CS599: Convex and Combinatorial Optimization
Fall 2013

Lecture 8: Convex Functions Wrapup

Instructor: Shaddin Dughmi



@ Quasiconvex Functions



Quasiconvex Functions

A function f : R™ — R is quasiconvex if all its sublevel sets are convex.
i.e. if Sy = {z|f(z) < a} is convex for each o € R.
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Quasiconvex Functions

A function f : R™ — R is quasiconvex if all its sublevel sets are convex.
i.e. if Sy = {z|f(z) < a} is convex for each o € R.

@ fis quasiconcave if —f is quasiconvex
e Equivalently, all its superlevel sets are convex.
@ fis quasilinear if it is both quasiconvex and quasiconcave

e Equivalently, all its sublevel and superlevel sets are halfspaces, and
all its level sets are affine
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@ logx is quasilinear on R
@ All functions f : R — R that are “unimodal”
@ 1z, is quasiconcave on R?
aTz+b ; HR
e & is quasilinear
@ ||z||o is quasiconcave on R”.
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Alternative Definitions

We will now look at two equivalent definitions of quasiconvex functions

Inequality Definition
f is quasiconvex if the following relaxation of Jensen’s inequality holds:

[0z + (1= 0)y) < max{f(z), f(y)}

for0<o<1

{w, flw))

max{f{z), fly)}
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Alternative Definitions

We will now look at two equivalent definitions of quasiconvex functions

Inequality Definition
f is quasiconvex if the following relaxation of Jensen’s inequality holds:

[0z + (1= 0)y) < max{f(z), f(y)}

for0<o<1

{w, flw))

max{f{z), fly)}

@ Like Jensen’s inequality, a property of f on lines in its domain J
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Alternative Definitions

First Order Definition

A differentiable f : R” — R is quasiconvex if and only if whenever
f(y) < f(=z), we have
V(@) (y—=2) <0
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Alternative Definitions

First Order Definition

A differentiable f : R” — R is quasiconvex if and only if whenever
f(y) < f(x), we have

V(@) (y—x) <0

v f(x) defines a supporting hyperplane for sublevel set with o = f(x) J
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Operations Preserving Quasiconvexity
If fis quasiconvex and w > 0, then wf is also quasiconvex. l

f and wf have the same sublevel sets: wf(z) < «iff f(z) < a/w, |
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Operations Preserving Quasiconvexity
If fis quasiconvex and w > 0, then wf is also quasiconvex. \

f and wf have the same sublevel sets: wf(z) < «iff f(z) < a/w, ]

Composition with Nondecreasing Function

If f:R™ — R is quasiconvex h : R — R is non-decreasing, then h o f is
quasiconvex.

ho f and f have the same sublevel sets: h(f(z)) < aiff f(z) < h_l(a)J
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Operations Preserving Quasiconvexity

Composition with Affine Function
If f:R™ — R is quasiconvex, and A € R™*™ b € R", then

9(z) = f(Az +b)

is a quasiconvex function from R™ to R.
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Operations Preserving Quasiconvexity

Composition with Affine Function
If f:R™ — R is quasiconvex, and A € R™*™ b € R", then

9(z) = f(Az + )

is a quasiconvex function from R™ to R.

The « sublevel of f(Az + b) < « is the inverse image of the a-sublevel
of f under the affine map = — Az + b.
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Operations Preserving Quasiconvexity

Composition with Affine Function
If f:R™ — R is quasiconvex, and A € R™*™ b € R", then

9(z) = f(Az + )

is a quasiconvex function from R™ to R.

The « sublevel of f(Az + b) < « is the inverse image of the a-sublevel
of f under the affine map = — Az + b.

Note: extends to linear fractional maps z — cf}f;l;.
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Operations Preserving Quasiconvexity

Maximum

If f1, f2 are quasiconvex, then g(z) = max {fi(z), f2(x)} is also
qguasiconvex.

