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o Linear Programming



A Brief History

@ The forefather of convex optimization problems, and the most
ubiquitous.
e Best understood in that context
e But this is not a convex optimization class
@ Developed by Kantorovich during World War 11 (1939) for planning
the Soviet army’s expenditures and returns. Kept secret.
@ Discovered a few years later by George Dantzig, who in 1947
developed the simplex method for solving linear programs
@ John von Neumann developed LP duality in 1947, and applied it to
game theory
@ Polynomial-time solvable under fairly general conditions

o Ellipsoid method (Khachiyan 1979)
o Interior point methods (Karmarkar 1984).
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LP General Form

minimize (or maximize) cTz

subject to alx <b;, foriecCl.
alz >b;, forieC2
T

alz =b;, forieC3.

@ Decision variables: x € R™
@ Parameters:

e c € R™ defines the linear objective function
@ a; € R™ and b; € R define the 7'th constraint
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Standard Forms

Packing Form Covering Form

maximize cTz minimize Tz
subjectto Ax <Xb subjectto Ax > b
z>=0 z>=0

Every LP can be transformed to either form
@ minimizing cTx is equivalent to maximizing —cTx
@ inequality constraints can be flipped by multiplying by —1
@ Each equality constraint can be replaced by two inequalities
@ Uconstrained variable x; can be replaced by xj — z;, where both

xj and z; are constrained to be nonnegative.
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A 2-D example

maximize xz1 + x2

subjectto z; + 2x9 <2
201 + 10 < 2
xi1,x9 >0
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Economic Interpretation: Optimal Production

@ n products, m raw materials

@ Every unit of product j uses a;; units of raw material i

@ There are b; units of material 7 available

@ Product j yields profit c; per unit

@ Facility wants to maximize profit subject to available raw materials

maximize cTx

subjectto a]z <b;, fori=1,...,m.
zj >0, forj=1,...,n.
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Terminology

Hyperplane: The region defined by a linear equality
Halfspace: The region defined by a linear inequality a]z < b;.
Polyhedron: The intersection of a set of linear inequalities in
Euclidean space

o Feasible region of an LP is a polyhedron
Polytope: A bounded polyhedron

e Equivalently: convex hull of a finite set of points
Vertex: A point z is a vertex of polyhedron P if Ay # 0 with
r+yePandz—yc P

@ Face of P: The intersection with P of a hyperplane H disjoint from
the interior of P
\
N
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Basic Facts about LPs and Polytopes

Feasible regions of LPs (i.e. polyhedrons) are convex
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Basic Facts about LPs and Polytopes

Feasible regions of LPs (i.e. polyhedrons) are convex

Set of optimal solutions of an LP is convex
@ In fact, a face of the polyhedron

@ intersection of P with hyperplane ¢Tx = OPT

At a vertex, n linearly independent constraints are satisfied with
equality (a.k.a. tight)
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Basic Facts about LPs and Polyhedrons

An LP either has an optimal solution, or is unbounded or infeasible \

" 4\
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Fundamental Theorem of LP

If an LP in standard form has an optimal solution, then it has a vertex
optimal solution.
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Fundamental Theorem of LP

If an LP in standard form has an optimal solution, then it has a vertex
optimal solution.

@ Assume not, and take a non-vertex optimal solution z with the
maximum number of tight constraints
@ Thereis y # 0 s.t. x £+ y are feasible

@ y is perpendicular to the objective function and the tight
constraints at x.
e i.e. ¢Ty =0, and a]y = 0 whenever the i’th constraint is tight for x.

@ Can choose y s.t. y; < 0 for some j
@ Let a be the largest constant such that = + ay is feasible
e Such an « exists

@ An additional constraint becomes tight at = + «y, a contradiction.
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Counting non-zero Variables

If an LP in standard form has an optimal solution, then there is an
optimal solution with at most m non-zero variables.

maximize cTz
subjectto alz <b;, fori=1,...,m.
z;j >0, forj=1,...,n.

@ e.g. for optimal production with n products and m raw materials,
there is an optimal plan with at most m products.
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Application to Combinatorial Problems

@ Linear programs often encode combinatorial problems either
exactly or approximately

@ Since our focus is on NP-hard problems, we encounter mostly the
latter

@ An LP often relaxes the problem
o Allows “better than optimal” solutions which are fractional
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Application to Combinatorial Problems

@ Linear programs often encode combinatorial problems either
exactly or approximately

@ Since our focus is on NP-hard problems, we encounter mostly the
latter

@ An LP often relaxes the problem
o Allows “better than optimal” solutions which are fractional

@ Rounding a solution of the LP
© Analysis via primal/dual paradigm
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Example: Shortest Path

Given a directed network G = (V, E') where edge e has length /. € R,
find the minimum cost path from s to ¢. J
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Example: Shortest Path

Given a directed network G = (V, E') where edge e has length /. € R,
find the minimum cost path from s to ¢. J

Shortest Path LP

minimize ) . lee
subjectto > z.— > x.=06,, forveV.

e—v v—e
Te > 0, fore € FE.

