
CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 3: Linear Programming Duality II

Instructor: Shaddin Dughmi



Announcements

Today: wrap up linear programming
Readings on website



Outline

1 Recall

2 Formal Proof of Strong Duality of LP

3 Consequences of Duality

4 More Examples of Duality



Weak and Strong Duality

Primal LP
maximize cᵀx
subject to Ax ≤ b

x ≥ 0

Dual LP
minimize bᵀy
subject to Aᵀy ≥ c

y ≥ 0

Theorem (Weak Duality)
OPT (primal) ≤ OPT (dual).

Theorem (Strong Duality)
OPT (primal) = OPT (dual).
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Informal Proof of Strong Duality

Recall the physical interpretation of duality

When ball is stationary at x, we expect force c to be neutralized
only by constraints that are tight. i.e. force multipliers y ≥ 0 s.t.

yᵀA = c
yi(bi − aix) = 0

yᵀb− cᵀx = yᵀb− yTAx =
∑
i

yi(bi − aix) = 0

We found a primal and dual solution that are equal in value!

Recall 2/17



Informal Proof of Strong Duality

Recall the physical interpretation of duality
When ball is stationary at x, we expect force c to be neutralized
only by constraints that are tight. i.e. force multipliers y ≥ 0 s.t.

yᵀA = c
yi(bi − aix) = 0

yᵀb− cᵀx = yᵀb− yTAx =
∑
i

yi(bi − aix) = 0

We found a primal and dual solution that are equal in value!

Recall 2/17



Informal Proof of Strong Duality

Recall the physical interpretation of duality
When ball is stationary at x, we expect force c to be neutralized
only by constraints that are tight. i.e. force multipliers y ≥ 0 s.t.

yᵀA = c
yi(bi − aix) = 0

yᵀb− cᵀx = yᵀb− yTAx =
∑
i

yi(bi − aix) = 0

We found a primal and dual solution that are equal in value!
Recall 2/17



Outline

1 Recall

2 Formal Proof of Strong Duality of LP

3 Consequences of Duality

4 More Examples of Duality



Separating Hyperplane Theorem
If A,B ⊆ Rn are disjoint convex sets, then there is a hyperplane
separating them. That is, there is a ∈ Rn and b ∈ R such that aᵀx ≤ b
for every x ∈ A and aᵀy ≥ b for every y ∈ B.
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Definition
A convex cone is a convex subset of Rn which is closed under
nonnegative scaling and convex combinations.

Definition
The convex cone generated by vectors u1, . . . , um ∈ Rn is the set of all
nonnegative-weighted sums of these vectors (also known as conic
combinations).

Cone(u1, . . . , um) =

{
m∑
i=1

αiui : αi ≥ 0 ∀i

}
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The following follows from the separating hyperplane Theorem.

Farkas’ Lemma
Let C be the convex cone generated by vectors u1, . . . , um ∈ Rn, and
let w ∈ Rn. Exactly one of the following is true:

w ∈ C
There is z ∈ Rn such that z · ui ≤ 0 for all i, and z · w ≥ 0.
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Equivalently: Theorem of the Alternative
One of the following is true, where U = [u1, . . . , um]

The system Uy = w, y ≥ 0 has a solution
The system Uᵀz ≤ 0, zᵀw ≥ 0 has a solution.
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Formal Proof of Strong Duality

Primal LP
maximize cᵀx
subject to Ax ≤ b

Dual LP
minimize bᵀy
subject to Aᵀy = c

y ≥ 0

Given v, by Farkas’ Lemma one of the following is true

1 The system
(
Aᵀ

bᵀ

)
y =

(
c
v

)
, y ≥ 0 has a solution.

OPT (dual) ≤ v

2 The system
(
A; b

)
z ≤ 0, zᵀ

(
c
v

)
≥ 0 has a solution.

Let z =

(
z1
z2

)
, where z1 ∈ Rn and z2 ∈ R

Setting x = −z1/z2 gives Ax ≤ b, cTx ≥ v.
OPT (primal) ≥ v
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Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax ≤ b

x ≥ 0

Dual LP

minimize yᵀb
subject to Aᵀy ≥ c

y ≥ 0

Let si = (b−Ax)i be the i’th primal slack variable
Let tj = (Aᵀy − c)j be the j’th dual slack variable

Complementary Slackness
x and y are optimal if and only if

xjtj = 0 for all j = 1, . . . , n

yisi = 0 for all i = 1, . . . ,m

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4
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Interpretation of Complementary Slackness

Economic Interpretation
Given an optimal primal production vector x and optimal dual offer
prices y,

Facility produces only products for which it is indifferent between
sale and production.
Only raw materials that are binding constraints on production are
priced greater than 0

Physical Interpretation
Only walls adjacent to the balls equilibrium position push back on it.
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Proof of Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax ≤ b

x ≥ 0

s ≥ 0

Dual LP

minimize yᵀb
subject to Aᵀy ≥ c

y ≥ 0

t ≥ 0

Can equivalently rewrite LP using slack variables

yᵀb− cᵀx = yᵀ(Ax+ s)− (yᵀA− tᵀ)x = yᵀs+ tᵀx

Gap between primal and dual objectives is 0 if and only if
complementary slackness holds.
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s ≥ 0
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t ≥ 0
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Recovering Primal from Dual

Will encounter LPs where the dual is easier to solve than primal
Complementary slackness allows us to recover the primal optimal
from the dual optimal, and vice versa.

