CS672: Approximation Algorithms Spring 2020 Intro to Semidefinite Programming

Instructor: Shaddin Dughmi

Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{ij} = A_{ji}$ for all i, j.

• We denote the cone of $n \times n$ symmetric matrices by S^n .

Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{ij} = A_{ji}$ for all i, j.

• We denote the cone of $n \times n$ symmetric matrices by S^n .

Fact

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is orthogonally diagonalizable.

Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{ij} = A_{ji}$ for all i, j.

• We denote the cone of $n \times n$ symmetric matrices by S^n .

Fact

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is orthogonally diagonalizable.

- i.e. $A = QDQ^{\mathsf{T}}$ where Q is an orthogonal matrix and $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.
- The columns of Q are the (normalized) eigenvectors of A, with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$
- Equivalently: As a linear operator, A scales the space along an orthonormal basis ${\cal Q}$
- The scaling factor λ_i along direction q_i may be negative, positive, or 0.

Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by S^n_+
- We use $A \succeq 0$ as shorthand for $A \in S^n_+$

Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by S^n_+
- We use $A \succeq 0$ as shorthand for $A \in S^n_+$
- $A = QDQ^{\mathsf{T}}$ where Q is an orthogonal matrix and $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, where $\lambda_i \ge 0$.
- As a linear operator, ${\cal A}$ performs nonnegative scaling along an orthonormal basis Q

Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by S^n_+
- We use $A \succeq 0$ as shorthand for $A \in S^n_+$
- $A = QDQ^{\mathsf{T}}$ where Q is an orthogonal matrix and $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, where $\lambda_i \ge 0$.
- As a linear operator, A performs nonnegative scaling along an orthonormal basis ${\cal Q}$

Note

Positive definite, negative semi-definite, and negative definite defined similarly.

Geometric Intuition for PSD Matrices

- For A ≥ 0, let q₁,..., q_n be the orthonormal eigenbasis for A, and let λ₁,..., λ_n ≥ 0 be the corresponding eigenvalues.
- The linear operator $x \to Ax$ scales the q_i component of x by λ_i
- When applied to every x in the unit ball, the image of A is an ellipsoid centered at the origin with principal directions q_1, \ldots, q_n and corresponding diameters $2\lambda_1, \ldots, 2\lambda_n$
 - When A is positive definite (*i.e.* $\lambda_i > 0$), and therefore invertible, the ellipsoid is the set $\{y : y^T (AA^T)^{-1}y \le 1\}$

Useful Properties of PSD Matrices

- If $A \succeq 0$, then
 - $x^T A x \ge 0$ for all x
 - A has a positive semi-definite square root $A^{\frac{1}{2}}$
 - $A^{\frac{1}{2}} = Q \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) Q^{\mathsf{T}}$
 - $A = B^T B$ for some matrix B.
 - Interpretation: PSD matrices encode the "pairwise similarity" relationships of a family of vectors. A_{ij} is dot product of the *i*th and *j*th columns of *B*.
 - Interpretation: The quadratic form $x^T A x$ is the length of a linear transformation of x, namely $||Bx||_2^2$
 - The quadratic function $x^T A x$ is convex
 - A can be expressed as a sum of vector outer-products

• e.g.,
$$A = \sum_{i=1}^{n} v_i v_i^T$$
 for $\vec{v_i} = \sqrt{\lambda_i} \vec{q_i}$

Useful Properties of PSD Matrices

- If $A \succeq 0$, then
 - $x^T A x \ge 0$ for all x
 - A has a positive semi-definite square root $A^{\frac{1}{2}}$
 - $A^{\frac{1}{2}} = Q \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) Q^{\mathsf{T}}$
 - $A = B^T B$ for some matrix B.
 - Interpretation: PSD matrices encode the "pairwise similarity" relationships of a family of vectors. A_{ij} is dot product of the *i*th and *j*th columns of *B*.
 - Interpretation: The quadratic form $x^T A x$ is the length of a linear transformation of x, namely $||Bx||_2^2$
 - The quadratic function $x^T A x$ is convex
 - A can be expressed as a sum of vector outer-products

• e.g.,
$$A = \sum_{i=1}^{n} v_i v_i^T$$
 for $\vec{v_i} = \sqrt{\lambda_i} \vec{q_i}$

As it turns out, each of the above is also sufficient for $A \succeq 0$ (assuming A is symmetric).

