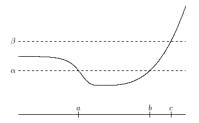
CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 8: Convex Functions Wrapup

Instructor: Shaddin Dughmi

Outline

Quasiconvex Functions

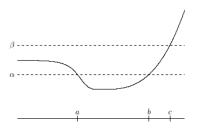
2 Log-Concave Functions



Quasiconvex Functions

A function $f:\mathbb{R}^n \to \mathbb{R}$ is quasiconvex if all its sublevel sets are convex. i.e. if $S_\alpha = \{x | f(x) \leq \alpha\}$ is convex for each $\alpha \in \mathbb{R}$.

Quasiconvex Functions 0/13



Quasiconvex Functions

A function $f:\mathbb{R}^n \to \mathbb{R}$ is quasiconvex if all its sublevel sets are convex. i.e. if $S_{\alpha}=\{x|f(x)\leq \alpha\}$ is convex for each $\alpha\in\mathbb{R}$.

- f is quasiconcave if -f is quasiconvex
 - Equivalently, all its superlevel sets are convex.
- f is quasilinear if it is both quasiconvex and quasiconcave

 Equivalently, all its sublevel and superlevel sets are halfspaces, and all its level sets are affine

Quasiconvex Functions (

Examples

- $\log x$ is quasilinear on \mathbb{R}_+
- All functions $f: \mathbb{R} \to \mathbb{R}$ that are "unimodal"
- x_1x_2 is quasiconcave on \mathbb{R}^2_+
- $\frac{a^{\mathsf{T}}x+b}{c^{\mathsf{T}}x+d}$ is quasilinear
- $||x||_0$ is quasiconcave on \mathbb{R}^n_+ .

Quasiconvex Functions 1/13

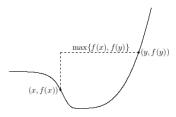
We will now look at two equivalent definitions of quasiconvex functions

Inequality Definition

f is quasiconvex if the following relaxation of Jensen's inequality holds:

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}\$$

for $0 \le \theta \le 1$



Quasiconvex Functions 2/13

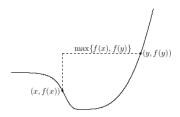
We will now look at two equivalent definitions of quasiconvex functions

Inequality Definition

f is quasiconvex if the following relaxation of Jensen's inequality holds:

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}\$$

for $0 \le \theta \le 1$



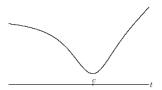
Like Jensen's inequality, a property of f on lines in its domain

Quasiconvex Functions 2/13

First Order Definition

A differentiable $f:\mathbb{R}^n\to\mathbb{R}$ is quasiconvex if and only if whenever $f(y)\leq f(x)$, we have

$$\nabla f(x)^{\mathsf{T}}(y-x) \leq 0$$

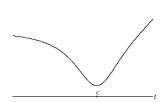


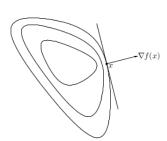
Quasiconvex Functions 3/13

First Order Definition

A differentiable $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if and only if whenever $f(y) \leq f(x)$, we have

$$\nabla f(x)^{\mathsf{T}}(y-x) \leq 0$$





 $\nabla f(x)$ defines a supporting hyperplane for sublevel set with $\alpha = f(x)$

Quasiconvex Functions 3/13

Scaling

If f is quasiconvex and w > 0, then wf is also quasiconvex.

f and wf have the same sublevel sets: $wf(x) \le \alpha$ iff $f(x) \le \alpha/w$,

Quasiconvex Functions 4/13

Scaling

If f is quasiconvex and w > 0, then wf is also quasiconvex.

f and wf have the same sublevel sets: $wf(x) \leq \alpha$ iff $f(x) \leq \alpha/w$,

Composition with Nondecreasing Function

If $f:\mathbb{R}^n\to\mathbb{R}$ is quasiconvex $h:\mathbb{R}\to\mathbb{R}$ is non-decreasing, then $h\circ f$ is quasiconvex.

