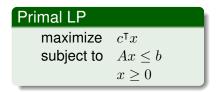
CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 3: Linear Programming Duality II

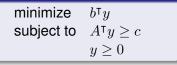
Instructor: Shaddin Dughmi

- Today: wrap up linear programming
- Readings on website

- 2 Formal Proof of Strong Duality of LP
- 3 Consequences of Duality
- More Examples of Duality



Dual LP



Theorem (Weak Duality)

 $OPT(primal) \le OPT(dual).$

Theorem (Strong Duality)

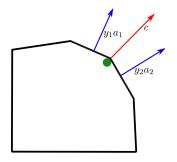
OPT(primal) = OPT(dual).

Informal Proof of Strong Duality



Recall the physical interpretation of duality

Informal Proof of Strong Duality

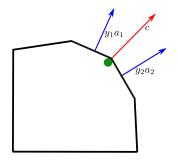


- Recall the physical interpretation of duality
- When ball is stationary at x, we expect force c to be neutralized only by constraints that are tight. i.e. force multipliers $y \ge 0$ s.t.

•
$$y^{\mathsf{T}}A = c$$

•
$$y_i(b_i - a_i x) = 0$$

Informal Proof of Strong Duality



- Recall the physical interpretation of duality
- When ball is stationary at x, we expect force c to be neutralized only by constraints that are tight. i.e. force multipliers y ≥ 0 s.t.

•
$$y^{\mathsf{T}} A = c$$

• $y_i(b_i - a_i x) = 0$
 $y^{\mathsf{T}} b - c^{\mathsf{T}} x = y^{\mathsf{T}} b - y^T A x = \sum_i y_i(b_i - a_i x) = 0$

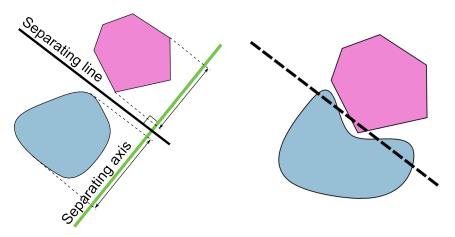
We found a primal and dual solution that are equal in value!

2 Formal Proof of Strong Duality of LP

- 3 Consequences of Duality
- More Examples of Duality

Separating Hyperplane Theorem

If $A, B \subseteq \mathbb{R}^n$ are disjoint convex sets, then there is a hyperplane separating them. That is, there is $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $a^{\mathsf{T}}x \leq b$ for every $x \in A$ and $a^{\mathsf{T}}y \geq b$ for every $y \in B$.



Formal Proof of Strong Duality of LP

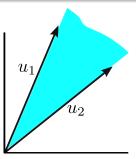
Definition

A convex cone is a convex subset of \mathbb{R}^n which is closed under nonnegative scaling and convex combinations.

Definition

The convex cone generated by vectors $u_1, \ldots, u_m \in \mathbb{R}^n$ is the set of all nonnegative-weighted sums of these vectors (also known as conic combinations).

$$Cone(u_1,\ldots,u_m) = \left\{ \sum_{i=1}^m \alpha_i u_i : \alpha_i \ge 0 \ \forall i \right\}$$

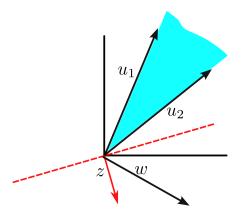


The following follows from the separating hyperplane Theorem.

Farkas' Lemma

Let C be the convex cone generated by vectors $u_1, \ldots, u_m \in \mathbb{R}^n$, and let $w \in \mathbb{R}^n$. Exactly one of the following is true:

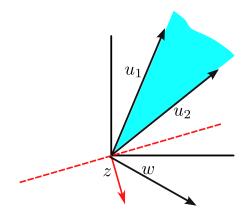
- $w \in \mathcal{C}$
- There is $z \in \mathbb{R}^n$ such that $z \cdot u_i \leq 0$ for all i, and $z \cdot w \geq 0$.



Equivalently: Theorem of the Alternative

One of the following is true, where $U = [u_1, \ldots, u_m]$

- The system Uy = w, $y \ge 0$ has a solution
- The system $U^{\intercal}z \leq 0$, $z^{\intercal}w \geq 0$ has a solution.



Formal Proof of Strong Duality

Primal LP	Dual LP
maximize $c^\intercal x$	minimize $b^{\intercal}y$
subject to $Ax \leq b$	subject to $A^{\intercal}y = c$
	$y \ge 0$

Given v, by Farkas' Lemma one of the following is true

• The system
$$\begin{pmatrix} A^{\mathsf{T}} \\ b^{\mathsf{T}} \end{pmatrix} y = \begin{pmatrix} c \\ v \end{pmatrix}$$
, $y \ge 0$ has a solution.
• $OPT(dual) \le v$

The system
$$(A; b) z \le 0, z^{\intercal} \begin{pmatrix} c \\ v \end{pmatrix} \ge 0$$
 has a solution.

