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A Brief History

The forefather of convex optimization problems, and the most
ubiquitous.

Best understood in that context
But this is not a convex optimization class

Developed by Kantorovich during World War II (1939) for planning
the Soviet army’s expenditures and returns. Kept secret.
Discovered a few years later by George Dantzig, who in 1947
developed the simplex method for solving linear programs
John von Neumann developed LP duality in 1947, and applied it to
game theory
Polynomial-time solvable under fairly general conditions

Ellipsoid method (Khachiyan 1979)
Interior point methods (Karmarkar 1984).
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LP General Form

minimize (or maximize) cᵀx
subject to aᵀi x ≤ bi, for i ∈ C1.

aᵀi x ≥ bi, for i ∈ C2.
aᵀi x = bi, for i ∈ C3.

Decision variables: x ∈ Rn

Parameters:
c ∈ Rn defines the linear objective function
ai ∈ Rn and bi ∈ R define the i’th constraint
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Standard Forms

Packing Form
maximize cᵀx
subject to Ax � b

x � 0

Covering Form
minimize cᵀx
subject to Ax � b

x � 0

Every LP can be transformed to either form
minimizing cᵀx is equivalent to maximizing −cᵀx
inequality constraints can be flipped by multiplying by −1
Each equality constraint can be replaced by two inequalities
Uconstrained variable xj can be replaced by x+j − x

−
j , where both

x+j and x−j are constrained to be nonnegative.
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Geometric View
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Geometric View
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A 2-D example

maximize x1 + x2
subject to x1 + 2x2 ≤ 2

2x1 + x2 ≤ 2
x1, x2 ≥ 0
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Economic Interpretation: Optimal Production

n products, m raw materials
Every unit of product j uses aij units of raw material i
There are bi units of material i available
Product j yields profit cj per unit
Facility wants to maximize profit subject to available raw materials

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.
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Terminology

Hyperplane: The region defined by a linear equality
Halfspace: The region defined by a linear inequality aᵀi x ≤ bi.
Polyhedron: The intersection of a set of linear inequalities in
Euclidean space

Feasible region of an LP is a polyhedron
Polytope: A bounded polyhedron

Equivalently: convex hull of a finite set of points
Vertex: A point x is a vertex of polyhedron P if 6 ∃y 6= 0 with
x+ y ∈ P and x− y ∈ P
Face of P : The intersection with P of a hyperplane H disjoint from
the interior of P
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Basic Facts about LPs and Polytopes

Fact
Feasible regions of LPs (i.e. polyhedrons) are convex

Fact
Set of optimal solutions of an LP is convex

In fact, a face of the polyhedron
intersection of P with hyperplane cᵀx = OPT

Fact
At a vertex, n linearly independent constraints are satisfied with
equality (a.k.a. tight)
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Basic Facts about LPs and Polyhedrons

Fact
An LP either has an optimal solution, or is unbounded or infeasible
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Fundamental Theorem of LP
If an LP in standard form has an optimal solution, then it has a vertex
optimal solution.

Proof
Assume not, and take a non-vertex optimal solution x with the
maximum number of tight constraints
There is y 6= 0 s.t. x± y are feasible
y is perpendicular to the objective function and the tight
constraints at x.

i.e. cᵀy = 0, and aᵀi y = 0 whenever the i’th constraint is tight for x.

Can choose y s.t. yj < 0 for some j
Let α be the largest constant such that x+ αy is feasible

Such an α exists

An additional constraint becomes tight at x+ αy, a contradiction.
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Counting non-zero Variables

Corollary
If an LP in standard form has an optimal solution, then there is an
optimal solution with at most m non-zero variables.

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

e.g. for optimal production with n products and m raw materials,
there is an optimal plan with at most m products.
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Application to Combinatorial Problems

Linear programs often encode combinatorial problems either
exactly or approximately
Since our focus is on NP-hard problems, we encounter mostly the
latter

An LP often relaxes the problem
Allows “better than optimal” solutions which are fractional

Uses
1 Rounding a solution of the LP
2 Analysis via primal/dual paradigm
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Example: Shortest Path

Given a directed network G = (V,E) where edge e has length `e ∈ R+,
find the minimum cost path from s to t.

s t

1 11

2

2 2

2

3

3
30

5
0

1

Shortest Path LP
minimize

∑
e∈E `exe

subject to
∑
e→v

xe −
∑
v→e

xe = δv, for v ∈ V.

xe ≥ 0, for e ∈ E.

Where δv = −1 if v = s, 1 if v = t, and 0 otherwise.
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Example: Vertex Cover

Given an undirected graph G = (V,E), with weights wi for i ∈ V , find
minimum-weight S ⊆ V “covering” all edges.