- The set of PSD matrices is convex
 - Follows from the characterization: $x^T A x \ge 0$ for all x
- The set of PSD matrices admits an efficient separation oracle
 - Given A , find eigenvector v with negative eigenvalue: $v^T A v < 0$.
- A PSD matrix $A \in \mathcal{R}^{n \times n}$ implicitly encodes the "pairwise similarities" of a family of vectors $b_1, \ldots, b_n \in \mathbb{R}^n$.
 - Follows from the characterization $A = B^T B$ for some B
 - $A_{ij} = \langle b_i, b_j \rangle$
- Can convert between A and B efficiently.
 - *B* to *A*: Matrix multiplication
 - *A* to *B*: *B* can be expressed in terms of eigenvectors/eigenvalues of *A*, which can be easily computed to arbitrary precision via powering methods. Alternatively: Cholesky decomposition, SVD,

Convex Optimization

 $\begin{array}{ll} \mbox{min (or max)} & f(x) \\ \mbox{subject to} & x \in \mathcal{X} \end{array}$

Convex Optimization Problem

Generalization of LP where

- Feasible set \mathcal{X} convex: $\alpha x + (1 \alpha)y \in \mathcal{X}$, for all $x, y \in \mathcal{X}$ and $\alpha \in [0, 1]$
- Objective function f is convex in case of minimization

• $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$ for all $x, y \in \mathcal{X}$ and $\alpha \in [0, 1]$

• Objective function *f* is concave in case of maximization

Convex Optimization

 $\begin{array}{ll} \mbox{min (or max)} & f(x) \\ \mbox{subject to} & x \in \mathcal{X} \end{array}$

Convex Optimization Problems Solvable efficiently (i.e. in polynomial time) to arbitrary precision under mild conditions

- Separation oracle for X
- First-order oracle for evaluating f(x) and $\nabla f(x)$.

For more detail

Take CSCI 675!

Semidefinite Programs

These are Optimization problems where the feasible set is the cone of PSD cone, possibly intersected with linear constraints.

- Generalization of LP.
- Special case of Convex Optimization.

maximize $c^{\intercal}x$ subject to $Ax \leq b$ $x_1F_1 + x_2F_2 \dots x_nF_n + G$ is PSD

• F_1, \ldots, F_n, G , and A are given matrices, and c, b are given vectors.

Semidefinite Programs

These are Optimization problems where the feasible set is the cone of PSD cone, possibly intersected with linear constraints.

- Generalization of LP.
- Special case of Convex Optimization.

maximize
$$c^{\intercal}x$$

subject to $Ax \leq b$
 $x_1F_1 + x_2F_2 \dots x_nF_n + G$ is PSD

• F_1, \ldots, F_n, G , and A are given matrices, and c, b are given vectors.

Examples

- Fitting a distribution, say a Gaussian, to observed data. Variable is a positive semi-definite covariance matrix.
- As a relaxation to combinatorial problems that encode pairwise relationships: e.g. finding the maximum cut of a graph.

Semidefinite Programs

These are Optimization problems where the feasible set is the cone of PSD cone, possibly intersected with linear constraints.

- Generalization of LP.
- Special case of Convex Optimization.

maximize
$$c^{\intercal}x$$

subject to $Ax \leq b$
 $x_1F_1 + x_2F_2 \dots x_nF_n + G$ is PSD

• F_1, \ldots, F_n , G, and A are given matrices, and c, b are given vectors.

Fact

SDP can be solved in polytime to arbitrary precision, since PSD constraints admit a polytime separation oracle.

The Max Cut Problem

Given an undirected graph G = (V, E), find a partition of V into $(S, V \setminus S)$ maximizing number of edges with exactly one end in S.

maximize
$$\sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$

subject to $x_i \in \{-1,1\}$, for $i \in V$.

The Max Cut Problem

Given an undirected graph G = (V, E), find a partition of V into $(S, V \setminus S)$ maximizing number of edges with exactly one end in S.

$$\begin{array}{ll} \text{maximize} & \sum_{(i,j)\in E} \frac{1-x_i x_j}{2} \\ \text{subject to} & x_i \in \{-1,1\}, \quad \text{ for } i \in V. \end{array}$$

Instead of requiring x_i to be on the 1 dimensional sphere, we relax and permit it to be in the *n*-dimensional sphere, where n = |V|.