• Let
$$z = inom{z_1}{z_2}$$
, where $z_1 \in \mathbb{R}^n$ and $z_2 \in \mathbb{R}$

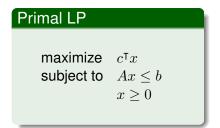
• Setting
$$x = -z_1/z_2$$
 gives $Ax \le b, c^T x \ge v$.

•
$$OPT(primal) \ge v$$

Formal Proof of Strong Duality of LP

2 Formal Proof of Strong Duality of LP

Complementary Slackness



Dual LP

minimize $y^{\mathsf{T}}b$ subject to $A^{\intercal}y \ge c$

 $y \ge 0$

Complementary Slackness

Primal LPDualmaximize $c^{\mathsf{T}}x$ subject to $Ax \le b$ $x \ge 0$

Dual LP minimize $y^{\mathsf{T}}b$ subject to $A^{\mathsf{T}}y \ge c$ $y \ge 0$

• Let $s_i = (b - Ax)_i$ be the *i*'th primal slack variable

• Let $t_j = (A^{\mathsf{T}}y - c)_j$ be the *j*'th dual slack variable

Complementary Slackness

Primal LPmaximize $c^{\intercal}x$ subject to $Ax \le b$ $x \ge 0$

Dual LP

 $\begin{array}{ll} \mbox{minimize} & y^{\intercal}b \\ \mbox{subject to} & A^{\intercal}y \geq c \\ & y \geq 0 \end{array}$

Let s_i = (b - Ax)_i be the *i*'th primal slack variable
Let t_j = (A^Ty - c)_j be the *j*'th dual slack variable

Complementary Slackness

x and y are optimal if and only if

•
$$x_j t_j = 0$$
 for all $j = 1, \ldots, n$

• $y_i s_i = 0$ for all i = 1, ..., m

	x_1	x_2	x_3	x_4	
y_1	a_{11}	a_{12}	a_{13}	a_{14}	b_1
y_2	a_{21}		a_{23}	a_{24}	b_2
y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

Interpretation of Complementary Slackness

Economic Interpretation

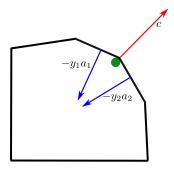
Given an optimal primal production vector x and optimal dual offer prices y,

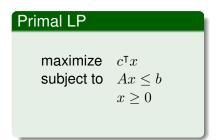
- Facility produces only products for which it is indifferent between sale and production.
- Only raw materials that are binding constraints on production are priced greater than 0

Interpretation of Complementary Slackness

Physical Interpretation

Only walls adjacent to the balls equilibrium position push back on it.

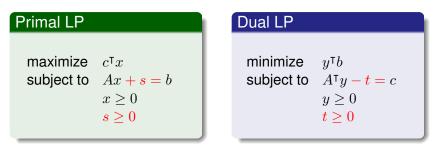




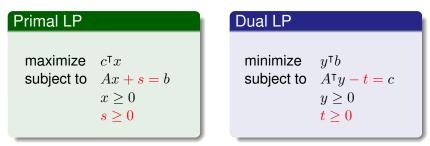
Dual LP

minimize $y^{\mathsf{T}}b$ subject to $A^{\intercal}y \ge c$

y > 0



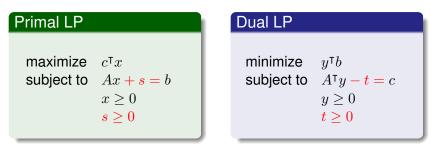
Can equivalently rewrite LP using slack variables



Can equivalently rewrite LP using slack variables

$$y^{\mathsf{T}}b - c^{\mathsf{T}}x = y^{\mathsf{T}}(Ax + s) - (y^{\mathsf{T}}A - t^{\mathsf{T}})x = y^{\mathsf{T}}s + t^{\mathsf{T}}x$$

Consequences of Duality



• Can equivalently rewrite LP using slack variables

$$y^{\mathsf{T}}b - c^{\mathsf{T}}x = y^{\mathsf{T}}(Ax + s) - (y^{\mathsf{T}}A - t^{\mathsf{T}})x = y^{\mathsf{T}}s + t^{\mathsf{T}}x$$

Gap between primal and dual objectives is 0 if and only if complementary slackness holds.

