CS672: Approximation Algorithms Spring 14 Introduction to Linear Programming I

Instructor: Shaddin Dughmi

Outline

- Linear Programming
- Application to Combinatorial Problems
- Ouality and Its Interpretations
- Properties of Duals

Outline

- Linear Programming
- Application to Combinatorial Problems
- Duality and Its Interpretations
- Properties of Duals

A Brief History

- The forefather of convex optimization problems, and the most ubiquitous.
 - Best understood in that context
 - But this is not a convex optimization class
- Developed by Kantorovich during World War II (1939) for planning the Soviet army's expenditures and returns. Kept secret.
- Discovered a few years later by George Dantzig, who in 1947 developed the simplex method for solving linear programs
- John von Neumann developed LP duality in 1947, and applied it to game theory
- Polynomial-time solvable under fairly general conditions
 - Ellipsoid method (Khachiyan 1979)
 - Interior point methods (Karmarkar 1984).

Linear Programming 1/24

LP General Form

 $\begin{array}{ll} \text{minimize (or maximize)} & c^\intercal x \\ \text{subject to} & a_i^\intercal x \leq b_i, \quad \text{for } i \in \mathcal{C}^1. \\ & a_i^\intercal x \geq b_i, \quad \text{for } i \in \mathcal{C}^2. \\ & a_i^\intercal x = b_i, \quad \text{for } i \in \mathcal{C}^3. \end{array}$

- Decision variables: $x \in \mathbb{R}^n$
- Parameters:
 - $c \in \mathbb{R}^n$ defines the linear objective function
 - $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ define the *i*'th constraint

Linear Programming 2/24

Standard Forms

Packing Form

 $\begin{array}{ll} \text{maximize} & c^\intercal x \\ \text{subject to} & Ax \preceq b \\ & x \succeq 0 \end{array}$

Covering Form

 $\begin{array}{ll} \text{minimize} & c^\intercal x \\ \text{subject to} & Ax \succeq b \\ & x \succeq 0 \end{array}$

Every LP can be transformed to either form

- minimizing $c^{\mathsf{T}}x$ is equivalent to maximizing $-c^{\mathsf{T}}x$
- inequality constraints can be flipped by multiplying by -1
- Each equality constraint can be replaced by two inequalities
- Uconstrained variable x_j can be replaced by $x_j^+ x_j^-$, where both x_j^+ and x_j^- are constrained to be nonnegative.

Linear Programming 3/24

Geometric View

Linear Programming 4/24

Geometric View

Linear Programming 4/24

A 2-D example

$$\begin{array}{ll} \text{maximize} & x_1+x_2\\ \text{subject to} & x_1+2x_2\leq 2\\ & 2x_1+x_2\leq 2\\ & x_1,x_2\geq 0 \end{array}$$

Linear Programming 5/24

Economic Interpretation: Optimal Production

- n products, m raw materials
- Every unit of product j uses a_{ij} units of raw material i
- There are b_i units of material i available
- Product j yields profit c_j per unit
- Facility wants to maximize profit subject to available raw materials

```
 \begin{array}{ll} \text{maximize} & c^\intercal x \\ \text{subject to} & a_i^\intercal x \leq b_i, \quad \text{for } i=1,\dots,m. \\ & x_j \geq 0, \qquad \text{for } j=1,\dots,n. \end{array}
```

Linear Programming 6/24

Terminology

- Hyperplane: The region defined by a linear equality
- Halfspace: The region defined by a linear inequality $a_i^{\mathsf{T}} x \leq b_i$.
- Polyhedron: The intersection of a set of linear inequalities in Euclidean space
 - Feasible region of an LP is a polyhedron
- Polytope: A bounded polyhedron
 - Equivalently: convex hull of a finite set of points
- Vertex: A point x is a vertex of polyhedron P if $\not\exists y \neq 0$ with $x+y \in P$ and $x-y \in P$
- Face of P: The intersection with P of a hyperplane H disjoint from the interior of P