Assuming non-degeneracy: Every vertex of primal [dual] is the
solution of exactly n [m] tight constraints.

Primal LP
(n variables, m+ n constraints)

maximize cᵀx
subject to Ax ≤ b

x ≥ 0

Dual LP
(m variables, m+ n constraints)

minimize yᵀb
subject to Aᵀy ≥ c

y ≥ 0

Let y be dual optimal. By non-degeneracy:
Exactly m of the m+ n dual constraints are tight at y
Exactly n dual constraints are loose

n loose dual constraints impose n tight primal constraints
Assuming non-degeneracy, solving the linear equation yields a
unique primal optimum solution x.
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Sensitivity Analysis

Primal LP
maximize cᵀx
subject to Ax ≤ b

x ≥ 0

Dual LP
minimize yᵀb
subject to Aᵀy ≥ c

y ≥ 0

Sometimes, we want to examine how the optimal value of our LP
changes with its parameters c and b
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Sensitivity Analysis

Primal LP
maximize cᵀx
subject to Ax ≤ b

x ≥ 0

Dual LP
minimize yᵀb
subject to Aᵀy ≥ c

y ≥ 0

Sometimes, we want to examine how the optimal value of our LP
changes with its parameters c and b

Sensitivity Analysis
Let OPT = OPT (A, c, b) be the optimal value of the above LP. Let x
and y be the primal and dual optima.

∂OPT
∂cj

= xj when x is the unique primal optimum.
∂OPT
∂bi

= yi when y is the unique dual optimum.
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Sensitivity Analysis

Primal LP
maximize cᵀx
subject to Ax ≤ b

x ≥ 0

Dual LP
minimize yᵀb
subject to Aᵀy ≥ c

y ≥ 0

Sometimes, we want to examine how the optimal value of our LP
changes with its parameters c and b

Economic Interpretation of Sensitivity Analysis
A small increase δ in cj increases profit by δ · xj
A small increase δ in bi increases profit by δ · yi

yi measures the “marginal value” of resource i for production
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Shortest Path

Given a directed network G = (V,E) where edge e has length `e ∈ R+,
find the minimum cost path from s to t.

s t

1 11

2

2 2

2

3

3
30

5
0

1

Primal LP
min

∑
e∈E `exe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ `e, ∀(u, v) ∈ E.

Where δv = −1 if v = s, 1 if v = t, and 0 otherwise.

Interpretation of Dual
Stretch s and t as far apart as possible, subject to edge lengths.
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Maximum Weighted Bipartite Matching

Set B of buyers, and set G of goods. Buyer i has value wij for good j,
and interested in at most one good. Find maximum value assignment
of goods to buyers.

Primal LP

max
∑
i,j
wijxij

s.t.∑
j∈G

xij ≤ 1, ∀i ∈ B.∑
i∈B

xij ≤ 1, ∀j ∈ G.

xij ≥ 0, ∀i ∈ B, j ∈ G.

Dual LP
min

∑
i∈B

ui +
∑
j∈G

pj

s.t.
ui + pj ≥ wij , ∀i ∈ B, j ∈ G.
ui ≥ 0, ∀i ∈ B.
pj ≥ 0, ∀j ∈ G.

Interpretation of Dual
pj is price of good j
ui is utility of buyer i
Complementary Slackness: each buyer grabs his favorite good
given prices
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2-Player Zero-Sum Games

Rock-Paper-Scissors

R P S

R 0 1 −1

P −1 0 1

S 1 −1 0

Two players, row and column
Game described by matrix A
When row player plays pure strategy i and column player plays
pure strategy j, row player pays column player Aij

Mixed Strategy: distribution over pure strategies
Assume players know each other’s mixed strategies but not coin
flips
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2-Player Zero-Sum Games

Assume row player moves first with distribution y ∈ ∆m

Loss as a function of column’s strategy given by yᵀA
A best response by column is pure strategy j maximizing (yᵀA)j

Similarly when column moves first

x1 x2 x3 x4
y1 a11 a12 a13 a14
y2 a21 a22 a23 a24
y3 a31 a32 a33 a34

Row Moves First∑m
i=1 yi = 1

y ≥ ~0

Column Moves First
max v
s.t.
v~1−Ax ≤ ~0∑n

j=1 xj = 1

x ≥ ~0

These two optimization problems are LP Duals!
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Duality and Zero Sum Games

Weak Duality
u∗ ≥ v∗

Zero sum games have a second mover advantage

Strong Duality (Minimax Theorem)
u∗ = v∗

There is no second or first mover advantage in zero sum games
with mixed strategies
Each player can guarantee u∗ = v∗ regardless of other’s strategy.
y∗, x∗ are simultaneously best responses to each other (Nash
Equilibrium)

Complementary Slackness
x∗ randomizes over pure best responses to y∗, and vice versa.
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Saddle Point Interpretation

Consider the matching pennies game

H T

H −1 1

T 1 −1

Unique equilibrium: each player randomizes uniformly
If row player deviates, he pays out more
If column player deviates, he gets paid less
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Next Lecture

Begin Convex Optimization Background: Convex Sets
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