Generalizes to the maximum of any number of functions, max®_; f;(x),
and also to the supremum of an infinite set of functions sup, f,(x).
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Operations Preserving Quasiconvexity

If f(x,y) is quasiconvex and C is convex and nonempty, then
g(z) = infyec f(z,y) is quasiconvex.

Quasiconvex Functions 7113



Operations Preserving Quasiconvexity

If f(x,y) is quasiconvex and C is convex and nonempty, then
g(z) = infyec f(z,y) is quasiconvex.

Proof (for C = R¥)
Sa(g) is the projection of S, (f) onto hyperplane y = 0.

Y
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Operations NOT preserving quasiconvexity

f1 + f2is NOT necessarily quasiconvex when f; and f, are
quasiconvex.
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Operations NOT preserving quasiconvexity

Sum

f1 + f2is NOT necessarily quasiconvex when f; and f, are
quasiconvex.

| N\

Composition Rules

The composition rules for convex functions do NOT carry over in
general.

N
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e Log-Concave Functions



We now briefly look at a class of quasiconcave functions which pops
up in “multiplication” and “volume” maximization problems.

Log-concave Functions

A function f : R" — R, is log-concave if log f(z) is a concave function.
Equivalently:
fOz+ (1 =0)y) > f(2)°f(y)°

forz,y e R" and 6 € [0,1].
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@ Taking the logarithm of a non-concave (yet quasiconcave) function
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We now briefly look at a class of quasiconcave functions which pops
up in “multiplication” and “volume” maximization problems.

Log-concave Functions

A function f : R" — R, is log-concave if log f(z) is a concave function.
Equivalently:
fOz+ (1 =0)y) > f(2)°f(y)°

forz,y e R" and 6 € [0,1].

@ i.e. concave if plotted on log-scale paper

@ Concave functions are log-concave, and both are quasiconcave.

@ Taking the logarithm of a non-concave (yet quasiconcave) function
can “concavify” it

@ Most common form of “concavification” and “convexification” of
objective functions, which to a large extent is an art.
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@ All concave functions

@ z%fora>0

@ c*

o [,z

@ Determinant of a PSD matrix

@ The pdf of many common distributions such as Gaussian and
exponential

o Intuitively, those distributions which decay faster than exponential
(i.e. e 7))
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Operations Preserving Log-Concavity
If fis logconcave and w € R then wf is also logconcave. \
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Operations Preserving Log-Concavity
If fis logconcave and w € R then wf is also logconcave. l

Composition with Affine
If fis logconcave then sois f(Ax +b).
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Operations Preserving Log-Concavity
If fis logconcave and w € R then wf is also logconcave. \

Composition with Affine
If fis logconcave then sois f(Ax +b).

Multiplication
If f1, fo are log-concave, then so is fi fo
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Operations Preserving Log-Concavity
If fis logconcave and w € R then wf is also logconcave. \

Composition with Affine
If fis logconcave then sois f(Ax +b).

Multiplication
If f1, fo are log-concave, then so is fi fo

Log-concavity NOT preserved by sums. )
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Operations Preserving Log-Concavity

Theorem (Prekopa & Liendler)
If f(x,y) is log-concave, then g(z f f(x,y) is also log-concave.
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Operations Preserving Log-Concavity

Theorem (Prekopa & Liendler)
If f(x,y) is log-concave, then g(z f f(x,y) is also log-concave.

Example (Yield)
@ Design parameters = € R™ of a product
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Operations Preserving Log-Concavity

Theorem (Prekopa & Liendler)
If f(x,y) is log-concave, then g(z f f(x,y) is also log-concave.

Example (Yield)
@ Design parameters = € R™ of a product
@ Noise 0 € R™ drawn from a log-concave distribution with pdf f
@ Resulting product has configuration = + §.
@ Set S C R” of “desired” configurations
@ Probability of desirable configurationis [ _ f(y — )

@ By above theorem, choosing = to optimize this probability is
convex optimization problem
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Convex Optimization Problems!
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