CS672: Approximation Algorithms Spring 2020
 Intro to Semidefinite Programming

Instructor: Shaddin Dughmi

Outline

(1) Basics of PSD Matrices

(2) Semidefinite Programming

(3) Max Cut

Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{i j}=A_{j i}$ for all i, j.

- We denote the cone of $n \times n$ symmetric matrices by S^{n}.

Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{i j}=A_{j i}$ for all i, j.

- We denote the cone of $n \times n$ symmetric matrices by S^{n}.

Fact

A matrix $\mathcal{A} \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is orthogonally diagonalizable.

Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{i j}=A_{j i}$ for all i, j.

- We denote the cone of $n \times n$ symmetric matrices by S^{n}.

Fact

A matrix $\mathcal{A} \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is orthogonally diagonalizable.

- i.e. $A=Q D Q^{\top}$ where Q is an orthogonal matrix and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- The columns of Q are the (normalized) eigenvectors of A, with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$
- Equivalently: As a linear operator, A scales the space along an orthonormal basis Q
- The scaling factor λ_{i} along direction q_{i} may be negative, positive, or 0 .

Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by S_{+}^{n}
- We use $A \succeq 0$ as shorthand for $A \in S_{+}^{n}$

Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by S_{+}^{n}
- We use $A \succeq 0$ as shorthand for $A \in S_{+}^{n}$
- $A=Q D Q^{\top}$ where Q is an orthogonal matrix and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where $\lambda_{i} \geq 0$.
- As a linear operator, A performs nonnegative scaling along an orthonormal basis Q

Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by S_{+}^{n}
- We use $A \succeq 0$ as shorthand for $A \in S_{+}^{n}$
- $A=Q D Q^{\top}$ where Q is an orthogonal matrix and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where $\lambda_{i} \geq 0$.
- As a linear operator, A performs nonnegative scaling along an orthonormal basis Q

Note

Positive definite, negative semi-definite, and negative definite defined similarly.

Geometric Intuition for PSD Matrices

- For $A \succeq 0$, let q_{1}, \ldots, q_{n} be the orthonormal eigenbasis for A, and let $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ be the corresponding eigenvalues.
- The linear operator $x \rightarrow A x$ scales the q_{i} component of x by λ_{i}
- When applied to every x in the unit ball, the image of A is an ellipsoid centered at the origin with principal directions q_{1}, \ldots, q_{n} and corresponding diameters $2 \lambda_{1}, \ldots, 2 \lambda_{n}$
- When A is positive definite (i.e. $\lambda_{i}>0$), and therefore invertible, the ellipsoid is the set $\left\{y: y^{T}\left(A A^{T}\right)^{-1} y \leq 1\right\}$

Useful Properties of PSD Matrices

If $A \succeq 0$, then

- $x^{T} A x \geq 0$ for all x
- A has a positive semi-definite square root $A^{\frac{1}{2}}$
- $A^{\frac{1}{2}}=Q \operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right) Q^{\top}$
- $A=B^{T} B$ for some matrix B.
- Interpretation: PSD matrices encode the "pairwise similarity" relationships of a family of vectors. $A_{i j}$ is dot product of the i th and j th columns of B.
- Interpretation: The quadratic form $x^{T} A x$ is the length of a linear transformation of x, namely $\|B x\|_{2}^{2}$
- The quadratic function $x^{T} A x$ is convex
- A can be expressed as a sum of vector outer-products
- e.g., $A=\sum_{i=1}^{n} v_{i} v_{i}^{T}$ for $\overrightarrow{v_{i}}=\sqrt{\lambda_{i}} \overrightarrow{q_{i}}$

Useful Properties of PSD Matrices

If $A \succeq 0$, then

- $x^{T} A x \geq 0$ for all x
- A has a positive semi-definite square root $A^{\frac{1}{2}}$
- $A^{\frac{1}{2}}=Q \operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right) Q^{\top}$
- $A=B^{T} B$ for some matrix B.
- Interpretation: PSD matrices encode the "pairwise similarity" relationships of a family of vectors. $A_{i j}$ is dot product of the i th and j th columns of B.
- Interpretation: The quadratic form $x^{T} A x$ is the length of a linear transformation of x, namely $\|B x\|_{2}^{2}$
- The quadratic function $x^{T} A x$ is convex
- A can be expressed as a sum of vector outer-products
- e.g., $A=\sum_{i=1}^{n} v_{i} v_{i}^{T}$ for $\overrightarrow{v_{i}}=\sqrt{\lambda_{i}} \overrightarrow{q_{i}}$

As it turns out, each of the above is also sufficient for $A \succeq 0$ (assuming A is symmetric).