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.
 - Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly *n* [*m*] tight constraints.

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.
 - Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly *n* [*m*] tight constraints.

Primal LP $(n \text{ variables}, m + n \text{ constraints})$	Dual LP (<i>m</i> variables, $m + n$ constraints)
$\begin{array}{ll} \mbox{maximize} & c^{\intercal}x\\ \mbox{subject to} & Ax \leq b\\ & x \geq 0 \end{array}$	$\begin{array}{ll} \mbox{minimize} & y^{T}b \\ \mbox{subject to} & A^{T}y \geq c \\ & y \geq 0 \end{array}$

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.
 - Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly *n* [*m*] tight constraints.

Primal LP (n variables, $m + n$ constraints)	Dual LP (<i>m</i> variables, $m + n$ constraints)
$\begin{array}{ll} \mbox{maximize} & c^{\intercal}x\\ \mbox{subject to} & Ax \leq b\\ & x \geq 0 \end{array}$	$\begin{array}{ll} \mbox{minimize} & y^{T}b\\ \mbox{subject to} & A^{T}y \geq c\\ & y \geq 0 \end{array}$

- Let y be dual optimal. By non-degeneracy:
 - Exactly m of the m + n dual constraints are tight at y
 - Exactly n dual constraints are loose

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.
 - Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly *n* [*m*] tight constraints.

Primal LP (n variables, $m + n$ constraints)	Dual LP (<i>m</i> variables, $m + n$ constraints)
$\begin{array}{ll} \mbox{maximize} & c^{\intercal}x\\ \mbox{subject to} & Ax \leq b\\ & x \geq 0 \end{array}$	$\begin{array}{ll} \mbox{minimize} & y^{T}b\\ \mbox{subject to} & A^{T}y \geq c\\ & y \geq 0 \end{array}$

- Let y be dual optimal. By non-degeneracy:
 - Exactly m of the m + n dual constraints are tight at y
 - Exactly n dual constraints are loose
- n loose dual constraints impose n tight primal constraints

- Will encounter LPs where the dual is easier to solve than primal
- Complementary slackness allows us to recover the primal optimal from the dual optimal, and vice versa.
 - Assuming non-degeneracy: Every vertex of primal [dual] is the solution of exactly *n* [*m*] tight constraints.

Primal LP (n variables, $m + n$ constraints)	Dual LP (<i>m</i> variables, $m + n$ constraints)
$\begin{array}{ll} \mbox{maximize} & c^{T}x\\ \mbox{subject to} & Ax \leq b\\ & x \geq 0 \end{array}$	$\begin{array}{ll} \mbox{minimize} & y^{T}b\\ \mbox{subject to} & A^{T}y \geq c\\ & y \geq 0 \end{array}$

- Let y be dual optimal. By non-degeneracy:
 - Exactly m of the m + n dual constraints are tight at y
 - Exactly n dual constraints are loose
- n loose dual constraints impose n tight primal constraints
 - Assuming non-degeneracy, solving the linear equation yields a unique primal optimum solution *x*.

Consequences of Duality

Sensitivity Analysis

Primal LPDual LPmaximize
subject to
 $x \ge 0$ $c^{\intercal}x$
subject to
 $x \ge 0$ Dual LPminimize
subject to
 $y^{\intercal}b$
subject to
 $x \ge 0$

Sometimes, we want to examine how the optimal value of our LP changes with its parameters c and b

Sensitivity Analysis

Primal LP

 $\begin{array}{ll} \text{maximize} & c^{\mathsf{T}}x\\ \text{subject to} & Ax \leq b\\ & x \geq 0 \end{array}$

Dual LP

 $\begin{array}{ll} \mbox{minimize} & y^{\intercal}b \\ \mbox{subject to} & A^{\intercal}y \geq c \\ & y \geq 0 \end{array}$

Sometimes, we want to examine how the optimal value of our LP changes with its parameters $c \mbox{ and } b$

Sensitivity Analysis

Let OPT = OPT(A, c, b) be the optimal value of the above LP. Let x and y be the primal and dual optima.

•
$$\frac{\partial OPT}{\partial c_i} = x_j$$
 when x is the unique primal optimum.

•
$$\frac{\partial OPT}{\partial b_i} = y_i$$
 when y is the unique dual optimum.

