CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 26: Maximizing Monotone Submodular Functions

Instructor: Shaddin Dughmi

2 Cardinality Constraint

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constriants)	

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constriants)	

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

 $\begin{array}{ll} \text{maximize} & f(S) \\ \text{subject to} & S \in \mathcal{I} \end{array}$

 \bullet Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$

• Normalized: $f(\emptyset) = 0$.

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

 $\begin{array}{ll} \text{maximize} & f(S) \\ \text{subject to} & S \in \mathcal{I} \end{array}$

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset) = 0$.
- We denote n = |X|

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

 $\begin{array}{ll} \text{maximize} & f(S) \\ \text{subject to} & S \in \mathcal{I} \end{array}$

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset) = 0$.
- We denote n = |X|

Representation

As before, we work in the value oracle model. Namely, we only assume we have access to a subroutine evaluating f(S) in constant time.

Maximum Coverage

X is the left hand side of a graph, and f(S) is the total number of neighbors of $S. \ensuremath{\mathsf{S}}$

• Can think of $i \in X$ as a set, and f(S) as the total "coverage" of S.

Goal is to cover as much of the RHS as possible with k LHS nodes.

Social Influence

- X is the family of nodes in a social network
- $\bullet\,$ A meme, idea, or product is adopted at a set of nodes S
- *f*(*S*) is the expected number of nodes in the network which end up adopting the idea.
- · Goal is to obtain maximum influence subject to a constraint
 - Cardinality
 - Transversal
 - . . .

Combinatorial Allocation

- G is a set of goods
- $f_i(B)$ is submodular utility of agent $i \in N$ for bundle $B \subseteq G$
- Allocation: A partition (B_1, \ldots, B_n) of *G* among agents.
- Aggregate utility is $\sum_i f_i(B_i)$.

Combinatorial Allocation

- G is a set of goods
- $f_i(B)$ is submodular utility of agent $i \in N$ for bundle $B \subseteq G$
- Allocation: A partition (B_1, \ldots, B_n) of *G* among agents.
- Aggregate utility is $\sum_i f_i(B_i)$.
- Let $X = G \times N$ be the set of good/agent pairs
- Allocations correspond to subsets *S* of *X* in which at most one "copy" of each good is chosen
 - Partition matroid constraint
- $f(S) = \sum_{i \in N} f_i(\{j \in G : (j,i) \in X\})$
 - Submodular

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of 1 - 1/e.

Holds even for max coverage

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of 1 - 1/e.

Holds even for max coverage

Goal

An algorithm in the value oracle model which

- Runs in time poly(n)
- Returns a feasible set $S^* \in \mathcal{I}$ satisfying

 $f(S^*) \ge (1 - 1/e) \max_{S \in \mathcal{I}} f(S).$

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of 1 - 1/e.

• Holds even for max coverage

Goal

An algorithm in the value oracle model which

- Runs in time poly(n)
- Returns a feasible set $S^* \in \mathcal{I}$ satisfying $f(S^*) \ge (1 1/e) \max_{S \in \mathcal{I}} f(S)$.

Holds for arbitrary matroid, but much simpler for uniform matroids.

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set X with |X| = n, and an integer $k \le n$ maximize f(S)subject to $|S| \le k$

k-uniform matroid constraint

The following is the straightforward adaptation of the greedy algorithm for maximizing modular functions over a matroid.

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm for maximizing modular functions over a matroid.

The Greedy Algorithm

Theorem

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Let $f: 2^X \to \mathbb{R}$ and $A \subseteq X$. Define $f_A(S) = f(A \bigcup S) - f(A)$.

Lemma

If f is monotone and submodular, then f_A is monotone, submodular, and normalized for any A.

Let
$$f : 2^X \to \mathbb{R}$$
 and $A \subseteq X$. Define $f_A(S) = f(A \bigcup S) - f(A)$.

Lemma

If f is monotone and submodular, then f_A is monotone, submodular, and normalized for any A.

