CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets

Instructor: Shaddin Dughmi

Announcements

- New room: KAP 158
- Today: Convex Sets
- Mostly from Boyd and Vandenberghe. Read all of Chapter 2.
- TA: Yu Cheng.
 - Office Hours: Friday 10-12 in SAL 219

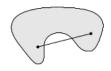
Announcements

- New room: KAP 158
- Today: Convex Sets
- Mostly from Boyd and Vandenberghe. Read all of Chapter 2.
- TA: Yu Cheng.
 - Office Hours: Friday 10-12 in SAL 219
- Prereq: Linear Algebra

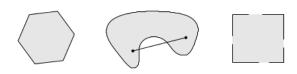
Outline

- Onvex sets, Affine sets, and Cones
- Examples of Convex Sets
- Convexity-Preserving Operations
- Separation Theorems

A set $S\subseteq\mathbb{R}^n$ is convex if the line segment between any two points in S lies in S. i.e. if $x,y\in S$ and $\theta\in[0,1]$, then $\theta x+(1-\theta)y\in S$.



A set $S \subseteq \mathbb{R}^n$ is convex if the line segment between any two points in S lies in S. i.e. if $x,y \in S$ and $\theta \in [0,1]$, then $\theta x + (1-\theta)y \in S$.



Equivalent Definition

S is convex if every convex combination of points in S lies in S.

Convex Combination

- Finite: y is a convex combination of x_1, \ldots, x_k if $y = \theta_1 x_1 + \ldots \theta_k x_k$, where $\theta_i \ge 0$ and $\sum_i \theta_i = 1$.
 - ullet General: expectation of probability measure on S.

Convex Hull

The convex hull of $S \subseteq \mathbb{R}^n$ is the smallest convex set containing S.

- ullet Intersection of all convex sets containing S
- The set of all convex combinations of points in S

Convex Hull

The convex hull of $S \subseteq \mathbb{R}^n$ is the smallest convex set containing S.

- Intersection of all convex sets containing S
- The set of all convex combinations of points in S



A set S is convex if and only if convexhull(S) = S.

A set $S \subseteq \mathbb{R}^n$ is affine if the line passing through any two points in S lies in S. i.e. if $x,y \in S$ and $\theta \in \mathbb{R}$, then $\theta x + (1-\theta)y \in S$.

Obviously, affine sets are convex.

A set $S \subseteq \mathbb{R}^n$ is affine if the line passing through any two points in S lies in S. i.e. if $x,y \in S$ and $\theta \in \mathbb{R}$, then $\theta x + (1-\theta)y \in S$.

Obviously, affine sets are convex.

Equivalent Definition

S is affine if every affine combination of points in S lies in S.

Affine Combination

y is an affine combination of x_1, \ldots, x_k if $y = \theta_1 x_1 + \ldots \theta_k x_k$, and $\sum_i \theta_i = 1$.

Generalizes convex combinations

Equivalent Definition II

S is affine if and only if it is a shifted subspace

- i.e. $S = x_0 + V$, where V is a linear subspace of \mathbb{R}^n .
- Any $x_0 \in S$ will do, and yields the same V.
- The dimension of S is the dimension of subspace V.

Equivalent Definition II

S is affine if and only if it is a shifted subspace

- i.e. $S = x_0 + V$, where V is a linear subspace of \mathbb{R}^n .
- Any $x_0 \in S$ will do, and yields the same V.
- The dimension of S is the dimension of subspace V.

Equivalent Definition III

 ${\cal S}$ is affine if and only if it is the solution of a set of linear equations (i.e. the intersection of hyperplanes).

• i.e. $S = \{x : Ax = b\}$ for some matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Affine Hull

The affine hull of $S \subseteq \mathbb{R}^n$ is the smallest affine set containing S.

- Intersection of all affine sets containing S
- ullet The set of all affine combinations of points in S

Affine Hull

The affine hull of $S \subseteq \mathbb{R}^n$ is the smallest affine set containing S.

- Intersection of all affine sets containing S
- ullet The set of all affine combinations of points in S

A set S is affine if and only if affinehull(S) = S.

Affine Hull

The affine hull of $S \subseteq \mathbb{R}^n$ is the smallest affine set containing S.

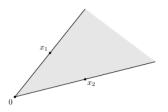
- Intersection of all affine sets containing S
- ullet The set of all affine combinations of points in S

A set S is affine if and only if affinehull(S) = S.

Affine Dimension

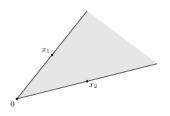
The affine dimension of a set is the dimension of its affine hull

A set $K \subseteq \mathbb{R}^n$ is a cone if the ray from the origin through every point in K is in K i.e. if $x \in K$ and $\theta \geq 0$, then $\theta x \in K$.



Note: every cone contains 0.