Properties of PSD Matrices Relevant for Computation

- The set of PSD matrices is convex
- Follows from the characterization: $x^{T} A x \geq 0$ for all x
- The set of PSD matrices admits an efficient separation oracle
- Given A, find eigenvector v with negative eigenvalue: $v^{T} A v<0$.
- A PSD matrix $A \in \mathcal{R}^{n \times n}$ implicitly encodes the "pairwise similarities" of a family of vectors $b_{1}, \ldots, b_{n} \in R^{n}$.
- Follows from the characterization $A=B^{T} B$ for some B
- $A_{i j}=\left\langle b_{i}, b_{j}\right\rangle$
- Can convert between A and B efficiently.
- B to A : Matrix multiplication
- A to $B: B$ can be expressed in terms of eigenvectors/eigenvalues of A, which can be easily computed to arbitrary precision via powering methods. Alternatively: Cholesky decomposition, SVD,

Outline

(1) Basics of PSD Matrices

(2) Semidefinite Programming
(3) Max Cut

Convex Optimization

min (or max) $\quad f(x)$
subject to $\quad x \in \mathcal{X}$

Convex Optimization Problem

Generalization of LP where

- Feasible set \mathcal{X} convex: $\alpha x+(1-\alpha) y \in \mathcal{X}$, for all $x, y \in \mathcal{X}$ and $\alpha \in[0,1]$
- Objective function f is convex in case of minimization

$$
\text { - } f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \text { for all } x, y \in \mathcal{X} \text { and } \alpha \in[0,1]
$$

- Objective function f is concave in case of maximization

Convex Optimization

min (or max) $\quad f(x)$
subject to $\quad x \in \mathcal{X}$

Convex Optimization Problems Solvable efficiently (i.e. in polynomial time) to arbitrary precision under mild conditions

- Separation oracle for \mathcal{X}
- First-order oracle for evaluating $f(x)$ and $\nabla f(x)$.

For more detail

Take CSCI 675!

Semidefinite Programs

These are Optimization problems where the feasible set is the cone of PSD cone, possibly intersected with linear constraints.

- Generalization of LP.
- Special case of Convex Optimization.

```
maximize \(c^{\top} x\)
subject to \(A x \preceq b\)
    \(x_{1} F_{1}+x_{2} F_{2} \ldots x_{n} F_{n}+G\) is PSD
```

- F_{1}, \ldots, F_{n}, G, and A are given matrices, and c, b are given vectors.

Semidefinite Programs

These are Optimization problems where the feasible set is the cone of PSD cone, possibly intersected with linear constraints.

- Generalization of LP.
- Special case of Convex Optimization.

```
maximize }\mp@subsup{c}{}{\top}
subject to }Ax\preceq
    x}\mp@subsup{x}{1}{}\mp@subsup{F}{1}{}+\mp@subsup{x}{2}{}\mp@subsup{F}{2}{}\ldots\mp@subsup{x}{n}{}\mp@subsup{F}{n}{}+G\mathrm{ is PSD
```

- F_{1}, \ldots, F_{n}, G, and A are given matrices, and c, b are given vectors.

Examples

- Fitting a distribution, say a Gaussian, to observed data. Variable is a positive semi-definite covariance matrix.
- As a relaxation to combinatorial problems that encode pairwise relationships: e.g. finding the maximum cut of a graph.

Semidefinite Programs

These are Optimization problems where the feasible set is the cone of PSD cone, possibly intersected with linear constraints.

- Generalization of LP.
- Special case of Convex Optimization.

```
maximize }\mp@subsup{c}{}{\top}
subject to }Ax\preceq
    x}\mp@subsup{x}{1}{}\mp@subsup{F}{1}{}+\mp@subsup{x}{2}{}\mp@subsup{F}{2}{}\ldots\mp@subsup{x}{n}{}\mp@subsup{F}{n}{}+G\mathrm{ is PSD
```

- F_{1}, \ldots, F_{n}, G, and A are given matrices, and c, b are given vectors.

Fact

SDP can be solved in polytime to arbitrary precision, since PSD constraints admit a polytime separation oracle.

Outline

(1) Basics of PSD Matrices

(2) Semidefinite Programming

(3) Max Cut

The Max Cut Problem

Given an undirected graph $G=(V, E)$, find a partition of V into ($S, V \backslash S$) maximizing number of edges with exactly one end in S.

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{(i, j) \in E} \frac{1-x_{i} x_{j}}{2} \\
\text { subject to } & x_{i} \in\{-1,1\}, \quad \text { for } i \in V .
\end{array}
$$

The Max Cut Problem

Given an undirected graph $G=(V, E)$, find a partition of V into ($S, V \backslash S$) maximizing number of edges with exactly one end in S.

$$
\begin{array}{ll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-x_{i} x_{j}}{2} \\
\text { subject to } & x_{i} \in\{-1,1\}, \quad \text { for } i \in V .
\end{array}
$$

Instead of requiring x_{i} to be on the 1 dimensional sphere, we relax and permit it to be in the n-dimensional sphere, where $n=|V|$.