Sensitivity Analysis

Primal LP

 $\begin{array}{ll} \mbox{maximize} & c^{\mathsf{T}}x\\ \mbox{subject to} & Ax \leq b\\ & x \geq 0 \end{array}$

Dual LP

 $\begin{array}{ll} \mbox{minimize} & y^{\intercal}b \\ \mbox{subject to} & A^{\intercal}y \geq c \\ & y \geq 0 \end{array}$

Sometimes, we want to examine how the optimal value of our LP changes with its parameters c and b

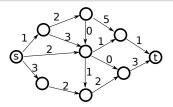
Economic Interpretation of Sensitivity Analysis

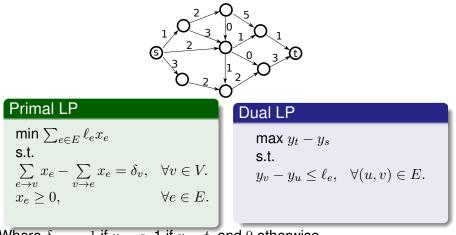
- A small increase δ in c_j increases profit by $\delta \cdot x_j$
- A small increase δ in b_i increases profit by $\delta \cdot y_i$
 - y_i measures the "marginal value" of resource i for production

- 2 Formal Proof of Strong Duality of LP
- 3 Consequences of Duality
- 4 More Examples of Duality

Shortest Path

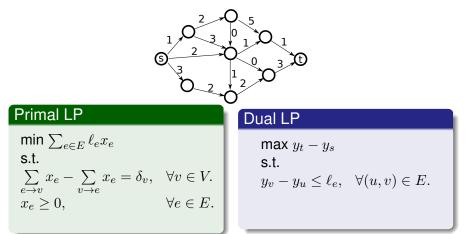
Given a directed network G = (V, E) where edge e has length $\ell_e \in \mathbb{R}_+$, find the minimum cost path from s to t.





Where $\delta_v = -1$ if v = s, 1 if v = t, and 0 otherwise.

More Examples of Duality



Where $\delta_v = -1$ if v = s, 1 if v = t, and 0 otherwise.

Interpretation of Dual

Stretch s and t as far apart as possible, subject to edge lengths.

More Examples of Duality

Maximum Weighted Bipartite Matching

Set *B* of buyers, and set *G* of goods. Buyer *i* has value w_{ij} for good *j*, and interested in at most one good. Find maximum value assignment of goods to buyers.

Maximum Weighted Bipartite Matching

Primal LP		Dual LP	
$\max \sum_{i,j} w_{ij} x_{ij}$		min $\sum_{i\in B} u_i + \sum_{j\in G} p_j$	
s.t.		s.t.	
$\sum_{i=0}^{\infty} x_{ij} \le 1,$	$\forall i \in B.$	$u_i + p_j \ge w_{ij},$	$\forall i \in B, j \in G.$
$\sum_{i\in B}^{j\in G} x_{ij} \le 1,$	$\forall j \in G.$	$u_i \ge 0, \ p_j \ge 0,$	$ \forall i \in B. \\ \forall j \in G. $
$x_{ij} \ge 0,$	$\forall i \in B, j \in G.$		

Maximum Weighted Bipartite Matching

Primal LP		Dual LP	
$\max \sum_{i,j} w_{ij} x_{ij}$		min $\sum_{i \in B} u_i + \sum_{j \in G} p_j$	
s.t. $\sum x_{ij} \leq 1,$	$\forall i \in B.$	s.t. $u_i + p_j \ge w_{ij},$	$\forall i \in B, j \in G.$
$\sum_{i\in B}^{j\in G} x_{ij} \le 1,$	$\forall j \in G.$	$u_i \ge 0,$ $p_j \ge 0,$	$ \forall i \in B. \\ \forall j \in G. $
$x_{ij} \ge 0,$	$\forall i \in B, j \in G.$	- 5	5

Interpretation of Dual

- p_j is price of good j
- u_i is utility of buyer i
- Complementary Slackness: each buyer grabs his favorite good given prices

Rock-Paper-Scissors

	R	P	S
R	0	1	-1
P	-1	0	1
S	1	-1	0

- Two players, row and column
- Game described by matrix A
- When row player plays pure strategy *i* and column player plays pure strategy *j*, row player pays column player *A*_{*ij*}

Rock-Paper-Scissors

	R	P	S
R	0	1	-1
P	-1	0	1
S	1	-1	0

- Two players, row and column
- Game described by matrix A
- When row player plays pure strategy *i* and column player plays pure strategy *j*, row player pays column player *A*_{*ij*}
- Mixed Strategy: distribution over pure strategies

Rock-Paper-Scissors

	R	P	S
R	0	1	-1
P	-1	0	1
S	1	-1	0

- Two players, row and column
- Game described by matrix A
- When row player plays pure strategy *i* and column player plays pure strategy *j*, row player pays column player *A*_{*ij*}
- Mixed Strategy: distribution over pure strategies
- Assume players know each other's mixed strategies but not coin flips

