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Quasiconvex Functions
A function f : Rn → R is quasiconvex if all its sublevel sets are convex.
i.e. if Sα = {x|f(x) ≤ α} is convex for each α ∈ R.

f is quasiconcave if −f is quasiconvex
Equivalently, all its superlevel sets are convex.

f is quasilinear if it is both quasiconvex and quasiconcave
Equivalently, all its sublevel and superlevel sets are halfspaces, and
all its level sets are affine
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Examples

log x is quasilinear on R+

All functions f : R→ R that are “unimodal”
x1x2 is quasiconcave on R2

+
aᵀx+b
cᵀx+d is quasilinear
||x||0 is quasiconcave on Rn+.
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Alternative Definitions

We will now look at two equivalent definitions of quasiconvex functions

Inequality Definition
f is quasiconvex if the following relaxation of Jensen’s inequality holds:

f(θx+ (1− θ)y) ≤ max {f(x), f(y)}

for 0 ≤ θ ≤ 1

Like Jensen’s inequality, a property of f on lines in its domain
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Alternative Definitions

First Order Definition
A differentiable f : Rn → R is quasiconvex if and only if whenever
f(y) ≤ f(x), we have

5f(x)ᵀ(y − x) ≤ 0

5f(x) defines a supporting hyperplane for sublevel set with α = f(x)
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Operations Preserving Quasiconvexity

Scaling
If f is quasiconvex and w > 0, then wf is also quasiconvex.

f and wf have the same sublevel sets: wf(x) ≤ α iff f(x) ≤ α/w,

Composition with Nondecreasing Function
If f : Rn → R is quasiconvex h : R→ R is non-decreasing, then h ◦ f is
quasiconvex.

h ◦ f and f have the same sublevel sets: h(f(x)) ≤ α iff f(x) ≤ h−1(α)
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Operations Preserving Quasiconvexity

Composition with Affine Function
If f : Rn → R is quasiconvex, and A ∈ Rn×m, b ∈ Rn, then

g(x) = f(Ax+ b)

is a quasiconvex function from Rm to R.

Proof
The α sublevel of f(Ax+ b) ≤ α is the inverse image of the α-sublevel
of f under the affine map x→ Ax+ b.

Note: extends to linear fractional maps x→ Ax+b
cT x+d

.
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Operations Preserving Quasiconvexity

Maximum
If f1, f2 are quasiconvex, then g(x) = max {f1(x), f2(x)} is also
quasiconvex.

Generalizes to the maximum of any number of functions, maxki=1 fi(x),
and also to the supremum of an infinite set of functions supy fy(x).

Sα(g) = Sα(f1)
⋂
Sα(f2)
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Operations Preserving Quasiconvexity

Minimization
If f(x, y) is quasiconvex and C is convex and nonempty, then
g(x) = infy∈C f(x, y) is quasiconvex.

Proof (for C = Rk)
Sα(g) is the projection of Sα(f) onto hyperplane y = 0.
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Operations NOT preserving quasiconvexity

Sum
f1 + f2 is NOT necessarily quasiconvex when f1 and f2 are
quasiconvex.

Composition Rules
The composition rules for convex functions do NOT carry over in
general.
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We now briefly look at a class of quasiconcave functions which pops
up in “multiplication” and “volume” maximization problems.

Log-concave Functions
A function f : Rn → R+ is log-concave if log f(x) is a concave function.
Equivalently:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ

for x, y ∈ Rn and θ ∈ [0, 1].

i.e. concave if plotted on log-scale paper
Concave functions are log-concave, and both are quasiconcave.
Taking the logarithm of a non-concave (yet quasiconcave) function
can “concavify” it
Most common form of “concavification” and “convexification” of
objective functions, which to a large extent is an art.
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Examples

All concave functions
xa for a ≥ 0

ex∏
i xi

Determinant of a PSD matrix
The pdf of many common distributions such as Gaussian and
exponential

Intuitively, those distributions which decay faster than exponential
(i.e. e−λx))

Log-Concave Functions 10/13



Operations Preserving Log-Concavity

Scaling
If f is logconcave and w ∈ R then wf is also logconcave.

Composition with Affine
If f is logconcave then so is f(Ax+ b).

Multiplication
If f1, f2 are log-concave, then so is f1f2

Log-concavity NOT preserved by sums.
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Operations Preserving Log-Concavity

Theorem (Prekopa & Liendler)
If f(x, y) is log-concave, then g(x) =

∫
y f(x, y) is also log-concave.

Example (Yield)
Design parameters x ∈ Rn of a product
Noise δ ∈ Rn drawn from a log-concave distribution with pdf f
Resulting product has configuration x+ δ.
Set S ⊆ Rn of “desired” configurations
Probability of desirable configuration is

∫
y∈S f(y − x)

By above theorem, choosing x to optimize this probability is
convex optimization problem
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Next Week

Convex Optimization Problems!
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