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LP General Form

minimize (or maximize) cᵀx
subject to aᵀi x ≤ bi, for i ∈ C1.

aᵀi x ≥ bi, for i ∈ C2.
aᵀi x = bi, for i ∈ C3.

Decision variables: x ∈ Rn

Parameters:
c ∈ Rn defines the linear objective function
ai ∈ Rn and bi ∈ R define the i’th constraint.
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Standard Form

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

Every LP can be transformed to this form
minimizing cᵀx is equivalent to maximizing −cᵀx
≥ constraints can be flipped by multiplying by −1

Each equality constraint can be replaced by two inequalities
Uconstrained variable xj can be replaced by x+j − x

−
j , where both

x+j and x−j are constrained to be nonnegative.
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Geometric View
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Geometric View
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A 2-D example

maximize x1 + x2
subject to x1 + 2x2 ≤ 2

2x1 + x2 ≤ 2
x1, x2 ≥ 0
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Application: Optimal Production

n products, m raw materials
Every unit of product j uses aij units of raw material i
There are bi units of material i available
Product j yields profit cj per unit
Facility wants to maximize profit subject to available raw materials

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.
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Terminology

Hyperplane: The region defined by a linear equality
Halfspace: The region defined by a linear inequality aᵀi x ≤ bi.
Polyhedron: The intersection of a set of linear inequalities

Feasible region of an LP is a polyhedron
Polytope: Bounded polyhedron

Equivalently: convex hull of a finite set of points
Vertex: A point x is a vertex of polyhedron P if 6 ∃y 6= 0 with
x+ y ∈ P and x− y ∈ P
Face of P : The intersection with P of a hyperplane H disjoint from
the interior of P
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Basic Facts about LPs and Polyhedrons

Fact
Feasible regions of LPs (i.e. polyhedrons) are convex

Fact
Set of optimal solutions of an LP is convex

In fact, a face of the polyhedron
intersection of P with hyperplane cᵀx = OPT

Fact
A feasible point x is a vertex if and only if n linearly independent
constraints are tight (i.e., satisfied with equality) at x.
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Basic Facts about LPs and Polyhedrons

Fact
An LP either has an optimal solution, or is unbounded or infeasible
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Fundamental Theorem of LP
If an LP in standard form has an optimal solution, then it has a vertex
optimal solution.

Proof
Assume not, and take a non-vertex optimal solution x with the
maximum number of tight constraints
There is y 6= 0 s.t. x± y are feasible
y is perpendicular to the objective function and the tight
constraints at x.

i.e. cᵀy = 0, and aᵀi y = 0 whenever the i’th constraint is tight for x.

Can choose y s.t. yj < 0 for some j
Let α be the largest constant such that x+ αy is feasible

Such an α exists

An additional constraint becomes tight at x+ αy, a contradiction.
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Counting non-zero Variables

Corollary
If an LP in standard form has an optimal solution, then there is an
optimal solution with at most m non-zero variables.

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

e.g. for optimal production with n products and m raw materials,
there is an optimal plan with at most m products.
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Linear Programming Duality

Primal LP

maximize cᵀx
subject to Ax � b

Dual LP

minimize bᵀy
subject to Aᵀy = c

y � 0

A ∈ Rm×n, c ∈ Rn, b ∈ Rm

yi is the dual variable corresponding to primal constraint Aix ≤ bi
AT

j y = cj is the dual constraint corresponding to primal variable xj
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Linear Programming Duality: Standard Form, and
Visualization

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize yᵀb
subject to Aᵀy � c

y � 0

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

yi is the dual variable corresponding to primal constraint Aix ≤ bi
AT

j y ≥ cj is the dual constraint corresponding to primal variable xj
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Interpretation 1: Economic Interpretation

Recall the Optimal Production problem from last lecture
n products, m raw materials
Every unit of product j uses aij units of raw material i
There are bi units of material i available
Product j yields profit cj per unit
Facility wants to maximize profit subject to available raw materials

Primal LP

max
∑n

j=1 cjxj
s.t.

∑n
j=1 aijxj ≤ bi, for i ∈ [m].

xj ≥ 0, for j ∈ [n].