Proof

Normalized: trivial

Let
$$f : 2^X \to \mathbb{R}$$
 and $A \subseteq X$. Define $f_A(S) = f(A \bigcup S) - f(A)$.

Lemma

If f is monotone and submodular, then f_A is monotone, submodular, and normalized for any A.

- Normalized: trivial
- Monotone:
 - Let $S \subseteq T$
 - $f_A(S) = f(S \cup A) f(A) \le f(T \cup A) f(A) = f_A(T).$

Let
$$f : 2^X \to \mathbb{R}$$
 and $A \subseteq X$. Define $f_A(S) = f(A \bigcup S) - f(A)$.

Lemma

If f is monotone and submodular, then f_A is monotone, submodular, and normalized for any A.

Proof

- Normalized: trivial
- Monotone:
 - Let $S \subseteq T$
 - $f_A(S) = f(S \cup A) f(A) \le f(T \cup A) f(A) = f_A(T).$

Submodular:

$$f_A(S) + f_A(T) = f(S \cup A) - f(A) + f(T \cup A) - f(A)$$

$$\geq f(S \cup T \cup A) - f(A) + f((S \cap T) \cup A) - f(A)$$

$$= f_A(S \cup T) - f_A(S \cap T)$$

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \ge \frac{1}{|A|}f(A)$.

If *f* is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \ge \frac{1}{|A|}f(A)$.

Proof

• If A_1, A_2 partition A, then

 $f(A_1) + f(A_2) \ge f(A_1 \cup A_2) + f(A_1 \cap A_2) = f(A)$

If *f* is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \ge \frac{1}{|A|}f(A)$.

Proof

• If A_1, A_2 partition A, then

 $f(A_1) + f(A_2) \ge f(A_1 \cup A_2) + f(A_1 \cap A_2) = f(A)$

• Applying recursively, we get

$$\sum_{j \in A} f(\{j\}) \ge f(A)$$

If *f* is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \ge \frac{1}{|A|}f(A)$.

Proof

• If A_1, A_2 partition A, then

 $f(A_1) + f(A_2) \ge f(A_1 \cup A_2) + f(A_1 \cap A_2) = f(A)$

Applying recursively, we get

$$\sum_{j \in A} f(\{j\}) \ge f(A)$$

• Therefore, $\max_{j \in A} f(\{j\}) \ge \frac{1}{|A|} f(A)$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

• Let S be the working set in the algorithm

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- Let S be the working set in the algorithm
- Let S^* be optimal solution with $f(S^*) = OPT$.

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- Let S be the working set in the algorithm
- Let S^* be optimal solution with $f(S^*) = OPT$.
- We will show that the suboptimality OPT f(S) shrinks by a factor of (1 1/k) each iteration

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- Let S be the working set in the algorithm
- Let S^* be optimal solution with $f(S^*) = OPT$.
- We will show that the suboptimality OPT f(S) shrinks by a factor of (1 1/k) each iteration
- After k iterations, it has shrunk to $(1-1/k)^k \leq 1/e$ from its original value

$$OPT - f(S) \le \frac{1}{e}OPT$$

 $(1 - 1/e)OPT \le f(S)$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

• By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$
- By our lemmas, there is $j \in S^*$ s.t.

$$f_S(\{j\}) \ge \frac{1}{|S^*|} f_S(S^*)$$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$
- By our lemmas, there is $j \in S^*$ s.t.

$$f_S(\{j\}) \ge \frac{1}{|S^*|} f_S(S^*)$$

= $\frac{1}{k} (f(S \cup S^*) - f(S))$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$
- By our lemmas, there is $j \in S^*$ s.t.

$$\begin{aligned} f_S(\{j\}) &\geq \frac{1}{|S^*|} f_S(S^*) \\ &= \frac{1}{k} (f(S \cup S^*) - f(S)) \\ &\geq \frac{1}{k} (OPT - f(S)) \end{aligned}$$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$
- By our lemmas, there is $j \in S^*$ s.t.