 $h \circ f$ and f have the same sublevel sets: $h(f(x)) \leq \alpha$ iff $f(x) \leq h^{-1}(\alpha)$

Quasiconvex Functions 4/

Composition with Affine Function

If $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a quasiconvex function from \mathbb{R}^m to \mathbb{R} .

Composition with Affine Function

If $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a quasiconvex function from \mathbb{R}^m to \mathbb{R} .

Proof

The α sublevel of $f(Ax + b) \leq \alpha$ is the inverse image of the α -sublevel of f under the affine map $x \to Ax + b$.

5/13

Composition with Affine Function

If $f:\mathbb{R}^n \to \mathbb{R}$ is quasiconvex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a quasiconvex function from \mathbb{R}^m to \mathbb{R} .

Proof

The α sublevel of $f(Ax+b) \leq \alpha$ is the inverse image of the α -sublevel of f under the affine map $x \to Ax+b$.

Note: extends to linear fractional maps $x \to \frac{Ax+b}{c^T x+d}$.

Quasiconvex Functions 5/13

Maximum

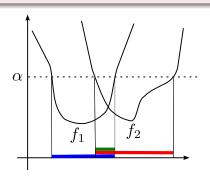
If f_1, f_2 are quasiconvex, then $g(x) = \max \{f_1(x), f_2(x)\}$ is also quasiconvex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^k f_i(x)$, and also to the supremum of an infinite set of functions $\sup_y f_y(x)$.

Maximum

If f_1, f_2 are quasiconvex, then $g(x) = \max \{f_1(x), f_2(x)\}$ is also quasiconvex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^k f_i(x)$, and also to the supremum of an infinite set of functions $\sup_y f_y(x)$.



Quasiconvex Functions 6/13

Minimization

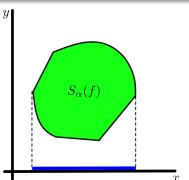
If f(x,y) is quasiconvex and $\mathcal C$ is convex and nonempty, then $g(x)=\inf_{y\in C}f(x,y)$ is quasiconvex.

Minimization

If f(x,y) is quasiconvex and $\mathcal C$ is convex and nonempty, then $g(x)=\inf_{y\in C}f(x,y)$ is quasiconvex.

Proof (for $\mathcal{C} = \mathbb{R}^k$)

 $S_{\alpha}(g)$ is the projection of $S_{\alpha}(f)$ onto hyperplane y=0.



Quasiconvex Functions 7/13

Operations NOT preserving quasiconvexity

Sum

 f_1+f_2 is NOT necessarily quasiconvex when f_1 and f_2 are quasiconvex.

Operations NOT preserving quasiconvexity

Sum

 $f_1 + f_2$ is NOT necessarily quasiconvex when f_1 and f_2 are quasiconvex.

Composition Rules

The composition rules for convex functions do NOT carry over in general.

Quasiconvex Functions 8/13

Outline

Quasiconvex Functions

2 Log-Concave Functions

Log-concave Functions

A function $f: \mathbb{R}^n \to \mathbb{R}_+$ is log-concave if $\log f(x)$ is a concave function. Equivalently:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$

for $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$.

Log-concave Functions

A function $f:\mathbb{R}^n \to \mathbb{R}_+$ is log-concave if $\log f(x)$ is a concave function. Equivalently:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$

for $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$.

• i.e. concave if plotted on log-scale paper

Log-concave Functions

A function $f: \mathbb{R}^n \to \mathbb{R}_+$ is log-concave if $\log f(x)$ is a concave function. Equivalently:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$

for $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$.

- i.e. concave if plotted on log-scale paper
- Concave functions are log-concave, and both are quasiconcave.

Log-concave Functions

A function $f: \mathbb{R}^n \to \mathbb{R}_+$ is log-concave if $\log f(x)$ is a concave function. Equivalently:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$

for $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$.

- i.e. concave if plotted on log-scale paper
- Concave functions are log-concave, and both are quasiconcave.
- Taking the logarithm of a non-concave (yet quasiconcave) function can "concavify" it

Log-concave Functions

A function $f: \mathbb{R}^n \to \mathbb{R}_+$ is log-concave if $\log f(x)$ is a concave function. Equivalently:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$

for $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$.