Dual LP

min
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≥ cj , for j ∈ [n].

yi ≥ 0, for i ∈ [m].

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Dual variable yi is a proposed price per unit of raw material i
Dual price vector is feasible if facility has incentive to sell materials
Buyer wants to spend as little as possible to buy materials
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Interpretation 2: Finding the Best Upperbound

Consider the simple LP from last lecture

maximize x1 + x2
subject to x1 + 2x2 ≤ 2

2x1 + x2 ≤ 2
x1, x2 ≥ 0

We found that the optimal solution was at (23 ,
2
3), with an optimal

value of 4/3.

What if, instead of finding the optimal solution, we saught to find
an upperbound on its value by combining inequalities?

Each inequality implies an upper bound of 2
Multiplying each by 1

3 and summing gives x1 + x2 ≤ 4/3.
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Interpretation 2: Finding the Best Upperbound

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Multiplying each row i by yi and summing gives the inequality

yTAx ≤ yT b

When yTA ≥ cT , the right hand side of the inequality is an upper
bound on cTx for every feasible x.

cTx ≤ yTAx ≤ yT b

The dual LP can be thought of as trying to find the best
upperbound on the primal that can be achieved this way.
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Interpretation 3: Physical Forces

Apply force field c to a ball inside bounded polytope Ax � b.

Eventually, ball will come to rest against the walls of the polytope.
Wall aix ≤ bi applies some force −yiai to the ball
Since the ball is still, cT =

∑
i yiai = yTA.

Dual can be thought of as trying to minimize “work”
∑

i yibi to
bring ball back to origin by moving polytope
We will see that, at optimality, only the walls adjacent to the ball
push (Complementary Slackness)
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Duality is an Inversion

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize bᵀy
subject to Aᵀy � c

y � 0

Duality is an Inversion
Given a primal LP in standard form, the dual of its dual is itself.
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Correspondance Between Variables and Constraints

Primal LP

max
∑n

j=1 cjxj
s.t.

yi :

∑n
j=1 aijxj ≤ bi, for i ∈ [m].

xj ≥ 0, for j ∈ [n].

Dual LP

min
∑m

i=1 biyi
s.t.

xj :

∑m
i=1 aijyi ≥ cj , for j ∈ [n].

yi ≥ 0, for i ∈ [m].

The i’th primal constraint gives rise to the i’th dual variable yi
The j’th primal variable xj gives rise to the j’th dual constraint
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Syntactic Rules

Primal LP

max cᵀx
s.t.
yi : aix ≤ bi, for i ∈ C1.
yi : aix = bi, for i ∈ C2.

xj ≥ 0, for j ∈ D1.
xj ∈ R, for j ∈ D2.

Dual LP

min bᵀy
s.t.
xj : aᵀj y ≥ cj , for j ∈ D1.

xj : aᵀj y = cj , for j ∈ D2.

yi ≥ 0, for i ∈ C1.
yi ∈ R, for i ∈ C2.

Rules of Thumb
Lenient constraint (i.e. inequality)⇒ stringent dual variable (i.e.
nonnegative)
Stringent constraint (i.e. equality)⇒ lenient dual variable (i.e.
unconstrained)
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Weak Duality
Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP
minimize bᵀy
subject to Aᵀy � c

y � 0

Theorem (Weak Duality)
For every primal feasible x and dual feasible y, we have cᵀx ≤ bᵀy.

Corollary
If primal and dual both feasible and bounded,
OPT (Primal) ≤ OPT (Dual)

If primal is unbounded, dual is infeasible
If dual is unbounded, primal is infeasible

Weak and Strong Duality 20/37
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Theorem (Weak Duality)
For every primal feasible x and dual feasible y, we have cᵀx ≤ bᵀy.

Corollary
If x∗ is primal feasible, and y∗ is dual feasible, and cᵀx∗ = bᵀy∗, then
both are optimal.
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Interpretation of Weak Duality

Economic Interpretation
If selling the raw materials is more profitable than making any
individual product, then total money collected from sale of raw
materials would exceed profit from production.