$$\begin{aligned} \dot{f}_S(\{j\}) &\geq \frac{1}{|S^*|} f_S(S^*) \\ &= \frac{1}{k} (f(S \cup S^*) - f(S)) \\ &\geq \frac{1}{k} (OPT - f(S)) \end{aligned}$$

• Therefore, suboptimality decreases by factor of $1 - \frac{1}{k}$, as needed.
Introduction

2 Cardinality Constraint

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

- The discrete greedy algorithm is no longer a 1 1/e approximation
 - It is, however, a 1/2 approximation

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

- The discrete greedy algorithm is no longer a 1 1/e approximation
 - It is, however, a 1/2 approximation
- Nevertheless, a continuous greedy algorithm gives 1 1/e

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

- The discrete greedy algorithm is no longer a 1 1/e approximation
 - It is, however, a 1/2 approximation
- Nevertheless, a continuous greedy algorithm gives 1 1/e
- Approach resembles that for minimization
 - Define a continous extension of f
 - Optimize continuous extension over matroid polytope
 - Extract an integer point

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, its multilinear extension $F : [0,1]^n \to \mathbb{R}$ evaluated at $x \in [0,1]^n$ gives the expected value of f(S)for the random set S which includes each i independently with probability x_i .

$$F(x) = \sum_{S \subseteq X} f(S) \prod_{i \in S} x_i \prod_{i \neq S} (1 - x_i)$$

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, its multilinear extension $F : [0,1]^n \to \mathbb{R}$ evaluated at $x \in [0,1]^n$ gives the expected value of f(S)for the random set S which includes each i independently with probability x_i .

$$F(x) = \sum_{S \subseteq X} f(S) \prod_{i \in S} x_i \prod_{i \neq S} (1 - x_i)$$

• For each point x, evaluates f on the independent distribution D(x)

Given a set function $f : \{0, 1\}^n \to \mathbb{R}$, its multilinear extension $F : [0, 1]^n \to \mathbb{R}$ evaluated at $x \in [0, 1]^n$ gives the expected value of f(S)for the random set S which includes each i independently with probability x_i .

$$F(x) = \sum_{S \subseteq X} f(S) \prod_{i \in S} x_i \prod_{i \neq S} (1 - x_i)$$

- For each point x, evaluates f on the independent distribution D(x)
- Clearly an extension of f

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, its multilinear extension $F : [0,1]^n \to \mathbb{R}$ evaluated at $x \in [0,1]^n$ gives the expected value of f(S)for the random set S which includes each i independently with probability x_i .

$$F(x) = \sum_{S \subseteq X} f(S) \prod_{i \in S} x_i \prod_{i \neq S} (1 - x_i)$$

- For each point x, evaluates f on the independent distribution D(x)
- Clearly an extension of f
- Not concave (or convex) in general

• Recall
$$f$$
 with $f(\emptyset) = 0$ and $f(\{1\}) = f(\{2\}) = f(\{1,2\}) = 1$

•
$$F(x) = 1 - (1 - x_1)(1 - x_2)$$

Easy Properties of the Multilinear Extension

Normalized

When f is normalized, F(0) = 0

Follows from the fact that F is an extension of f

Normalized

When f is normalized, F(0) = 0

Follows from the fact that F is an extension of f

Nondecreasing

When f is monotone non-decreasing, $F(x) \leq F(y)$ whenever $x \preceq y$ component-wise.

Increasing the probability of selecting each element increases the expected value.

Even though F is not concave, it is concave in "upwards" directions.

Up-concavity

Assume *f* is submodular. For every $\vec{a} \in [0, 1]^n$ and $\vec{d} \in [0, 1]^n$ satisfying $d \succeq 0$, the function $F(\vec{a} + \vec{d} t)$ is a concave function of $t \in \mathbb{R}$.