- i.e. concave if plotted on log-scale paper
- Concave functions are log-concave, and both are quasiconcave.
- Taking the logarithm of a non-concave (yet quasiconcave) function can "concavify" it
- Most common form of "concavification" and "convexification" of objective functions, which to a large extent is an art.

Log-Concave Functions 9/13

Examples

- All concave functions
- x^a for $a \ge 0$
- \bullet e^x
- $\bullet \prod_i x_i$
- Determinant of a PSD matrix
- The pdf of many common distributions such as Gaussian and exponential
 - Intuitively, those distributions which decay faster than exponential (i.e. $e^{-\lambda x)}$)

Log-Concave Functions

Scaling

If f is logconcave and $w \in \mathbb{R}$ then wf is also logconcave.

Scaling

If f is logconcave and $w \in \mathbb{R}$ then wf is also logconcave.

Composition with Affine

If f is logconcave then so is f(Ax + b).

Scaling

If f is logconcave and $w \in \mathbb{R}$ then wf is also logconcave.

Composition with Affine

If f is logconcave then so is f(Ax + b).

Multiplication

If f_1, f_2 are log-concave, then so is $f_1 f_2$

Scaling

If f is logconcave and $w \in \mathbb{R}$ then wf is also logconcave.

Composition with Affine

If f is logconcave then so is f(Ax + b).

Multiplication

If f_1, f_2 are log-concave, then so is $f_1 f_2$

Log-concavity NOT preserved by sums.

Theorem (Prekopa & Liendler)

If f(x,y) is log-concave, then $g(x)=\int_{y}f(x,y)$ is also log-concave.

Theorem (Prekopa & Liendler)

If f(x,y) is log-concave, then $g(x)=\int_y f(x,y)$ is also log-concave.

Example (Yield)

• Design parameters $x \in \mathbb{R}^n$ of a product

Theorem (Prekopa & Liendler)

If f(x,y) is log-concave, then $g(x) = \int_{y} f(x,y)$ is also log-concave.

Example (Yield)

- Design parameters $x \in \mathbb{R}^n$ of a product
- Noise $\delta \in \mathbb{R}^n$ drawn from a log-concave distribution with pdf f
- Resulting product has configuration $x + \delta$.

Theorem (Prekopa & Liendler)

If f(x,y) is log-concave, then $g(x) = \int_{y} f(x,y)$ is also log-concave.

Example (Yield)

- Design parameters $x \in \mathbb{R}^n$ of a product
- Noise $\delta \in \mathbb{R}^n$ drawn from a log-concave distribution with pdf f
- Resulting product has configuration $x + \delta$.
- Set $S \subseteq \mathbb{R}^n$ of "desired" configurations

Theorem (Prekopa & Liendler)

If f(x,y) is log-concave, then $g(x)=\int_y f(x,y)$ is also log-concave.

Example (Yield)

- Design parameters $x \in \mathbb{R}^n$ of a product
- Noise $\delta \in \mathbb{R}^n$ drawn from a log-concave distribution with pdf f
- Resulting product has configuration $x + \delta$.
- Set $S \subseteq \mathbb{R}^n$ of "desired" configurations
- Probability of desirable configuration is $\int_{y \in S} f(y x)$

Log-Concave Functions

Theorem (Prekopa & Liendler)

If f(x,y) is log-concave, then $g(x) = \int_y f(x,y)$ is also log-concave.

Example (Yield)

- Design parameters $x \in \mathbb{R}^n$ of a product
- Noise $\delta \in \mathbb{R}^n$ drawn from a log-concave distribution with pdf f
- Resulting product has configuration $x + \delta$.
- Set $S \subseteq \mathbb{R}^n$ of "desired" configurations
- Probability of desirable configuration is $\int_{y \in S} f(y x)$
- ullet By above theorem, choosing x to optimize this probability is convex optimization problem

Log-Concave Functions 12/13

Next Week

Convex Optimization Problems!