytope,
starting at 0, for a total of 1 time unit.

o Position at time ¢ given by z(¢).

@ Discretized to time steps of ¢, which we will assume to be
arbitrarily small for convenience of analysis, but may be taken to
be 1/ poly(n) in the actual implementation.

Matroid Constraint 19/22

@ The following “continuous” descent algorithm works for an
arbitrary nondecreasing and up-concave function F’, and solvable
downwards-closed polytope P C R’;.

@ Continuously moves a particle inside the matroid polytope,
starting at 0, for a total of 1 time unit.

o Position at time ¢ given by z(¢).

@ Discretized to time steps of ¢, which we will assume to be
arbitrarily small for convenience of analysis, but may be taken to
be 1/ poly(n) in the actual implementation.

Continuous Greedy Algorithm (£, P, ¢)
Q z(0)«0
Q Forte[0,626...,1—¢
o z(t+e€) « z(t) + cargmax, cp {VF(z(t)) - y}
©Q Return z(1)

Matroid Constraint 19/22

Continuous Greedy Algorithm (F,P, ¢)

Q 2(0)«0
Q Forte[0,62...,1—¢

@ z(t+e)+ x(t)+ €argmax, . p {VF(z(t)) -y}
©Q Return z(1)

@ l.e. When the particule is at z, it moves in direction y maximizing
the linear function <\ F'(z) - y overy € P

e The direction is actually a vertex of our matroid polytope
e This is NOT gradient descent

Matroid Constraint 19/22

Continuous Greedy Algorithm (F,P, ¢)

Q 2(0)«0
Q Forte[0,62...,1—¢

@ z(t+e)+ x(t)+ €argmax, . p {VF(z(t)) -y}
©Q Return z(1)

@ l.e. When the particule is at z, it moves in direction y maximizing
the linear function <\ F'(z) - y overy € P

e The direction is actually a vertex of our matroid polytope
e This is NOT gradient descent

@ Observe: Algorithm forms a convex combination of % vertices of
the polytope P, each with weight e.

e z(1) e P.

Matroid Constraint 19/22

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ¢ — 0, the continuous greedy algorithm
outputs a 1 — 1/e approximation to maximizing F(x) over P.

Matroid Constraint 20/22

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ¢ — 0, the continuous greedy algorithm
outputs a 1 — 1/e approximation to maximizing F(x) over P.)

Proof Sketch
@ Denote y(t) = argmax,cp VF((t)) - y
o & =y(t)

Matroid Constraint 20722

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ¢ — 0, the continuous greedy algorithm
outputs a 1 — 1/e approximation to maximizing F(x) over P.)

@ Denote y(t) = argmax,cp VF((t)) - y
o & =y(t)

@ Let z,,; be the vertex of P(M) maximizing F(z).
® F(zopt) = f(wopt) = OPT

Matroid Constraint 20722

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ¢ — 0, the continuous greedy algorithm
outputs a 1 — 1/e approximation to maximizing F(x) over P.)

@ Denote y(t) = argmax,cp VF((t)) - y
o & =y(t)

@ Let z,,; be the vertex of P(M) maximizing F(z).
® F(zopt) = f(wopt) = OPT

dF(z(t))
dt

> OPT — F(x(t))

Matroid Constraint 20722

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ¢ — 0, the continuous greedy algorithm
outputs a1 — 1/e approximation to maximizing F(x) over P.

Proof Sketch
@ Denote y(t) = argmax,cp VF((t)) - y

dz _
o =y
@ Let z,,; be the vertex of P(M) maximizing F(z).
@ F(2opt) = f(xopt) = OPT
dF(z(t)) dT
—a VE(z()) - ot

|

> OPT — F(x(t))

Matroid Constraint 20722

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ¢ — 0, the continuous greedy algorithm
outputs a 1 — 1/e approximation to maximizing F(x) over P.)

Proof Sketch
@ Denote y(t) = argmax,cp VF((t)) - y
o & =y(t)
@ Let z,,; be the vertex of P(M) maximizing F(z).
0 F(zopt) = f(xopt) = OPT
dF(xz(t)) dz
— = VF@E®) —

= VF(x(t)) - y(t)

> OPT — F(x(t))

Matroid Constraint 20722

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ¢ — 0, the continuous greedy algorithm
outputs a1 — 1/e approximation to maximizing F(x) over P.