- This follows almost directly from diminishing marginal returns interpretation of submodularity.
- Proof sketch:
 - Up concave \equiv mixed derivatives $\frac{\partial^2 F}{\partial x_i \partial x_i}$ negative everywhere
 - Negative mixed derivatives follow from diminishing marginal returns

Cross-convexity

Nevertheless, F is convex in "cross" directions.

Cross-convexity

Assume f is submodular. For every $a \in [0, 1]^n$ and $\vec{d} = e_i - e_j$ for some $i, j \in X$, the function $F(\vec{a} + \vec{d} t)$ is a convex function of $t \in \mathbb{R}$.

- i.e. trading off one item's probability for anothers gives a convex curve
- Follows from submodularity: as we "remove" *j*, the marginal benefit of "adding" *i* increases

Step A: Continuous Greedy Algorithm

Computes a 1 - 1/e approximation to the following continuous (non-convex) optimization problem.

maximize F(x)subject to $x \in \mathcal{P}(\mathcal{M})$

• i.e. Computes x^* s.t. $F(x^*) \ge (1 - 1/e) \max \{F(x) : x \in \mathcal{P}(\mathcal{M})\}$

Step A: Continuous Greedy Algorithm

Computes a 1 - 1/e approximation to the following continuous (non-convex) optimization problem.

 $\begin{array}{ll} \text{maximize} & F(x) \\ \text{subject to} & x \in \mathcal{P}(\mathcal{M}) \end{array}$

i.e. Computes x* s.t. F(x*) ≥ (1 - 1/e) max {F(x) : x ∈ P(M)}
Note: max {F(x) : x ∈ P(M)} ≥ max {f(S) : S ∈ I}

Step A: Continuous Greedy Algorithm

Computes a 1 - 1/e approximation to the following continuous (non-convex) optimization problem.

 $\begin{array}{ll} \text{maximize} & F(x) \\ \text{subject to} & x \in \mathcal{P}(\mathcal{M}) \end{array}$

- i.e. Computes x^* s.t. $F(x^*) \ge (1 1/e) \max \{F(x) : x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x) : x \in \mathcal{P}(\mathcal{M})\} \ge \max \{f(S) : S \in \mathcal{I}\}\$
- $D(x^*)$ is a distribution over sets with expected value at least (1-1/e) of our target
- Are we done?

Step A: Continuous Greedy Algorithm

Computes a 1 - 1/e approximation to the following continuous (non-convex) optimization problem.

 $\begin{array}{ll} \text{maximize} & F(x) \\ \text{subject to} & x \in \mathcal{P}(\mathcal{M}) \end{array}$

- i.e. Computes x^* s.t. $F(x^*) \ge (1 1/e) \max \{F(x) : x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x) : x \in \mathcal{P}(\mathcal{M})\} \ge \max \{f(S) : S \in \mathcal{I}\}\$
- $D(x^*)$ is a distribution over sets with expected value at least (1-1/e) of our target
- Are we done?

No! $D(x^*)$ may be mostly supported on infeasible sets (i.e. not independent in matroid \mathcal{M}).

Step B: Pipage Rounding

"Rounds" x^* to some vertex y^* of the matroid polytope (i.e. an independent set) satisfying

 $F(y^*) \geq F(x^*)$

Step B: Pipage Rounding

"Rounds" x^* to some vertex y^* of the matroid polytope (i.e. an independent set) satisfying

 $F(y^*) \ge F(x^*)$

• A-priori, not obvious that such a y^* exists

- The following "continuous" descent algorithm works for an arbitrary nondecreasing and up-concave function *F*, and solvable downwards-closed polytope *P* ⊆ ℝⁿ₊.
- Continuously moves a particle inside the matroid polytope, starting at 0, for a total of 1 time unit.

• Position at time t given by x(t).

 Discretized to time steps of *ϵ*, which we will assume to be arbitrarily small for convenience of analysis, but may be taken to be 1/poly(n) in the actual implementation.