Where 6, = —1if v = s, 1 if v = ¢, and 0 otherwise.
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Example: Vertex Cover

Given an undirected graph G = (V, E), with weights w; for i € V, find
minimum-weight S C V “covering” all edges. J
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Example: Vertex Cover

Given an undirected graph G = (V, E), with weights w; for i € V, find
minimum-weight S C V “covering” all edges.

v

Vertex Cover LP
minimize ), wir;
subjectto z; +x; > 1, for(i,j) € E.
z; > 0, foricV.
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Example: Knapsack

Given n items with sizes sq, ..., s, and values v1, ..., v,, and a

knapsack of capacity C, find the maximum value set of items which fits
in the knapsack.
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Example: Knapsack

Given n items with sizes sq, ..., s, and values v1, ..., v,, and a
knapsack of capacity C, find the maximum value set of items which fits
in the knapsack.

Knapsack LP

maximize >, vz

subjectto Y ', siz; < C
7 & for i € [n].
z; >0, for i € [n].
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Linear Programming Duality

maximize cTz minimize b7y
subjectto Az <b subjectto ATy =c¢
y=0

@ AcR™™" cecR" beR™
@ y; is the dual variable corresponding to primal constraint A;z < b;
° A]Ty > ¢; is the dual constraint corresponding to primal variable x;
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Linear Programming Duality: Standard Form, and
Visualization

maximize cTz minimize  yTb
subjectto Az <b subjectto ATy > ¢
z=0 y>=0
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Linear Programming Duality: Standard Form, and

Visualization

minimize  yTb
subjectto ATy > ¢
y=0

maximize cTz
subjectto Az <b
x>0

r1 T2 T3 T4
y1 a1 a2 a3 aiug | by
Y2 | a1 aze a2z azy | ba
ys | a1 as2 aszz asg | b3
cg 2 3
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Linear Programming Duality: Standard Form, and

Visualization

minimize  yTb
subjectto ATy > ¢
y=0

maximize cTz
subjectto Az <b
x>0

r1 T2 T3 T4
y1 a1 a2 a3 aiug | by
Y2 | a1 aze a2z azy | ba
ys | a1 as2 aszz asg | b3
cg 2 3

@ y; is the dual variable corresponding to primal constraint A,z < b;

° A]Ty > c¢; is the dual constraint corresponding to primal variable x;
17/24
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Interpretation 1: Economic Interpretation

Recall the Optimal Production problem

@ n products, m raw materials

@ Every unit of product j uses a;; units of raw material i

@ There are b; units of material i available

@ Product j yields profit c; per unit

@ Facility wants to maximize profit subject to available raw materials
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Interpretation 1: Economic Interpretation

max Z?:l CiTj
s.t. Z?:l ai;T; < b;, forie [m]
xz; >0, for j € [n].
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Interpretation 1: Economic Interpretation

max YU, ¢z min > by
s.t. Z?:l ai;T; < b, fori e [m] s.t. Z:r;l QijYi > Cj, forj € [Tl]
zj >0, for j € [n]. yi > 0, for i € [m].
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Interpretation 1: Economic Interpretation

min 3", biys
S aijys > ¢, for j € [n].
yi =2 0, for i € [m].

max Z?:l CiTj
s.t. Z?:l Qi T < b;, fori e [m] s.t.
xz; >0, for j € [n].

T T2 T3 T4
y1 a1 a2 a3 aius | by
Y2 | a1 aze a2z aq | ba
Y3 | a1 as2 aszz ass | b3
cg 2 3

18/24

Duality and Its Interpretations



Interpretation 1: Economic Interpretation

min Z:il biyi

m .
Sty aijyi > ¢, forj e [n).
yi =2 0, for i € [m].

max Z?:l CiTj
s.t. Z?:l Qi T < b;, fori e [m] s.t.
xz; >0, for j € [n].