Linear Programming 7/24

Basic Facts about LPs and Polytopes

Fact

Feasible regions of LPs (i.e. polyhedrons) are convex

Linear Programming 8/24

Basic Facts about LPs and Polytopes

Fact

Feasible regions of LPs (i.e. polyhedrons) are convex

Fact

Set of optimal solutions of an LP is convex

- In fact, a face of the polyhedron
- intersection of *P* with hyperplane $c^{T}x = OPT$

Linear Programming 8/24

Basic Facts about LPs and Polytopes

Fact

Feasible regions of LPs (i.e. polyhedrons) are convex

Fact

Set of optimal solutions of an LP is convex

- In fact, a face of the polyhedron
- intersection of P with hyperplane $c^{T}x = OPT$

Fact

At a vertex, n linearly independent constraints are satisfied with equality (a.k.a. tight)

Linear Programming 8/24

Basic Facts about LPs and Polyhedrons

Fact

An LP either has an optimal solution, or is unbounded or infeasible

Linear Programming 9/24

Fundamental Theorem of LP

If an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Linear Programming 10/24

Fundamental Theorem of LP

If an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Proof

- Assume not, and take a non-vertex optimal solution x with the maximum number of tight constraints
- There is $y \neq 0$ s.t. $x \pm y$ are feasible
- y is perpendicular to the objective function and the tight constraints at x.
 - i.e. $c^{\mathsf{T}}y = 0$, and $a_i^{\mathsf{T}}y = 0$ whenever the *i*'th constraint is tight for x.
- Can choose y s.t. $y_i < 0$ for some j
- Let α be the largest constant such that $x + \alpha y$ is feasible
 - Such an α exists
- An additional constraint becomes tight at $x + \alpha y$, a contradiction.

Linear Programming 10/24

Counting non-zero Variables

Corollary

If an LP in standard form has an optimal solution, then there is an optimal solution with at most m non-zero variables.

$$\begin{array}{ll} \text{maximize} & c^\intercal x \\ \text{subject to} & a_i^\intercal x \leq b_i, \quad \text{for } i=1,\ldots,m. \\ & x_j \geq 0, \qquad \text{for } j=1,\ldots,n. \end{array}$$

• e.g. for optimal production with n products and m raw materials, there is an optimal plan with at most m products.

Linear Programming 11/24

Outline

- Linear Programming
- Application to Combinatorial Problems
- Ouality and Its Interpretations
- Properties of Duals

Application to Combinatorial Problems

- Linear programs often encode combinatorial problems either exactly or approximately
- Since our focus is on NP-hard problems, we encounter mostly the latter
 - An LP often relaxes the problem
 - Allows "better than optimal" solutions which are fractional

Application to Combinatorial Problems

- Linear programs often encode combinatorial problems either exactly or approximately
- Since our focus is on NP-hard problems, we encounter mostly the latter
 - An LP often relaxes the problem
 - Allows "better than optimal" solutions which are fractional

Uses

- Rounding a solution of the LP
- Analysis via primal/dual paradigm

Example: Shortest Path

Given a directed network G=(V,E) where edge e has length $\ell_e\in\mathbb{R}_+$, find the minimum cost path from s to t.

Example: Shortest Path

Given a directed network G=(V,E) where edge e has length $\ell_e\in\mathbb{R}_+$, find the minimum cost path from s to t.

Shortest Path LP

$$\begin{array}{ll} \text{minimize} & \sum_{e \in E} \ell_e x_e \\ \text{subject to} & \sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \text{for } v \in V. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}$$

Where $\delta_v = -1$ if v = s, 1 if v = t, and 0 otherwise.

Example: Vertex Cover

Given an undirected graph G=(V,E), with weights w_i for $i\in V$, find minimum-weight $S\subseteq V$ "covering" all edges.

Example: Vertex Cover

Given an undirected graph G=(V,E), with weights w_i for $i\in V$, find minimum-weight $S\subseteq V$ "covering" all edges.

Vertex Cover LP

```
\begin{array}{ll} \text{minimize} & \sum_{i \in V} w_i x_i \\ \text{subject to} & x_i + x_j \geq 1, \quad \text{for } (i,j) \in E. \\ & x_i \geq 0, \qquad \qquad \text{for } i \in V. \end{array}
```

Example: Knapsack

Given n items with sizes s_1,\ldots,s_n and values v_1,\ldots,v_n , and a knapsack of capacity C, find the maximum value set of items which fits in the knapsack.