@ Denote y(t) = argmax,cp VF((t)) - y
o & =y(t)

@ Let z,,; be the vertex of P(M) maximizing F(z).
® F(zopt) = f(wopt) = OPT

dF(x(t) dz
— = VF@E®) —

= VF(x(t) - y(t)
> VF(a(t)) - [wop — 2(t)]"

> OPT — F(x(t))

Matroid Constraint 20722

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ¢ — 0, the continuous greedy algorithm

outputs a1 — 1/e approximation to maximizing F(x) over P.

v

Proof Sketch

@ Denote y(t) = argmax,cp VF((t)) - y
o & =y(t)

@ Let z,,; be the vertex of P(M) maximizing F(z).
o F(zopt) = f(@opt) = OPT

P _ Gpe)- 2
= VF(z(t) - (1)
> GF(@(t)) - [z — 2]
— GF((t)) - [max(zop, 2(t)) — o(t)

> OPT — F(x(t))

Matroid Constraint

V.
20/22

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ¢ — 0, the continuous greedy algorithm
outputs a1 — 1/e approximation to maximizing F(x) over P.

v

Proof Sketch

@ Denote y(t) = argmax,cp VF((t)) - y
o & =y(t)

@ Let z,,; be the vertex of P(M) maximizing F(z).
o F(zopt) = f(@opt) = OPT

P _ Gpe)- 2
— VF((t) - y(t)
> UF(@(t)) - [opt — 2(t)]*
— GF(@(t)) - [max(zap, 2(t)) — 2(t)]

F(max(zopt, x(t))) — F(x(t))
OPT — F(x(t))

Matroid Constraint

V.
20/22

Let F' be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as e — 0, the continuous greedy algorithm
outputs a 1 — 1/e approximation to maximizing F(x) over P.

v

Proof Sketch
@ u(t) = F(x(t)) satisfies 2 > OPT — v.

@ Differential equation % = OPT — v with boundary condition
v(0) = 0 has a unique solution

v(t) = OPT(1 — e ")
@ v(1) > OPT(1—1/e)

.

Matroid Constraint 20/22

Implementation Details

Continuous Greedy Algorithm (F,P, ¢)
Q 2(0)«0
Q Forte[0,¢2...,1—¢
o z(t+e€) + z(t) + eargmax, p {VF(z(t)) - y}
© Return z(1)

@ v F(z) is not readily available, but can be estimated “accurately
enough” using poly(n) random samples from D(z), w.h.p.

@ Step 2 can be implemented because P is solvable

@ Discretization: Taking e = 1/0(n?) is “fine enough”

@ Both the above introduce error into the approximation guarantee,
yielding1 —1/e —1/0(n) w.h.p

@ This can be shaved off to 1 — 1/e with some additional “tricks”.

Matroid Constraint 21/22

@ The following algorithm takes z in matroid base polytope
Prase (M), and non-decreasing cross-convex function F, and
outputs integral y with F'(y) > F(z)

PipageRounding (M,z, F)
Whle z contains a fractional entry

@ Let T be the minimum-size tight set containing some fractional z;
e i.e. z(T) =rankm(T),and i € T.

@ Letj € T be such that j # i and z; is fractional.

Q Letz(n) =z + p(e; — e;), and maximize F(x(u)) subject to
z(p) € P(M).
Q 7+ z(p).

Matroid Constraint 22/22

PipageRounding (M,z, F)
Whle z contains a fractional entry

@ Let T be the minimum-size tight set containing some fractional x;

e i.e. z(T) =rankm(T),and i € T.
@ Letj € T'be such that j # i and z; is fractional.
Q Letz(n) =z + p(e; — ej), and maximize F(x(y)) subject to
z(p) € P(M).
Q v+ z(p).

Step 1
@ T exists because tight sets with respect to x € P(M) form a lattice

@ Proof:
e Minimizers of a submodular function form a lattice (implied by
submodular inequality).
o Tight sets in = are the minimizers of the set function
rankm(S) — z(S)
e This set function is submodular.

A

Matroid Constraint 22/22

PipageRounding (M,z, F)
Whle x contains a fractional entry

@ Let T be the minimum-size tight set containing some fractional x;

e i.e. z(T) =rankm(T),and i € T.
@ Letj € T'be such that j # i and z; is fractional.
Q Letz(n) =z + p(e; — ej), and maximize F(x(y)) subject to
z(p) € P(M).
Q v+ z(p).

@ Since rank is integer valued, any tight set containing fractional
variable should have another.

A,

Matroid Constraint 22/22

PipageRounding (M,z, F)
Whle z contains a fractional entry

@ Let T be the minimum-size tight set containing some fractional x;
e i.e. z(T) =rankm(T),and i € T.

@ Letj € T'be such that j # i and z; is fractional.

Q Letz(n) =z + p(e; — ej), and maximize F(x(y)) subject to
z(p) € P(M).
Q v+ z(p).

@ Either the number of fractional variables decreases, or a smaller
tight set containing z; or z; is created.

@ This leads to termination after O(n?) iterations

A

Matroid Constraint 22/22

	Introduction
	Cardinality Constraint
	Matroid Constraint

