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Symmetric Matrices
A matrix A ∈ Rn×n is symmetric if and only if it is square and Aij = Aji

for all i, j.
We denote the cone of n× n symmetric matrices by Sn.

Fact
A matrix A ∈ Rn×n is symmetric if and only if it is orthogonally
diagonalizable.

i.e. A = QDQᵀ where Q is an orthogonal matrix and
D = diag(λ1, . . . , λn).
The columns of Q are the (normalized) eigenvectors of A, with
corresponding eigenvalues λ1, . . . , λn
Equivalently: As a linear operator, A scales the space along an
orthonormal basis Q
The scaling factor λi along direction qi may be negative, positive,
or 0.
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Positive Semi-Definite Matrices
A matrix A ∈ Rn×n is positive semi-definite if it is symmetric and
moreover all its eigenvalues are nonnegative.

We denote the cone of n× n positive semi-definite matrices by Sn
+

We use A � 0 as shorthand for A ∈ Sn
+

A = QDQᵀ where Q is an orthogonal matrix and
D = diag(λ1, . . . , λn), where λi ≥ 0.
As a linear operator, A performs nonnegative scaling along an
orthonormal basis Q

Note
Positive definite, negative semi-definite, and negative definite defined
similarly.
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Geometric Intuition for PSD Matrices

For A � 0, let q1, . . . , qn be the orthonormal eigenbasis for A, and
let λ1, . . . , λn ≥ 0 be the corresponding eigenvalues.
The linear operator x→ Ax scales the qi component of x by λi
When applied to every x in the unit ball, the image of A is an
ellipsoid centered at the origin with principal directions q1, . . . , qn
and corresponding diameters 2λ1, . . . , 2λn

When A is positive definite (i.e.λi > 0), and therefore invertible, the
ellipsoid is the set

{
y : yT (AAT )−1y ≤ 1

}
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Useful Properties of PSD Matrices

If A � 0, then
xTAx ≥ 0 for all x
A has a positive semi-definite square root A

1
2

A
1
2 = Qdiag(

√
λ1, . . . ,

√
λn)Q

ᵀ

A = BTB for some matrix B.
Interpretation: PSD matrices encode the “pairwise similarity”
relationships of a family of vectors. Aij is dot product of the ith and
jth columns of B.
Interpretation: The quadratic form xTAx is the length of a linear
transformation of x, namely ||Bx||22

The quadratic function xTAx is convex
A can be expressed as a sum of vector outer-products

e.g., A =
∑n

i=1 viv
T
i for ~vi =

√
λi~qi

As it turns out, each of the above is also sufficient for A � 0 (assuming
A is symmetric).
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Properties of PSD Matrices Relevant for Computation

The set of PSD matrices is convex
Follows from the characterization: xTAx ≥ 0 for all x

The set of PSD matrices admits an efficient separation oracle
Given A , find eigenvector v with negative eigenvalue: vTAv < 0.

A PSD matrix A ∈ Rn×n implicitly encodes the “pairwise
similarities” of a family of vectors b1, . . . , bn ∈ Rn.

Follows from the characterization A = BTB for some B
Aij = 〈bi, bj〉

Can convert between A and B efficiently.
B to A: Matrix multiplication
A to B: B can be expressed in terms of eigenvectors/eigenvalues of
A, which can be easily computed to arbitrary precision via powering
methods. Alternatively: Cholesky decomposition, SVD, . . . .
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Convex Optimization

min (or max) f(x)
subject to x ∈ X

Convex Set

Convex Optimization Problem
Generalization of LP where

Feasible set X convex: αx+ (1− α)y ∈ X , for all x, y ∈ X and
α ∈ [0, 1]

Objective function f is convex in case of minimization
f(αx+(1−α)y) ≤ αf(x)+ (1−α)f(y) for all x, y ∈ X and α ∈ [0, 1]

Objective function f is concave in case of maximization
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Convex Optimization

min (or max) f(x)
subject to x ∈ X

Convex Set

Convex Optimization Problems Solvable efficiently (i.e. in polynomial
time) to arbitrary precision under mild conditions

Separation oracle for X
First-order oracle for evaluating f(x) and 5f(x).

For more detail
Take CSCI 675!
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Semidefinite Programs
These are Optimization problems where the feasible set is the cone of
PSD cone, possibly intersected with linear constraints.