Example: Knapsack

Given n items with sizes s_1,\ldots,s_n and values v_1,\ldots,v_n , and a knapsack of capacity C, find the maximum value set of items which fits in the knapsack.

Knapsack LP

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^n v_i x_i \\ \text{subject to} & \sum_{i=1}^n s_i x_i \leq C \\ & x_i \leq 1, & \text{for } i \in [n]. \\ & x_i \geq 0, & \text{for } i \in [n]. \end{array}$$

Outline

- Linear Programming
- Application to Combinatorial Problems
- 3 Duality and Its Interpretations
- Properties of Duals

Linear Programming Duality

Primal LP

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$

Dual LP

 $\begin{array}{ll} \text{minimize} & b^{\mathsf{T}}y \\ \text{subject to} & A^{\mathsf{T}}y = c \\ & y \succeq 0 \end{array}$

- \bullet $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$
- y_i is the dual variable corresponding to primal constraint $A_i x \leq b_i$
- ullet $A_j^Ty \geq c_j$ is the dual constraint corresponding to primal variable x_j

Linear Programming Duality: Standard Form, and Visualization

Primal LP

 $\begin{array}{ll} \text{maximize} & c^{\mathsf{T}}x \\ \text{subject to} & Ax \preceq b \\ & x \succeq 0 \end{array}$

Dual LP

 $\begin{array}{ll} \text{minimize} & y^{\mathsf{T}}b \\ \text{subject to} & A^{\mathsf{T}}y \succeq c \\ & y \succeq 0 \end{array}$

Linear Programming Duality: Standard Form, and Visualization

Primal LP

 $\begin{array}{ll} \text{maximize} & c^{\mathsf{T}}x \\ \text{subject to} & Ax \preceq b \\ & x \succeq 0 \end{array}$

Dual LP

 $\begin{array}{ll} \text{minimize} & y^\intercal b \\ \text{subject to} & A^\intercal y \succeq c \\ & y \succeq 0 \end{array}$

	x_1	x_2	x_3	x_4	
y_1	a_{11}	a_{12}	a_{13}	a_{14}	b_1
y_2	a_{21}	a_{22}	a_{23}	a_{24}	b_2
y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

Linear Programming Duality: Standard Form, and Visualization

	1				
	x_1	x_2	x_3	x_4	
y_1	a_{11}	a_{12}	a_{13}	a_{14}	b_1
y_2	a_{21}	a_{22}	$a_{23} \\ a_{33}$	a_{24}	b_2
y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

- ullet y_i is the dual variable corresponding to primal constraint $A_ix \leq b_i$
- $A_i^T y \ge c_j$ is the dual constraint corresponding to primal variable x_j

Recall the Optimal Production problem

- n products, m raw materials
- Every unit of product j uses a_{ij} units of raw material i
- There are b_i units of material i available
- Product j yields profit c_j per unit
- Facility wants to maximize profit subject to available raw materials

Primal LP

```
\begin{array}{ll} \max & \sum_{j=1}^n c_j x_j \\ \text{s.t.} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & \text{for } i \in [m]. \\ & x_j \geq 0, & \text{for } j \in [n]. \end{array}
```

Primal LP

Dual LP

 $\begin{array}{llll} \max & \sum_{j=1}^n c_j x_j & \min & \sum_{i=1}^m b_i y_i \\ \mathrm{s.t.} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & \mathrm{for} \ i \in [m]. & \mathrm{s.t.} & \sum_{i=1}^m a_{ij} y_i \geq c_j, & \mathrm{for} \ j \in [n]. \end{array}$ $x_i \geq 0,$ for $j \in [n]$. $y_i \geq 0,$ for $i \in [m]$.