- The following "continuous" descent algorithm works for an arbitrary nondecreasing and up-concave function *F*, and solvable downwards-closed polytope *P* ⊆ ℝⁿ₊.
- Continuously moves a particle inside the matroid polytope, starting at 0, for a total of 1 time unit.
 - Position at time t given by x(t).
- Discretized to time steps of *ϵ*, which we will assume to be arbitrarily small for convenience of analysis, but may be taken to be 1/poly(n) in the actual implementation.

Continuous Greedy Algorithm $(F, \mathcal{P}, \epsilon)$

1
$$x(0) \leftarrow \vec{0}$$

2 For $t \in [0, \epsilon, 2\epsilon, \dots, 1-\epsilon]$
• $x(t+\epsilon) \leftarrow x(t) + \epsilon \operatorname{argmax}_{y \in \mathcal{P}} \{ \bigtriangledown F(x(t)) \cdot y \}$
3 Return $x(1)$

Continuous Greedy Algorithm $(F, \mathcal{P}, \epsilon)$

- x(0) \leftarrow 0
 For t \in [0, \epsilon, 2\epsilon, ..., 1 \epsilon]
 x(t + \epsilon) \leftarrow x(t) + \epsilon \argmaga \argma_{y \in \mathcal{P}} \{\no F(x(t)) \cdot y\}\}
 Return x(1)
 - I.e. When the particule is at x, it moves in direction y maximizing the linear function $\nabla F(x) \cdot y$ over $y \in \mathcal{P}$
 - The direction is actually a vertex of our matroid polytope
 - This is NOT gradient descent

Continuous Greedy Algorithm $(F, \mathcal{P}, \epsilon)$

 $1 x(0) \leftarrow \vec{0}$

2 For
$$t \in [0, \epsilon, 2\epsilon, \dots, 1-\epsilon]$$

•
$$x(t+\epsilon) \leftarrow x(t) + \epsilon \operatorname{argmax}_{y \in \mathcal{P}} \{ \bigtriangledown F(x(t)) \cdot y \}$$

3 Return x(1)

- I.e. When the particule is at x, it moves in direction y maximizing the linear function $\nabla F(x) \cdot y$ over $y \in \mathcal{P}$
 - The direction is actually a vertex of our matroid polytope
 - This is NOT gradient descent
- Observe: Algorithm forms a convex combination of $\frac{1}{\epsilon}$ vertices of the polytope \mathcal{P} , each with weight ϵ .

•
$$x(1) \in \mathcal{P}$$
.

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

 $dF(x(t))$

dt

$$\geq OPT - F(x(t))$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \bigtriangledown F(x(t)) \cdot \frac{d\vec{x}}{dt}$$

$$\geq OPT - F(x(t))$$

Matroid Constraint

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \nabla F(x(t)) \cdot \frac{d\vec{x}}{dt}$$
$$= \nabla F(x(t)) \cdot y(t)$$

$$\geq OPT - F(x(t))$$

Matroid Constraint

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \nabla F(x(t)) \cdot \frac{d\vec{x}}{dt}$$

$$= \nabla F(x(t)) \cdot y(t)$$

$$\geq \nabla F(x(t)) \cdot [x_{opt} - x(t)]^{-1}$$

$$\geq OPT - F(x(t))$$

Matroid Constraint

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \bigtriangledown F(x(t)) \cdot \frac{d\vec{x}}{dt}$$

$$= \bigtriangledown F(x(t)) \cdot y(t)$$

$$\geq \bigtriangledown F(x(t)) \cdot [x_{opt} - x(t)]^{+}$$

$$= \bigtriangledown F(x(t)) \cdot [\max(x_{opt}, x(t)) - x(t)]$$

$$\geq OPT - F(x(t))$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \nabla F(x(t)) \cdot \frac{d\vec{x}}{dt}$$

$$= \nabla F(x(t)) \cdot y(t)$$

$$\geq \nabla F(x(t)) \cdot [x_{opt} - x(t)]^{+}$$

$$= \nabla F(x(t)) \cdot [\max(x_{opt}, x(t)) - x(t)]$$

$$\geq F(\max(x_{opt}, x(t))) - F(x(t))$$

$$\geq OPT - F(x(t))$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

•
$$v(t) = F(x(t))$$
 satisfies $\frac{dv}{dt} \ge OPT - v$.