Vector Program relaxation

$$
\begin{array}{lll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-\vec{v}_{i} \cdot \vec{v}_{j}}{2} & \\
\text { subject to } & \left\|\vec{v}_{i}\right\|_{2}=1, & \text { for } i \in V . \\
& \vec{v}_{i} \in \mathbb{R}^{n}, & \text { for } i \in V .
\end{array}
$$

SDP Relaxation

- Recall: A symmetric $n \times n$ matrix Y is PSD iff $Y=V^{T} V$ for $n \times n$ matrix V
- Equivalently: PSD matrices encode pairwise dot products of columns of V
- When diagonal entries of Y are $1, V$ has unit length columns
- Recall: Y and V can be recovered from each other efficiently

SDP Relaxation

- Recall: A symmetric $n \times n$ matrix Y is PSD iff $Y=V^{T} V$ for $n \times n$ matrix V
- Equivalently: PSD matrices encode pairwise dot products of columns of V
- When diagonal entries of Y are $1, V$ has unit length columns
- Recall: Y and V can be recovered from each other efficiently

Vector Program relaxation

$$
\begin{array}{lll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-\vec{v}_{i} \cdot \vec{v}_{j}}{2} & \\
\text { subject to } & \left\|\vec{v}_{i}\right\|_{2}=1, & \text { for } i \in V . \\
& \vec{v}_{i} \in \mathbb{R}^{n}, & \text { for } i \in V .
\end{array}
$$

SDP Relaxation

$$
\begin{array}{ll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-Y_{i j}}{2} \\
\text { subject to } & Y_{i i}=1,
\end{array} \text { for } i \in V .
$$

Goemans Williamson Algorithm for Max Cut
(1) Solve the SDP to get $Y \succeq 0$
(2) Decompose Y to $V V^{T}$
(3) Draw random vector r on unit sphere
(4) Place nodes i with $v_{i} \cdot r \geq 0$ on one side of cut, the rest on the other side

SDP Relaxation

maximize $\quad \sum_{(i, j) \in E} \frac{1-Y_{i j}}{2}$
subject to $\quad Y_{i i}=1 \forall i$
$Y \in S_{+}^{n}$

We will prove the following Lemma

Lemma

The random hyperplane cuts each edge (i, j) with probability at least $0.878 \frac{1-Y_{i j}}{2}$

We will prove the following Lemma

Lemma

The random hyperplane cuts each edge (i, j) with probability at least $0.878 \frac{1-Y_{i j}}{2}$

Therefore, by linearity of expectations, and the fact that $O P T_{S D P} \geq O P T$ (i.e. relaxation).

Theorem

The Goemans Williamson algorithm outputs a random cut of expected size at least 0.878 OPT.

We use the following fact

Fact

For all angles $\theta \in[0, \pi]$,

$$
\frac{\theta}{\pi} \geq 0.878 \cdot \frac{1-\cos (\theta)}{2}
$$

Lemma

The random hyperplane cuts each edge (i, j) with probability at least $0.878 \frac{1-Y_{i j}}{2}$

Lemma

The random hyperplane cuts each edge (i, j) with probability at least $0.878 \frac{1-Y_{i j}}{2}$

- (i, j) is cut iff $\operatorname{sign}\left(r \cdot v_{i}\right) \neq \operatorname{sign}\left(r \cdot v_{j}\right)$

Lemma

The random hyperplane cuts each edge (i, j) with probability at least $0.878 \frac{1-Y_{i j}}{2}$

- (i, j) is cut iff $\operatorname{sign}\left(r \cdot v_{i}\right) \neq \operatorname{sign}\left(r \cdot v_{j}\right)$
- Can zoom in on the 2-d plane which includes v_{i} and v_{j}
- Discard component r perpendicular to that plane, leaving \widehat{r}
- Direction of \widehat{r} is uniform in the plane

Lemma

The random hyperplane cuts each edge (i, j) with probability at least $0.878 \frac{1-Y_{i j}}{2}$

- (i, j) is cut iff $\operatorname{sign}\left(r \cdot v_{i}\right) \neq \operatorname{sign}\left(r \cdot v_{j}\right)$
- Can zoom in on the 2-d plane which includes v_{i} and v_{j}
- Discard component r perpendicular to that plane, leaving \widehat{r}
- Direction of \widehat{r} is uniform in the plane
- Let $\theta_{i j}$ be angle between v_{i} and v_{j}. Note $Y_{i j}=v_{i} \cdot v_{j}=\cos \left(\theta_{i j}\right)$

Lemma

The random hyperplane cuts each edge (i, j) with probability at least $0.878 \frac{1-Y_{i j}}{2}$

- (i, j) is cut iff $\operatorname{sign}\left(r \cdot v_{i}\right) \neq \operatorname{sign}\left(r \cdot v_{j}\right)$
- Can zoom in on the 2-d plane which includes v_{i} and v_{j}
- Discard component r perpendicular to that plane, leaving \widehat{r}
- Direction of \widehat{r} is uniform in the plane
- Let $\theta_{i j}$ be angle between v_{i} and v_{j}. Note $Y_{i j}=v_{i} \cdot v_{j}=\cos \left(\theta_{i j}\right)$
- \widehat{r} cuts (i, j) w.p.

$$
\frac{2 \theta_{i j}}{2 \pi}=\frac{\theta_{i j}}{\pi} \geq 0.878 \frac{1-\cos \theta_{i j}}{2}=0.878 \frac{1-Y_{i j}}{2}
$$