A set $K \subseteq \mathbb{R}^n$ is a cone if the ray from the origin through every point in K is in K i.e. if $x \in K$ and $\theta \ge 0$, then $\theta x \in K$.



Note: every cone contains 0.

Special Cones

- A convex cone is a cone that is convex
- A cone is pointed if whenever $x \in K$ and $x \neq 0$, then $-x \notin K$.
- We will mostly mention proper cones: convex, pointed, closed, and of full affine dimension.

Equivalent Definition

K is a convex cone if every conic combination of points in K lies in K.

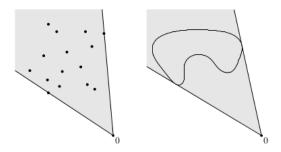
Conic Combination

y is a conic combination of x_1,\ldots,x_k if $y=\theta_1x_1+\ldots\theta_kx_k$, where $\theta_i\geq 0$.

Conic Hull

The conic hull of $K \subseteq \mathbb{R}^n$ is the smallest convex cone containing K

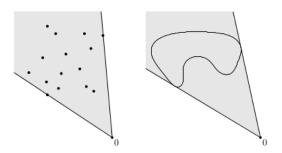
- ullet Intersection of all cones containing K
- ullet The set of all conic combinations of points in K



Conic Hull

The conic hull of $K \subseteq \mathbb{R}^n$ is the smallest convex cone containing K

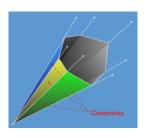
- Intersection of all cones containing K
- The set of all conic combinations of points in K



A set K is a convex cone if and only if conichull(K) = K.

Polyhedral Cone

A cone is polyhedral if it is the conic hull of a finite set of points. Equivalently, the set of solutions to a finite set of homogeneous linear inequalitiets $Ax \leq 0$.



Outline

- Convex sets, Affine sets, and Cones
- Examples of Convex Sets
- Convexity-Preserving Operations
- Separation Theorems

Linear Subspace: Affine, Cone

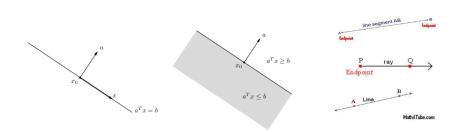
Hyperplane: Affine, cone if includes 0

Halfspace: Cone if origin on boundary

• Line: Affine, cone if includes 0

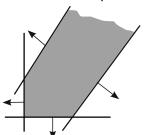
• Ray: Cone if endpoint at 0

Line segment

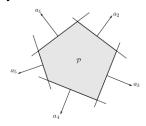


Examples of Convex Sets 10/22

Polyhedron: finite intersection of halfspaces

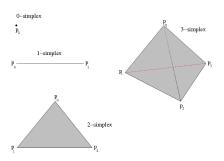


Polytope: Bounded polyhedron

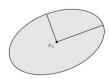


Examples of Convex Sets 11/22

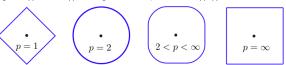
- Nonnegative Orthant \mathbb{R}^n_+ : Polyhedral cone
- Simplex: convex hull of affinely independent points
 - Unit simplex: $x \succeq 0$, $\sum_i x_i \leq 1$
 - Probability simplex: $x \succeq 0$, $\sum_i x_i = 1$.



- Euclidean ball: $\{x: ||x-x_c||_2 \le r\}$ for center x_c and radius r
- \bullet Ellipsoid: $\left\{x:(x-x_c)^TP^{-1}(x-x_c)\leq 1\right\}$ for symmetric $P\succeq 0$
 - \bullet Equivalently: $\{x_c + Au : ||u||_2 \leq 1\}$ for some linear map A

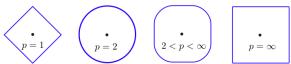


• Norm ball: $\{x: ||x-c|| \le r\}$ for any norm ||.||



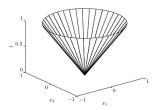
The unit sphere for different metrics: $||x||_{l_p} = 1$ in \mathbb{R}^2 .

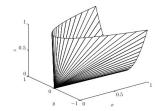
• Norm ball: $\{x: ||x-c|| \le r\}$ for any norm ||.||



The unit sphere for different metrics: $||x||_{l_p} = 1$ in \mathbb{R}^2 .

- Norm cone: $\{(x,r): ||x|| \le r\}$
- Cone of symmetric positive semi-definite matrices M
 - Symmetric matrix $A \succeq 0$ iff $x^T A x \ge 0$ for all x



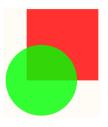


Outline

- Convex sets, Affine sets, and Cones
- Examples of Convex Sets
- Convexity-Preserving Operations
- Separation Theorems

Intersection

The intersection of two convex sets is convex. This holds for the intersection of an infinite number of sets.