• Differential equation $\frac{dv}{dt} = OPT - v$ with boundary condition v(0) = 0 has a unique solution

$$v(t) = OPT(1 - e^{-t})$$

•
$$v(1) \ge OPT(1-1/e)$$

Implementation Details

Continuous Greedy Algorithm $(F, \mathcal{P}, \epsilon)$

2 For
$$t \in [0, \epsilon, 2\epsilon, \dots, 1-\epsilon]$$

•
$$x(t + \epsilon) \leftarrow x(t) + \epsilon \operatorname{argmax}_{y \in \mathcal{P}} \left\{ \bigtriangledown F(x(t)) \cdot y \right\}$$

3 Return x(1)

- $\nabla F(x)$ is not readily available, but can be estimated "accurately enough" using poly(n) random samples from D(x), w.h.p.
- Step 2 can be implemented because \mathcal{P} is solvable
- Discretization: Taking $\epsilon = 1/O(n^2)$ is "fine enough"
- Both the above introduce error into the approximation guarantee, yielding 1 1/e 1/O(n) w.h.p
- This can be shaved off to 1 1/e with some additional "tricks".

 The following algorithm takes *x* in matroid base polytope *P*_{base}(*M*), and non-decreasing cross-convex function *F*, and outputs integral *y* with *F*(*y*) ≥ *F*(*x*)

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry

- Let T be the minimum-size tight set containing some fractional x_i
 i.e. x(T) = rank_M(T), and i ∈ T.
- 2 Let $j \in T$ be such that $j \neq i$ and x_j is fractional.
- S Let $x(\mu) = x + \mu(e_i e_j)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.

$$x \leftarrow x(\mu).$$

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry

- Let *T* be the minimum-size tight set containing some fractional x_i • i.e. $x(T) = rank_{\mathcal{M}}(T)$, and $i \in T$.
- 2 Let $j \in T$ be such that $j \neq i$ and x_j is fractional.
- So Let $x(\mu) = x + \mu(e_i e_j)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
- $\ \, \bullet \ \ \, x \leftarrow x(\mu).$

Step 1

- T exists because tight sets with respect to $x \in \mathcal{P}(\mathcal{M})$ form a lattice
- Proof:
 - Minimizers of a submodular function form a lattice (implied by submodular inequality).
 - Tight sets in x are the minimizers of the set function $rank_{\mathcal{M}}(S)-x(S)$
 - This set function is submodular.
PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry

- Let *T* be the minimum-size tight set containing some fractional x_i • i.e. $x(T) = rank_{\mathcal{M}}(T)$, and $i \in T$.
- 2 Let $j \in T$ be such that $j \neq i$ and x_j is fractional.
- S Let $x(\mu) = x + \mu(e_i e_j)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
- $\ \, \bullet \ \ \, x \leftarrow x(\mu).$

Step 2

 Since rank is integer valued, any tight set containing fractional variable should have another.

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry

- Let *T* be the minimum-size tight set containing some fractional x_i • i.e. $x(T) = rank_{\mathcal{M}}(T)$, and $i \in T$.
- 2 Let $j \in T$ be such that $j \neq i$ and x_j is fractional.
- S Let $x(\mu) = x + \mu(e_i e_j)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.

$$x \leftarrow x(\mu).$$

Step 3

- Either the number of fractional variables decreases, or a smaller tight set containing x_i or x_j is created.
- This leads to termination after $O(n^2)$ iterations

Matroid Constraint