- Assume row player moves first with distribution $y \in \Delta_m$
 - Loss as a function of column's strategy given by $y^{\intercal}A$
 - A best response by column is pure strategy *j* maximizing $(y^{\intercal}A)_j$

	x_1	x_2	x_3	x_4
y_1	a_{11}	a_{12}	a_{13}	a_{14}
y_2	a_{21}	a_{22}	a_{23}	a_{24}
y_3	a_{31}	a_{32}	a_{33}	a_{34}

- Assume row player moves first with distribution $y \in \Delta_m$
 - Loss as a function of column's strategy given by $y^{\intercal}A$
 - A best response by column is pure strategy *j* maximizing $(y^{\intercal}A)_j$

Row Moves First

min $\max_j (y^{\mathsf{T}}A)_j$ s.t. $\sum_{i=1}^m y_i = 1$ $y \ge \vec{0}$

- Assume row player moves first with distribution $y \in \Delta_m$
 - Loss as a function of column's strategy given by $y^{\intercal}A$
 - A best response by column is pure strategy *j* maximizing $(y^{\intercal}A)_j$

Row Moves First
min u
s.t.
$u\vec{1}-y^{\mathrm{T}}A\geq\vec{0}$
$\sum_{\substack{i=1\\y\geq \vec{0}}}^{m} y_i = 1$
$y \geq ec 0$

- Assume row player moves first with distribution $y \in \Delta_m$
 - Loss as a function of column's strategy given by $y^{\mathsf{T}}A$
 - A best response by column is pure strategy j maximizing $(y^{\intercal}A)_j$
 - Similarly when column moves first

Row Moves First	Column Moves First
min u	max v
s.t.	s.t.
$u\vec{1}-y^{\mathrm{T}}A\geq\vec{0}$	$v\vec{1} - Ax \le \vec{0}$
$\sum_{\substack{i=1\ y \ge ec 0}}^m y_i = 1$	$\sum_{\substack{j=1\\x \ge \vec{0}}}^{n} x_j \stackrel{-}{=} 1$
$y \geq ec 0$	$x \ge ec 0$

- Assume row player moves first with distribution $y \in \Delta_m$
 - Loss as a function of column's strategy given by $y^{\mathsf{T}}A$
 - A best response by column is pure strategy j maximizing $(y^{\intercal}A)_j$
 - Similarly when column moves first

Row Moves First	Column Moves First
min u	max v
s.t.	s.t.
$u\vec{1}-y^{\mathrm{T}}A\geq\vec{0}$	$v\vec{1} - Ax \le \vec{0}$
$\sum_{\substack{i=1\\y \ge \vec{0}}}^{m} y_i = 1$	$\sum_{\substack{j=1\\x \ge \vec{0}}}^{n} x_j = 1$
$y \geq ec 0$	$x \ge \vec{0}$

These two optimization problems are LP Duals!

Duality and Zero Sum Games

Weak Duality

• $u^* \ge v^*$

• Zero sum games have a second mover advantage

Duality and Zero Sum Games

Weak Duality

• $u^* \ge v^*$

Zero sum games have a second mover advantage

Strong Duality (Minimax Theorem)

- $u^* = v^*$
- There is no second or first mover advantage in zero sum games with mixed strategies
- Each player can guarantee $u^* = v^*$ regardless of other's strategy.
- *y**, *x** are simultaneously best responses to each other (Nash Equilibrium)

Duality and Zero Sum Games

Weak Duality

• $u^* \ge v^*$

Zero sum games have a second mover advantage

Strong Duality (Minimax Theorem)

• $u^* = v^*$

- There is no second or first mover advantage in zero sum games with mixed strategies
- Each player can guarantee $u^* = v^*$ regardless of other's strategy.
- y*, x* are simultaneously best responses to each other (Nash Equilibrium)

Complementary Slackness

 x^* randomizes over pure best responses to y^* , and vice versa.

Saddle Point Interpretation

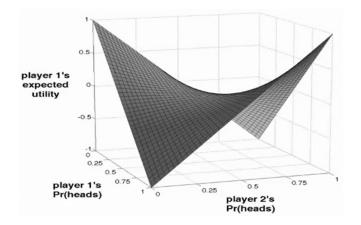
Consider the matching pennies game

	H	Т
H	-1	1
T	1	-1

- Unique equilibrium: each player randomizes uniformly
- If row player deviates, he pays out more
- If column player deviates, he gets paid less

More Examples of Duality

Saddle Point Interpretation



- Unique equilibrium: each player randomizes uniformly
- If row player deviates, he pays out more
- If column player deviates, he gets paid less

• Begin Convex Optimization Background: Convex Sets