Primal LP

Dual LP

 $\begin{array}{llll} \max & \sum_{j=1}^n c_j x_j & \min & \sum_{i=1}^m b_i y_i \\ \mathrm{s.t.} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & \mathrm{for} \ i \in [m]. \\ & x_j \geq 0, & \mathrm{for} \ j \in [n]. \end{array} \quad \begin{array}{ll} \min & \sum_{i=1}^m b_i y_i \\ \mathrm{s.t.} & \sum_{i=1}^m a_{ij} y_i \geq c_j, & \mathrm{for} \ j \in [n]. \\ & y_i \geq 0, & \mathrm{for} \ i \in [m]. \end{array}$

	x_1	x_2	x_3	x_4	
y_1	a_{11}	a_{12}	a_{13} a_{23} a_{33}	a_{14}	b_1
y_2	a_{21}	a_{22}	a_{23}	a_{24}	b_2
y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

Interpretation 1: Economic Interpretation

Primal LP

$$\begin{array}{ll} \max & \sum_{j=1}^n c_j x_j \\ \text{s.t.} & \sum_{j=1}^n a_{ij} x_j \leq b_i, \quad \text{for } i \in [m]. \\ & x_j \geq 0, \qquad \qquad \text{for } j \in [n]. \end{array}$$

Dual LP

min s.t.	$\sum_{i=1}^{m} b_i y_i$ $\sum_{i=1}^{m} a_{ij} y_i \ge c_j,$ $y_i \ge 0,$	$\begin{array}{l} \text{for } j \in [n]. \\ \text{for } i \in [m]. \end{array}$
	3t = °,	

	x_1	$\overline{x_2}$	$\overline{x_3}$	$\overline{x_4}$	
y_1	a_{11}	a_{12}		a_{14}	b_1
y_2	a_{21}	a_{22}	a_{23}	a_{24}	b_2
y_3	a_{31}	$a_{12} \\ a_{22} \\ a_{32}$	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

- Dual variable y_i is a proposed price per unit of raw material i
- Dual price vector is feasible if facility has incentive to sell materials
- Buyer wants to spend as little as possible to buy materials

Interpretation 2: Finding the Best Upperbound

Recall the simple LP

$$\begin{array}{ll} \text{maximize} & x_1+x_2\\ \text{subject to} & x_1+2x_2\leq 2\\ & 2x_1+x_2\leq 2\\ & x_1,x_2\geq 0 \end{array}$$

• We found that the optimal solution was at $(\frac{2}{3}, \frac{2}{3})$, with an optimal value of 4/3.

Interpretation 2: Finding the Best Upperbound

Recall the simple LP

$$\begin{array}{ll} \text{maximize} & x_1+x_2\\ \text{subject to} & x_1+2x_2\leq 2\\ & 2x_1+x_2\leq 2\\ & x_1,x_2\geq 0 \end{array}$$

- We found that the optimal solution was at $(\frac{2}{3}, \frac{2}{3})$, with an optimal value of 4/3.
- What if, instead of finding the optimal solution, we saught to find an upperbound on its value by combining inequalities?
 - Each inequality implies an upper bound of 2
 - Multiplying each by $\frac{1}{3}$ and summing gives $x_1 + x_2 \le 4/3$.

Interpretation 2: Finding the Best Upperbound

	x_1	x_2	x_3	x_4	
y_1	a_{11}	a_{12}	a_{13}	a_{14}	b_1
y_2	a_{21}	a_{22}	a_{23}	a_{24}	b_2
y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

ullet Multiplying each row i by y_i and summing gives the inequality

$$y^T A x \le y^T b$$

- When $y^T A \ge c^T$, the right hand side of the inequality is an upper bound on $c^T x$.
- The dual LP can be thought of as trying to find the best upperbound on the primal that can be achieved this way.

• Apply force field c to a ball inside polytope $Ax \leq b$.

- Apply force field c to a ball inside polytope $Ax \leq b$.
- Eventually, ball will come to rest against the walls of the polytope.

- Apply force field c to a ball inside polytope $Ax \leq b$.
- Eventually, ball will come to rest against the walls of the polytope.
- Wall $a_i x \leq b_i$ applies some force $-y_i a_i$ to the ball

- Apply force field c to a ball inside polytope $Ax \leq b$.
- Eventually, ball will come to rest against the walls of the polytope.
- Wall $a_i x \leq b_i$ applies some force $-y_i a_i$ to the ball
- Since the ball is still, $c^T = \sum_i y_i a_i = y^T A$.