Vertex Cover LP
minimize

∑
i∈V wixi

subject to xi + xj ≥ 1, for (i, j) ∈ E.
xi ≥ 0, for i ∈ V.
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Example: Knapsack

Given n items with sizes s1, . . . , sn and values v1, . . . , vn, and a
knapsack of capacity C, find the maximum value set of items which fits
in the knapsack.

Knapsack LP

maximize
∑n

i=1 vixi
subject to

∑n
i=1 sixi ≤ C

xi ≤ 1, for i ∈ [n].
xi ≥ 0, for i ∈ [n].
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Linear Programming Duality

Primal LP

maximize cᵀx
subject to Ax � b

Dual LP

minimize bᵀy
subject to Aᵀy = c

y � 0

A ∈ Rm×n, c ∈ Rn, b ∈ Rm

yi is the dual variable corresponding to primal constraint Aix ≤ bi
AT

j y ≥ cj is the dual constraint corresponding to primal variable xj
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Linear Programming Duality: Standard Form, and
Visualization

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize yᵀb
subject to Aᵀy � c

y � 0

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

yi is the dual variable corresponding to primal constraint Aix ≤ bi
AT

j y ≥ cj is the dual constraint corresponding to primal variable xj
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Interpretation 1: Economic Interpretation

Recall the Optimal Production problem
n products, m raw materials
Every unit of product j uses aij units of raw material i
There are bi units of material i available
Product j yields profit cj per unit
Facility wants to maximize profit subject to available raw materials

Primal LP

max
∑n

j=1 cjxj
s.t.

∑n
j=1 aijxj ≤ bi, for i ∈ [m].

xj ≥ 0, for j ∈ [n].

Dual LP

min
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≥ cj , for j ∈ [n].

yi ≥ 0, for i ∈ [m].

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Dual variable yi is a proposed price per unit of raw material i
Dual price vector is feasible if facility has incentive to sell materials
Buyer wants to spend as little as possible to buy materials
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Interpretation 2: Finding the Best Upperbound

Recall the simple LP

maximize x1 + x2
subject to x1 + 2x2 ≤ 2

2x1 + x2 ≤ 2
x1, x2 ≥ 0

We found that the optimal solution was at (23 ,
2
3), with an optimal

value of 4/3.

What if, instead of finding the optimal solution, we saught to find
an upperbound on its value by combining inequalities?

Each inequality implies an upper bound of 2
Multiplying each by 1

3 and summing gives x1 + x2 ≤ 4/3.
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Interpretation 2: Finding the Best Upperbound

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Multiplying each row i by yi and summing gives the inequality

yTAx ≤ yT b

When yTA ≥ cT , the right hand side of the inequality is an upper
bound on cTx.
The dual LP can be thought of as trying to find the best
upperbound on the primal that can be achieved this way.
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Interpretation 3: Physical Forces

Apply force field c to a ball inside polytope Ax ≤ b.

Eventually, ball will come to rest against the walls of the polytope.
Wall aix ≤ bi applies some force −yiai to the ball
Since the ball is still, cT =

∑
i yiai = yTA.

Dual can be thought of as trying to minimize “work”
∑

i yibi to
bring ball back to origin by moving polytope
We will see that, at optimality, only the walls adjacent to the ball
push (Complementary Slackness)
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Duality is an Inversion

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize bᵀy
subject to Aᵀy � c

y � 0

Duality is an Inversion
Given a primal LP in standard form, the dual of its dual is itself.
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Correspondance Between Variables and Constraints

Primal LP

max
∑n

j=1 cjxj
s.t.

yi :

∑n
j=1 aijxj ≤ bi, for i ∈ [m].

xj ≥ 0, for j ∈ [n].

Dual LP

min
∑m

i=1 biyi
s.t.

xj :

∑m
i=1 aijyi ≥ cj , for j ∈ [n].

yi ≥ 0, for i ∈ [m].

The i’th primal constraint gives rise to the i’th dual variable yi
The j’th primal variable xj gives rise to the j’th dual constraint
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Syntactic Rules

Primal LP

max cᵀx
s.t.
yi : aix ≤ bi, for i ∈ C1.
yi : aix = bi, for i ∈ C2.

xj ≥ 0, for j ∈ D1.
xj ∈ R, for j ∈ D2.

Dual LP

min bᵀy
s.t.
xj : aᵀj y ≥ cj , for j ∈ D1.

xj : aᵀj y = cj , for j ∈ D2.

yi ≥ 0, for i ∈ C1.
yi ∈ R, for i ∈ C2.

Rules of Thumb
Loose constraint (i.e. inequality)⇒ tight dual variable (i.e.
nonnegative)
Tight constraint (i.e. equality)⇒ loose dual variable (i.e.
unconstrained)
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