CS672: Approximation Algorithms
Spring 2020

Intro to Semidefinite Programming

Instructor: Shaddin Dughmi



@ Basics of PSD Matrices



Symmetric Matrices

A matrix A € R"*" is symmetric if and only if it is square and A;; = Aj;
for all 4, 5.

@ We denote the cone of n x n symmetric matrices by S™.
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Symmetric Matrices
A matrix A € R"*" is symmetric if and only if it is square and A;; = Aj;
for all 4, 5.

@ We denote the cone of n x n symmetric matrices by S™.

A matrix A € R™*™ is symmetric if and only if it is orthogonally
diagonalizable.

@ i.e. A= QDQT where Q is an orthogonal matrix and
D = diag(\i,..., \p).

@ The columns of @ are the (normalized) eigenvectors of A, with
corresponding eigenvalues A1, ..., A\,

@ Equivalently: As a linear operator, A scales the space along an
orthonormal basis

@ The scaling factor \; along direction ¢; may be negative, positive,
or 0.
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Positive Semi-Definite Matrices

A matrix A € R™*" is positive semi-definite if it is symmetric and
moreover all its eigenvalues are nonnegative.

@ We denote the cone of n x n positive semi-definite matrices by S”
@ We use A = 0 as shorthand for A € S
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Positive Semi-Definite Matrices

A matrix A € R™*" is positive semi-definite if it is symmetric and
moreover all its eigenvalues are nonnegative.

@ We denote the cone of n x n positive semi-definite matrices by S”
@ We use A = 0 as shorthand for A € S

@ A= QDQT where @ is an orthogonal matrix and
D = diag()\1, ..., \n), Where \; > 0.

@ As a linear operator, A performs nonnegative scaling along an
orthonormal basis @

Positive definite, negative semi-definite, and negative definite defined
similarly.
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Geometric Intuition for PSD Matrices

@ For A > 0,letq,...,q, be the orthonormal eigenbasis for A, and
let A1,..., A\, > 0 be the corresponding eigenvalues.

@ The linear operator x — Az scales the ¢; component of z by X;

@ When applied to every z in the unit ball, the image of A is an
ellipsoid centered at the origin with principal directions ¢, ..., ¢,
and corresponding diameters 21, ..., 2\,

o When A is positive definite (i.e.\; > 0), and therefore invertible, the
ellipsoid is the set {y : y* (AAT) "1y < 1}
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Useful Properties of PSD Matrices

If A >0, then
@ zTAx > 0forall z

@ A has a positive semi-definite square root A2
o Az = Qdiag(v/A1,...,vV QT
@ A = BT B for some matrix B.
o Interpretation: PSD matrices encode the “pairwise similarity”
relationships of a family of vectors. A;; is dot product of the ith and
jth columns of B.
e Interpretation: The quadratic form =7 Az is the length of a linear
transformation of =, namely || Bz||3
@ The quadratic function 27 Az is convex
@ A can be expressed as a sum of vector outer-products

0 eg., A=Y" vl forv; = VNG
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Useful Properties of PSD Matrices

If A >0, then
@ zTAx > 0forall z

@ A has a positive semi-definite square root A2
o Az = Qdiag(v/A1,...,vV QT
@ A = BT B for some matrix B.
o Interpretation: PSD matrices encode the “pairwise similarity”
relationships of a family of vectors. A;; is dot product of the ith and
jth columns of B.
e Interpretation: The quadratic form =7 Az is the length of a linear
transformation of =, namely || Bz||3
@ The quadratic function 27 Az is convex
@ A can be expressed as a sum of vector outer-products

0 eg., A=Y" vl forv; = VAig;

As it turns out, each of the above is also sufficient for A > 0 (assuming
A is symmetric). J
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Properties of PSD Matrices Relevant for Computation

@ The set of PSD matrices is convex
e Follows from the characterization: 7 Az > 0 for all »
@ The set of PSD matrices admits an efficient separation oracle
e Given A , find eigenvector v with negative eigenvalue: v7 Av < 0.
@ A PSD matrix A € R™*"™ implicitly encodes the “pairwise
similarities” of a family of vectors by,...,b, € R™.
e Follows from the characterization A = BT B for some B
o A;j = (b, b))
@ Can convert between A and B efficiently.

e Bto A: Matrix multiplication

e Ato B: B canbe expressed in terms of eigenvectors/eigenvalues of
A, which can be easily computed to arbitrary precision via powering
methods. Alternatively: Cholesky decomposition, SVD, ....
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e Semidefinite Programming



Convex Optimization

nnnnnnnnn

min (or max) f(x)
subject to reX

Convex Optimization Problem
Generalization of LP where

@ Feasible set X convex: ax + (1 —a)y € X, forall z,y € X and
a € [0,1]
@ Objective function f is convex in case of minimization
o flax+(1—a)y) <af(x)+(1—a)f(y)forallz,y e Xand « € [0,1]
@ Objective function f is concave in case of maximization
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Convex Optimization

nnnnnnnnn

min (or max) f(x)
subject to reX

Convex Optimization Problems Solvable efficiently (i.e. in polynomial
time) to arbitrary precision under mild conditions

@ Separation oracle for X
@ First-order oracle for evaluating f(z) and <7 f(x).

For more detail
Take CSCI 675!
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Semidefinite Programs

These are Optimization problems where the feasible set is the cone of
PSD cone, possibly intersected with linear constraints.