T T2 T3 T4
y1 a1 a2 a3 aius | by
Y2 | a1 aze a2z aq | ba
Y3 | a1 as2 aszz ass | b3
cg 2 3

@ Dual variable y; is a proposed price per unit of raw material i
@ Dual price vector is feasible if facility has incentive to sell materials

@ Buyer wants to spend as little as possible to buy materials
18/24
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Interpretation 2: Finding the Best Upperbound

Recall the simple LP

maximize xz1 + x2

subjectto z; + 2x9 <2
221 + 22 <2
x1,x9 >0

@ We found that the optimal solution was at (, %), with an optimal
value of 4/3.
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Interpretation 2: Finding the Best Upperbound

Recall the simple LP

maximize xz1 + x2

subjectto z; + 2x9 <2
221 + 22 <2
x1,x9 >0

@ We found that the optimal solution was at (, %), with an optimal
value of 4/3.

@ What if, instead of finding the optimal solution, we saught to find
an upperbound on its value by combining inequalities?

e Each inequality implies an upper bound of 2
e Multiplying each by ; and summing gives z1 + x5 < 4/3.
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Interpretation 2: Finding the Best Upperbound

Tl Ty T3 T4
y1 a1 a2 a3 aius | by
Y2 | a1 aze a2z a | ba
Y3 | a1 asz aszz ass | b3
cg 2 3

@ Multiplying each row i by y; and summing gives the inequality
yT Az < yTb

@ When y7 A > ¢T, the right hand side of the inequality is an upper

bound on ¢Z'x.

@ The dual LP can be thought of as trying to find the best
upperbound on the primal that can be achieved this way.
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Interpretation 3: Physical Forces

@ Apply force field c to a ball inside polytope Az < b.
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Interpretation 3: Physical Forces

@ Apply force field ¢ to a ball inside polytope Ax < b.
@ Eventually, ball will come to rest against the walls of the polytope.
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Interpretation 3: Physical Forces

Cc

—Y1a1

—Y202

@ Apply force field ¢ to a ball inside polytope Ax < b.
@ Eventually, ball will come to rest against the walls of the polytope.
@ Wall a;x < b; applies some force —y;a; to the ball
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Interpretation 3: Physical Forces

Yy1ay

Y202

@ Apply force field ¢ to a ball inside polytope Az < b.

@ Eventually, ball will come to rest against the walls of the polytope.
@ Wall a;x < b; applies some force —y;a; to the ball

@ Since the ball is still, ¥ = Y, yia; = yT A.
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Interpretation 3: Physical Forces

Yy1ay

Y202

@ Apply force field ¢ to a ball inside polytope Az < b.

@ Eventually, ball will come to rest against the walls of the polytope.

@ Wall a;x < b; applies some force —y;a; to the ball

@ Since the ball is still, ¥ = Y, yia; = yT A.

@ Dual can be thought of as trying to minimize “work” . y;b; to
bring ball back to origin by moving polytope

@ We will see that, at optimality, only the walls adjacent to the ball

push (Complementary Slackness)
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Duality is an Inversion

maximize cTz minimize b7y
subjectto Az <b subjectto ATy > ¢
z>=0 y>=0

Duality is an Inversion
Given a primal LP in standard form, the dual of its dual is itself.
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Correspondance Between Variables and Constraints

Primal LP Dual LP

max > 7 ;T min - 37 biys

s.t. s.t.
Z;»Lzl ;5T < b;, fori e [m] 2111 QijYi > Cj, forj € [’I’l]
zj >0, for j € [n]. y; >0, fori € [m].
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Correspondance Between Variables and Constraints

Primal LP Dual LP

max 377, ¢z

s.t.

Yi -

Z;‘Lzl Qi T < bi, fori e [m]
z; 20, for j € [n].

W

min
s.t.

2211 biy;
S iy > ¢y, forj € [n].
yi =2 0, fori € [m].

@ The 7’th primal constraint gives rise to the i’th dual variable y;
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Correspondance Between Variables and Constraints

Primal LP Dual LP

max > 7 ;T min >3, biy;

s.t. s.t.

Yi Z?Zl a;;x; <b;, forie [m]. it Y aiy > ¢, forj € nl.
zj >0, for j € [n]. y; >0, fori € [m].

@ The 7’th primal constraint gives rise to the i’th dual variable y;
@ The j'th primal variable z; gives rise to the j'th dual constraint
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Syntactic Rules

Primal LP Dual LP

max
s.t.
Yi -
Yi -

c'x

a;xz < b;,
a;xr = bi,

.’EjER,

fori e C;.
for i € Cs.
for j € Ds.
for j € Ds.

o’

min
s.t.
acj 5
£L'j 5

bTy

ay > cj,
ajy = cj,
Yi 2 07
Yi € Ra

for j € Ds.
for j € Ds.
fori e Cy.
fori € Cs.

v

Rules of Thumb

@ Loose constraint (i.e. inequality) = tight dual variable (i.e.
nonnegative)

@ Tight constraint (i.e. equality) = loose dual variable (i.e.

unconstrained)

Properties of Duals
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