Generalization of LP.
Special case of Convex Optimization.

maximize cᵀx
subject to Ax � b

x1F1 + x2F2 . . . xnFn +G is PSD

F1, . . . , Fn, G, and A are given matrices, and c, b are given vectors.
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x1F1 + x2F2 . . . xnFn +G is PSD

F1, . . . , Fn, G, and A are given matrices, and c, b are given vectors.

Examples
Fitting a distribution, say a Gaussian, to observed data. Variable is
a positive semi-definite covariance matrix.
As a relaxation to combinatorial problems that encode pairwise
relationships: e.g. finding the maximum cut of a graph.

Semidefinite Programming 7/13



Semidefinite Programs
These are Optimization problems where the feasible set is the cone of
PSD cone, possibly intersected with linear constraints.

Generalization of LP.
Special case of Convex Optimization.

maximize cᵀx
subject to Ax � b

x1F1 + x2F2 . . . xnFn +G is PSD

F1, . . . , Fn, G, and A are given matrices, and c, b are given vectors.

Fact
SDP can be solved in polytime to arbitrary precision, since PSD
constraints admit a polytime separation oracle.
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The Max Cut Problem
Given an undirected graph G = (V,E), find a partition of V into
(S, V \ S) maximizing number of edges with exactly one end in S.

maximize
∑

(i,j)∈E
1−xixj

2

subject to xi ∈ {−1, 1} , for i ∈ V.

Instead of requiring xi to be on the 1 dimensional sphere, we relax and
permit it to be in the n-dimensional sphere, where n = |V |.

Vector Program relaxation

maximize
∑

(i,j)∈E
1−~vi·~vj

2

subject to ||~vi||2 = 1, for i ∈ V.
~vi ∈ Rn, for i ∈ V.
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SDP Relaxation

Recall: A symmetric n× n matrix Y is PSD iff Y = V TV for n× n
matrix V
Equivalently: PSD matrices encode pairwise dot products of
columns of V
When diagonal entries of Y are 1, V has unit length columns
Recall: Y and V can be recovered from each other efficiently

Vector Program relaxation

maximize
∑

(i,j)∈E
1−~vi·~vj

2

subject to ||~vi||2 = 1, for i ∈ V.
~vi ∈ Rn, for i ∈ V.

SDP Relaxation

maximize
∑

(i,j)∈E
1−Yij

2

subject to Yii = 1, for i ∈ V.
Y ∈ Sn

+

Max Cut 9/13



SDP Relaxation

Recall: A symmetric n× n matrix Y is PSD iff Y = V TV for n× n
matrix V
Equivalently: PSD matrices encode pairwise dot products of
columns of V
When diagonal entries of Y are 1, V has unit length columns
Recall: Y and V can be recovered from each other efficiently

Vector Program relaxation

maximize
∑

(i,j)∈E
1−~vi·~vj

2

subject to ||~vi||2 = 1, for i ∈ V.
~vi ∈ Rn, for i ∈ V.

SDP Relaxation

maximize
∑

(i,j)∈E
1−Yij

2

subject to Yii = 1, for i ∈ V.
Y ∈ Sn

+

Max Cut 9/13



Goemans Williamson Algorithm for
Max Cut

1 Solve the SDP to get Y � 0

2 Decompose Y to V V T

3 Draw random vector r on unit sphere
4 Place nodes i with vi · r ≥ 0 on one

side of cut, the rest on the other side

SDP Relaxation

maximize
∑

(i,j)∈E
1−Yij

2

subject to Yii = 1 ∀i
Y ∈ Sn

+
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We will prove the following Lemma

Lemma
The random hyperplane cuts each edge (i, j) with probability at least
0.878

1−Yij

2

Therefore, by linearity of expectations, and the fact that
OPTSDP ≥ OPT (i.e. relaxation).

Theorem
The Goemans Williamson algorithm outputs a random cut of expected
size at least 0.878 OPT .
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We use the following fact

Fact
For all angles θ ∈ [0, π],

θ

π
≥ 0.878 · 1− cos(θ)

2
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Lemma
The random hyperplane cuts each edge (i, j) with probability at least
0.878

1−Yij

2

(i, j) is cut iff sign(r · vi) 6= sign(r · vj)
Can zoom in on the 2-d plane which includes vi and vj

Discard component r perpendicular to that plane, leaving r̂
Direction of r̂ is uniform in the plane

Let θij be angle between vi and vj . Note Yij = vi · vj = cos(θij)
r̂ cuts (i, j) w.p.

2θij
2π

=
θij
π
≥ 0.878

1− cos θij
2

= 0.878
1− Yij

2
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