Upperbound Interpretation
Self explanatory

Physical Interpretation
Work required to bring ball back to origin by pulling polytope is at least
potential energy difference between origin and primal optimum.
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Proof of Weak Duality

Primal LP
maximize cᵀx
subject to Ax � b

x � 0

Dual LP
minimize bᵀy
subject to Aᵀy � c

y � 0

cᵀx ≤ yᵀAx ≤ yᵀb
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Strong Duality

Primal LP
maximize cᵀx
subject to Ax � b

x � 0

Dual LP
minimize bᵀy
subject to Aᵀy � c

y � 0

Theorem (Strong Duality)
If either the primal or dual is feasible and bounded, then so is the other
and OPT (Primal) = OPT (Dual).
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Interpretation of Strong Duality

Economic Interpretation
Buyer can offer prices for raw materials that would make facility
indifferent between production and sale.

Upperbound Interpretation
The method of scaling and summing inequalities yields a tight
upperbound on the primal optimal value.

Physical Interpretation
There is an assignment of forces to the walls of the polytope that
brings ball back to the origin without wasting energy.
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Informal Proof of Strong Duality

Recall the physical interpretation of duality

When ball is stationary at x, we expect force c to be neutralized
only by constraints that are tight. i.e. force multipliers y � 0 s.t.

yᵀA = c
yi(bi − aix) = 0

yᵀb− cᵀx = yᵀb− yᵀAx =
∑
i

yi(bi − aix) = 0

We found a primal and dual solution that are equal in value!
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Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize yᵀb
subject to Aᵀy � c

y � 0

Let si = (b−Ax)i be the i’th primal slack variable
Let tj = (Aᵀy − c)j be the j’th dual slack variable

Complementary Slackness
Feasible x and y are optimal if and
only if

xjtj = 0 for all j = 1, . . . , n

yisi = 0 for all i = 1, . . . ,m

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4
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Interpretation of Complementary Slackness

Economic Interpretation
Given an optimal primal production vector x and optimal dual offer
prices y,

Facility produces only products for which it is indifferent between
sale and production.
Only raw materials that are binding constraints on production are
priced greater than 0

Physical Interpretation
Only walls adjacent to the balls equilibrium position push back on it.
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Proof of Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

s � 0

Dual LP

minimize yᵀb
subject to Aᵀy � c

y � 0

t � 0

Can equivalently rewrite LP using slack variables

yᵀb− cᵀx = yᵀ(Ax+ s)− (yᵀA− tᵀ)x = yᵀs+ tᵀx

Gap between primal and dual objectives is 0 if and only if
complementary slackness holds.
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Recovering Primal from Dual

Will encounter LPs where the dual is easier to solve than primal
Complementary slackness allows us to recover the primal optimal
from the dual optimal, and vice versa.

Assuming non-degeneracy: At every vertex of primal [dual] there
are exactly n [m] tight constraints which are linearly independent.

Primal LP
(n variables, m+ n constraints)

maximize cᵀx
subject to Ax � b

x � 0

Dual LP
(m variables, m+ n constraints)

minimize yᵀb
subject to Aᵀy � c

y � 0

Let y be dual optimal. By non-degeneracy:
Exactly m of the m+ n dual constraints are tight at y
Exactly n dual constraints are loose

n loose dual constraints impose n tight primal constraints
Assuming non-degeneracy, solving the linear equation yields a
unique primal optimum solution x.
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Uses of Duality in Algorithm Design

1 Gain structural insights
Dual of a problem gives a “different way of looking at it”.

2 As a benchmark; i.e. to certify (approximate) optimality
The primal/dual paradigm
A dual may be explicitly constructed by the algorithm, or as part of
its analysis

Let’s look at some duals and interpret them.
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Shortest Path

Given a directed network G = (V,E) where edge e has length `e ∈ R+,
find the minimum cost path from s to t.

s t

1 11

2

2 2

2

3

3
30

5
0

1

Primal LP
min

∑
e∈E `exe

s.t.
∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t. yv − yu ≤ `e, ∀(u, v) ∈ E.

Where δv = −1 if v = s, 1 if v = t, and 0 otherwise.