Vector Program relaxation

$$\begin{array}{ll} \mbox{maximize} & \sum_{(i,j)\in E} \frac{1-\vec{v_i}\cdot\vec{v_j}}{2} \\ \mbox{subject to} & ||\vec{v_i}||_2 = 1, & \mbox{for } i \in V. \\ & \vec{v_i} \in \mathbb{R}^n, & \mbox{for } i \in V. \end{array}$$

SDP Relaxation

- Recall: A symmetric $n \times n$ matrix Y is PSD iff $Y = V^T V$ for $n \times n$ matrix V
- Equivalently: PSD matrices encode pairwise dot products of columns of *V*
- When diagonal entries of Y are 1, V has unit length columns
- Recall: Y and V can be recovered from each other efficiently

SDP Relaxation

- Recall: A symmetric $n \times n$ matrix Y is PSD iff $Y = V^T V$ for $n \times n$ matrix V
- Equivalently: PSD matrices encode pairwise dot products of columns of *V*
- When diagonal entries of Y are 1, V has unit length columns
- Recall: Y and V can be recovered from each other efficiently

Vector Program relaxation

$$\begin{array}{ll} \text{maximize} & \sum_{(i,j)\in E} \frac{1-\vec{v}_i\cdot\vec{v}_j}{2} \\ \text{subject to} & ||\vec{v}_i||_2 = 1, & \text{for } i \in V. \\ & \vec{v}_i \in \mathbb{R}^n, & \text{for } i \in V. \end{array}$$

SDP Relaxation

$$\begin{array}{ll} \mbox{maximize} & \sum_{(i,j)\in E} \frac{1-Y_{ij}}{2} \\ \mbox{subject to} & Y_{ii}=1, \\ & Y\in S^n_+ \end{array} \mbox{ for } i\in V. \end{array}$$

Goemans Williamson Algorithm for Max Cut

- **()** Solve the SDP to get $Y \succeq 0$
- 2 Decompose Y to VV^T
- Oraw random vector r on unit sphere
- **9** Place nodes *i* with $v_i \cdot r \ge 0$ on one side of cut, the rest on the other side

SDP Relaxation

subject to $Y_{ii} = 1 \ \forall i$

maximize $\sum_{(i,j)\in E} \frac{1-Y_{ij}}{2}$ $Y \in S^n_+$

We will prove the following Lemma

We will prove the following Lemma

Lemma

The random hyperplane cuts each edge (i,j) with probability at least $0.878\frac{1-Y_{ij}}{2}$

Therefore, by linearity of expectations, and the fact that $OPT_{SDP} \ge OPT$ (i.e. relaxation).

Theorem

The Goemans Williamson algorithm outputs a random cut of expected size at least 0.878 *OPT*.

We use the following fact

Fact

For all angles $\theta \in [0, \pi]$,

$$\frac{\theta}{\pi} \ge 0.878 \cdot \frac{1 - \cos(\theta)}{2}$$

The random hyperplane cuts each edge (i,j) with probability at least $0.878\frac{1-Y_{ij}}{2}$

• (i, j) is cut iff $sign(r \cdot v_i) \neq sign(r \cdot v_j)$

- (i, j) is cut iff $sign(r \cdot v_i) \neq sign(r \cdot v_j)$
- Can zoom in on the 2-d plane which includes v_i and v_j
 - Discard component r perpendicular to that plane, leaving \widehat{r}
 - Direction of \widehat{r} is uniform in the plane

- (i, j) is cut iff $sign(r \cdot v_i) \neq sign(r \cdot v_j)$
- Can zoom in on the 2-d plane which includes v_i and v_j
 - Discard component r perpendicular to that plane, leaving \widehat{r}
 - Direction of \widehat{r} is uniform in the plane
- Let θ_{ij} be angle between v_i and v_j . Note $Y_{ij} = v_i \cdot v_j = \cos(\theta_{ij})$

- (i, j) is cut iff $sign(r \cdot v_i) \neq sign(r \cdot v_j)$
- Can zoom in on the 2-d plane which includes v_i and v_j
 - Discard component r perpendicular to that plane, leaving \widehat{r}
 - Direction of \widehat{r} is uniform in the plane
- Let θ_{ij} be angle between v_i and v_j . Note $Y_{ij} = v_i \cdot v_j = \cos(\theta_{ij})$ • \hat{r} cuts (i, j) w.p.

$$\frac{2\theta_{ij}}{2\pi} = \frac{\theta_{ij}}{\pi} \ge 0.878 \frac{1 - \cos \theta_{ij}}{2} = 0.878 \frac{1 - Y_{ij}}{2}$$