@ Generalization of LP.
@ Special case of Convex Optimization.

maximize cTz
subjectto Az <b
o1 F1 + 2o Fs .. x,Fy, + G is PSD

@ Fi,...,F,, G,and A are given matrices, and ¢, b are given vectors.

Semidefinite Programming 7113



Semidefinite Programs

These are Optimization problems where the feasible set is the cone of
PSD cone, possibly intersected with linear constraints.

@ Generalization of LP.
@ Special case of Convex Optimization.

maximize cTz
subjectto Az <b
o1 F1 + 2o Fs .. x,Fy, + G is PSD

@ Fi,...,F,, G,and A are given matrices, and ¢, b are given vectors.

@ Fitting a distribution, say a Gaussian, to observed data. Variable is
a positive semi-definite covariance matrix.

@ As a relaxation to combinatorial problems that encode pairwise
relationships: e.g. finding the maximum cut of a graph.
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Semidefinite Programs

These are Optimization problems where the feasible set is the cone of
PSD cone, possibly intersected with linear constraints.

@ Generalization of LP.
@ Special case of Convex Optimization.

maximize cTz
subjectto Az <b
o1 F1 + 2o Fs .. x,Fy, + G is PSD

@ Fi,...,F,, G,and A are given matrices, and ¢, b are given vectors.

SDP can be solved in polytime to arbitrary precision, since PSD
constraints admit a polytime separation oracle.
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e Max Cut



The Max Cut Problem

Given an undirected graph G = (V, E), find a partition of V' into
(S, V'\ S) maximizing number of edges with exactly one end in S.

l—z;x;

maximize > hep —5
subjectto z; € {-1,1}, forieV.
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The Max Cut Problem

Given an undirected graph G = (V, E), find a partition of V' into
(S, V'\ S) maximizing number of edges with exactly one end in S.

l—z;x;

maximize > hep —5
subjectto z; € {-1,1}, forieV.

v

Instead of requiring x; to be on the 1 dimensional sphere, we relax and
permit it to be in the n-dimensional sphere, where n = |V|.

Vector Program relaxation

maximize 3 g =0
subjectto ||#;|]2 =1, forie V.
v; € R™, fori e V.
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SDP Relaxation

@ Recall: A symmetric n x n matrix Y is PSD iff Y = VTV forn x n
matrix V'

@ Equivalently: PSD matrices encode pairwise dot products of
columns of V

@ When diagonal entries of Y are 1, V' has unit length columns

@ Recall: Y and V can be recovered from each other efficiently
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SDP Relaxation

@ Recall: A symmetric n x n matrix Y is PSD iff Y = VTV forn x n
matrix V'

@ Equivalently: PSD matrices encode pairwise dot products of
columns of V

@ When diagonal entries of Y are 1, V' has unit length columns

@ Recall: Y and V can be recovered from each other efficiently

Vector Program relaxation

maximize > iyep 1_@2;-.17]-
subjectto ||Ti]|2 =1, forie V.
v; € R™, forie V.
SDP Relaxation
maximize 3> iep %
subjectto Y;; =1, fori e V.
Y eSSt

o
MaxCut 9/13



Goemans Williamson Algorithm for
Max Cut SDP Relaxation

@ Solve the SDPtogetY =0

. 1-Yy
@ Decompose Y to VVT maximize > jep —3

subjectto Y;; =1Vi

© Draw random vector r on unit sphere
Y eS%

© Place nodes i with v; - » > 0 on one
side of cut, the rest on the other side

U

J
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We will prove the following Lemma

The random hyperplane cuts each edge (i, 7) with probability at least
0.8781 )4
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We will prove the following Lemma

The random hyperplane cuts each edge (i, 7) with probability at least
0.8781 )4

Therefore, by linearity of expectations, and the fact that
OPTspp > OPT (i.e. relaxation).

The Goemans Williamson algorithm outputs a random cut of expected
size at least 0.878 OPT.
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We use the following fact

For all angles 6 € [0, 7],

95 0.878. L2039
s 2
/ :
y
/ /
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The random hyperplane cuts each edge (i, j) with probability at least

0.8781 )
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The random hyperplane cuts each edge (i, j) with probability at least

0.878 54

@ (i,7) is cutiff sign(r - v;) # sign(r - vj)
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The random hyperplane cuts each edge (i, j) with probability at least
0.8781 )

@ (i,7) is cutiff sign(r - v;) # sign(r - vj)

@ Can zoom in on the 2-d plane which includes v; and v;
e Discard component r perpendicular to that plane, leaving 7
o Direction of 7 is uniform in the plane
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@ (i,7) is cutiff sign(r - v;) # sign(r - vj)
@ Can zoom in on the 2-d plane which includes v; and v;
e Discard component r perpendicular to that plane, leaving 7
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The random hyperplane cuts each edge (i, j) with probability at least
0.8781 )

@ (i,7) is cutiff sign(r - v;) # sign(r - vj)
@ Can zoom in on the 2-d plane which includes v; and v;
e Discard component r perpendicular to that plane, leaving 7
o Direction of 7 is uniform in the plane
@ Let 6;; be angle between v; and v;. Note Y;; = v; - v; = cos(6;;)
@ 7 cuts (i,7) w.p.
Wij _ 9 5 ) grgt =080 _ g7t = Yii
2T T
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