- Apply force field c to a ball inside polytope $Ax \leq b$.
- Eventually, ball will come to rest against the walls of the polytope.
- Wall $a_i x \leq b_i$ applies some force $-y_i a_i$ to the ball
- Since the ball is still, $c^T = \sum_i y_i a_i = y^T A$.
- Dual can be thought of as trying to minimize "work" $\sum_i y_i b_i$ to bring ball back to origin by moving polytope
- We will see that, at optimality, only the walls adjacent to the ball push (Complementary Slackness)

Duality and Its Interpretations

Outline

- Linear Programming
- Application to Combinatorial Problems
- 3 Duality and Its Interpretations
- Properties of Duals

Duality is an Inversion

Primal LP

 $\begin{array}{ll} \text{maximize} & c^{\mathsf{T}}x \\ \text{subject to} & Ax \preceq b \\ & x \succeq 0 \end{array}$

Dual LP

 $\begin{array}{ll} \text{minimize} & b^{\mathsf{T}}y \\ \text{subject to} & A^{\mathsf{T}}y \succeq c \\ & y \succeq 0 \end{array}$

Duality is an Inversion

Given a primal LP in standard form, the dual of its dual is itself.

Properties of Duals 22/24

Correspondance Between Variables and Constraints

Primal LP

$$\max \sum_{j=1}^{n} c_j x_j$$
 s.t.

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad \text{for } i \in [m].$$

$$x_j \ge 0, \quad \text{for } j \in [n].$$

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j, \quad \text{for } j \in [n].$$

$$y_i \ge 0, \quad \text{for } i \in [m].$$

Dual LP

min $\sum_{i=1}^{m} b_i y_i$ s.t.

Properties of Duals 23/24

Correspondance Between Variables and Constraints

Primal LP

```
\max \quad \sum_{j=1}^{n} c_j x_j
s.t.
```

Dual LP

```
min \sum_{i=1}^{m} b_i y_i
             s.t.
```

• The i'th primal constraint gives rise to the i'th dual variable y_i

Properties of Duals 23/24

Correspondance Between Variables and Constraints

Primal LP

```
\max \quad \sum_{j=1}^{n} c_j x_j
s.t.
```

Dual LP

```
min \sum_{i=1}^{m} b_i y_i
s.t.
```

- The i'th primal constraint gives rise to the i'th dual variable y_i
- The j'th primal variable x_i gives rise to the j'th dual constraint

Properties of Duals 23/24

Syntactic Rules

Primal LP

 $\begin{array}{ll} \max & c^{\mathsf{T}}x \\ \text{s.t.} \end{array}$

 $\begin{array}{ll} y_i: & a_i x \leq b_i, & \text{for } i \in \mathcal{C}_1. \\ y_i: & a_i x = b_i, & \text{for } i \in \mathcal{C}_2. \\ & x_j \geq 0, & \text{for } j \in \mathcal{D}_1. \end{array}$

 $x_j \geq 0$, for $j \in \mathcal{D}_1$. $x_j \in \mathbb{R}$, for $j \in \mathcal{D}_2$.

 $j \in \mathbb{K}$, for $j \in \mathcal{D}_2$.

Dual LP

min s.t. $b^{\mathsf{T}}y$

 $x_j: \overline{a}_i^{\mathsf{T}} y \geq c_j, \quad \text{for } j \in \mathcal{D}_1.$

 $x_j: \overline{a}_j^\intercal y = c_j, \text{ for } j \in \mathcal{D}_1.$

 $y_i \ge 0,$ for $i \in \mathcal{C}_1$.

 $y_i \in \mathbb{R}, \quad \text{for } i \in \mathcal{C}_2.$

Rules of Thumb

- Loose constraint (i.e. inequality) ⇒ tight dual variable (i.e. nonnegative)
- Tight constraint (i.e. equality) ⇒ loose dual variable (i.e. unconstrained)

Properties of Duals 24/24