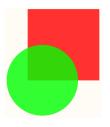


Examples

- Polyhedron: intersection of halfspaces
- PSD cone: intersection of linear inequalities $z^T A z \ge 0$, for all $z \in \mathbb{R}^n$.

Intersection

The intersection of two convex sets is convex. This holds for the intersection of an infinite number of sets.



Examples

- Polyhedron: intersection of halfspaces
- PSD cone: intersection of linear inequalities $z^TAz \ge 0$, for all $z \in \mathbb{R}^n$.

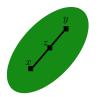
In fact, we will see that every closed convex set is the intersection of a (possibly infinite) set of halfspaces.

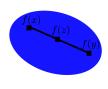
Affine Maps

If $f: \mathbb{R}^n \to \mathbb{R}^m$ is an affine function (i.e. f(x) = Ax + b), then

- f(S) is convex whenever $S \subseteq \mathbb{R}^n$ is convex
- $f^{-1}(T)$ is convex whenever $T \subseteq \mathbb{R}^m$ is convex

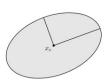
$$f(\theta x + (1 - \theta)y) = A(\theta x + (1 - \theta)y) + b$$
$$= \theta(Ax + b) + (1 - \theta)(Ay + b))$$
$$= \theta f(x) + (1 - \theta)f(y)$$

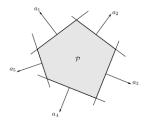




Examples

- An ellipsoid is image of a unit ball after an affine map
- A polyhedron $Ax \leq b$ is inverse image of nonnegative orthant under f(x) = b Ax

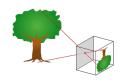




Perspective Function

Let $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ be P(x,t) = x/t.

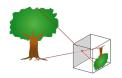
- P(S) is convex whenever $S \subseteq \mathbb{R}^{n+1}$ is convex
- ullet $P^{-1}(T)$ is convex whenever $T\subseteq \mathbb{R}^n$ is convex



Perspective Function

Let $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ be P(x,t) = x/t.

- P(S) is convex whenever $S \subseteq \mathbb{R}^{n+1}$ is convex
- \bullet $P^{-1}(T)$ is convex whenever $T \subseteq \mathbb{R}^n$ is convex



Generalizes to linear fractional functions $f(x) = \frac{Ax+b}{cTx+d}$

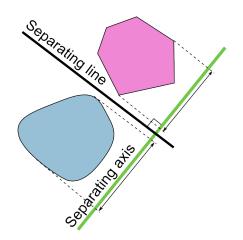
• Composition of perspective with affine.

Outline

- Convex sets, Affine sets, and Cones
- Examples of Convex Sets
- Convexity-Preserving Operations
- Separation Theorems

Separating Hyperplane Theorem

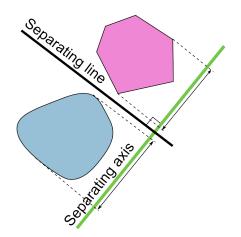
If $A,B\subseteq\mathbb{R}^n$ are disjoint convex sets, then there is a hyperplane weakly separating them. That is, there is $a\in\mathbb{R}^n$ and $b\in\mathbb{R}$ such that $a^{\mathsf{T}}x\leq b$ for every $x\in A$ and $a^{\mathsf{T}}y\geq b$ for every $y\in B$.



Separation Theorems 19/22

Separating Hyperplane Theorem (Strict Version)

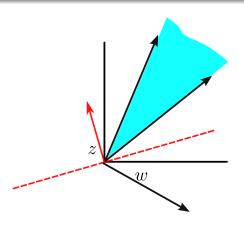
If $A,B\subseteq\mathbb{R}^n$ are disjoint closed convex sets, and at least one of them is compact, then there is a hyperplane strictly separating them. That is, there is $a\in\mathbb{R}^n$ and $b\in\mathbb{R}$ such that $a^{\mathsf{T}}x< b$ for every $x\in A$ and $a^{\mathsf{T}}y>b$ for every $y\in B$.



Separation Theorems 19/22

Farkas' Lemma

Let K be a closed convex cone and let $w \notin K$. There is $z \in \mathbb{R}^n$ such that $z^{\mathsf{T}}x \geq 0$ for all $x \in K$, and $z^{\mathsf{T}}w < 0$.



Separation Theorems 20/22

Supporting Hyperplane

Supporting Hyperplane Theorem.

If $S \subseteq \mathbb{R}^n$ is a closed convex set and y is on the boundary of S, then there is a hyperplane supporting S at y. That is, there is $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $a^{\mathsf{T}}x \leq b$ for every $x \in S$ and $a^{\mathsf{T}}y = b$.

Separation Theorems 21/22

Conclusion

- Things I didn't cover: generalized inequalities, other miscellany in Chapter 2
 - Read on your own!
- Next Lecture: Convex Functions

Separation Theorems 22/22