Interpretation of Dual
Stretch s and t as far apart as possible, subject to edge lengths.
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Maximum Weighted Bipartite Matching

Set B of buyers, and set G of goods. Buyer i has value wij for good j,
and interested in at most one good. Find maximum value assignment
of goods to buyers.

Primal LP
max

∑
i,j
wijxij

s.t.
∑
j∈G

xij ≤ 1, ∀i ∈ B.∑
i∈B

xij ≤ 1, ∀j ∈ G.

xij ≥ 0, ∀i ∈ B, j ∈ G.

Dual LP
min

∑
i∈B

ui +
∑
j∈G

pj

s.t. ui + pj ≥ wij , ∀i ∈ B, j ∈ G.
ui ≥ 0, ∀i ∈ B.
pj ≥ 0, ∀j ∈ G.

Interpretation of Dual
pj is price of good j
ui is utility of buyer i
Complementary Slackness:

A buyer i only grabs goods j maximizing wij − pj
Only fully assigned goods have non-zero price
A buyer witn nonzero utility must receive an item
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Minimum Cost Set Cover

Elements [n] = {1, . . . , n}, sets S1, . . . , Sm ⊆ [n] with weights
w1, . . . , wm ≥ 0. Find minimum weight collection of sets whose union is
[n].

Primal LP

min
m∑
j=1

wjxj

s.t.
m∑

j:Sj3i
xj ≥ 1, ∀i ∈ [n].

xj ≥ 0, ∀j ∈ [m].

Dual LP

max
n∑

i=1
yi

s.t.
∑

i∈Sj
yi ≤ wj , ∀j ∈ [m].

yi ≥ 0, ∀i ∈ [n].

Interpretation of Dual
Trying to “sell” coverage to elements at prices yi.

Objective: Maximize revenue
Feasible: charge elements in Sj no more than it would cost them if
they broke away and bought Sj themselves
Complementary Slackness:

Only select sets that are “paid for” by the dual prices
Only elements that are covered exactly once are charged.
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Solvability of Explicit Linear Programs

maximize cᵀx
subject to Ax � b

x � 0

In the examples we have seen so far, the linear program is explicit.
I.e. the constraint matrix A, as well as rhs vector b and objective c,
are either given directly as input, or are of size polynomial in the
description size of the instance.

Theorem (Polynomial Solvability of Explicit LP)
There is a polynomial time algorithm for linear programming, when the
linear program is represented explicitly.

Originally using the ellipsoid algorithm, and more recently interior-point
algorithms which are more efficient in practice.
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Implicit Linear Programs

These are linear programs in which the number of constraints is
exponential (in the natural description of the input)
These are useful as an analytical tool
Can be solved in many cases!

E.g. Held-Karp relaxation for TSP

min
∑

e∈E dexe
s.t. x(δ(S)) ≥ 2, ∀∅ ⊂ S ⊂ V.

x(δ(v)) = 2, ∀v ∈ V.
0 � x � 1

Where δ(S) denotes the edges going out of S ⊆ V .
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Solvability of Implicit Linear Programs

maximize cᵀx
subject to Ax � b

x � 0

Theorem (Polynomial Solvability of Implicit LP)
Consider a family Π of linear programming problems I = (A, b, c)
admitting the following operations in polynomial time (in 〈I〉 and n):

A separation oracle for the polyhedron Ax � b
Explicit access to c

Moreover, assume that every 〈aij〉, 〈bi〉, 〈cj〉 are at most poly(〈I〉, n).
Then there is a polynomial time algorithm for Π (both primal and dual).

Separation oracle
An algorithm that takes as input x ∈ Rn, and either certifies Ax � b or
finds a violated constraint aix > bi.
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E.g. of a Separation Oracle

min
∑

e∈E dexe
s.t. x(δ(S)) ≥ 2, ∀∅ ⊂ S ⊂ V.

x(δ(v)) = 2, ∀v ∈ V.
0 � x � 1

Nontrivial part: given fixed x need to check whether x(δ(S)) ≥ 2
for all S, else find such an S which violates this.
Suffices to minimize x(δ(S)) over all nonempty S ⊂ V .
This is min-cut in a weighted graph, which we can solve.
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