CS675: Convex and Combinatorial Optimization Fall 2014

Combinatorial Problems as Convex Programs

Instructor: Shaddin Dughmi

The Max Cut Problem

Given an undirected graph $G=(V, E)$, find a partition of V into ($S, V \backslash S$) maximizing number of edges with exactly one end in S.

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{(i, j) \in E} \frac{1-x_{i} x_{j}}{2} \\
\text { subject to } & x_{i} \in\{-1,1\}, \quad \text { for } i \in V .
\end{array}
$$

The Max Cut Problem

Given an undirected graph $G=(V, E)$, find a partition of V into ($S, V \backslash S$) maximizing number of edges with exactly one end in S.

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{(i, j) \in E} \frac{1-x_{i} x_{j}}{2} \\
\text { subject to } & x_{i} \in\{-1,1\}, \quad \text { for } i \in V .
\end{array}
$$

Instead of requiring x_{i} to be on the 1 dimensional sphere, we relax and permit it to be in the n-dimensional sphere.

Vector Program relaxation

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{(i, j) \in E} \frac{1-\vec{v}_{i} \cdot \vec{v}_{j}}{2} \\
\text { subject to } & \left\|\vec{v}_{i}\right\|_{2}=1, & \text { for } i \in V . \\
& \vec{v}_{i} \in \mathbb{R}^{n}, & \text { for } i \in V .
\end{array}
$$

SDP Relaxation

- Recall: An $n \times n$ matrix Y is PSD iff $Y=V^{T} V$ for $n \times n$ matrix V
- When diagonal entires of Y are $1, V$ has unit length columns
- Equivalently: PSD matrices encode pairwise dot products of columns of V
- Recall: Y and V can be recovered from each other efficiently

SDP Relaxation

- Recall: An $n \times n$ matrix Y is PSD iff $Y=V^{T} V$ for $n \times n$ matrix V
- When diagonal entires of Y are $1, V$ has unit length columns
- Equivalently: PSD matrices encode pairwise dot products of columns of V
- Recall: Y and V can be recovered from each other efficiently

Vector Program relaxation

$$
\begin{array}{lll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-\vec{v}_{i} \cdot \vec{v}_{j}}{2} & \\
\text { subject to } & \left\|\vec{v}_{i}\right\|_{2}=1, & \text { for } i \in V . \\
& \vec{v}_{i} \in \mathbb{R}^{n}, & \text { for } i \in V .
\end{array}
$$

SDP Relaxation

$$
\begin{array}{ll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-Y_{i j}}{2} \\
\text { subject to } & Y_{i i}=1, \\
& Y \in S_{+}^{n}
\end{array} \quad \text { for } i \in V .
$$

SDP Relaxation

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{(i, j) \in E} \frac{1-Y_{i j}}{2} \\
\text { subject to } & Y_{i i}=1, \\
& Y \in S_{+}^{n}
\end{array}
$$

Randomized Algorithm for Max Cut

(1) Solve the SDP to get $Y \succeq 0$
(2) Decompose Y to $V V^{T}$
(3) Pick a random vector r on the unit sphere
(4) Place all nodes i with $v_{i} \cdot r \geq 0$ on one side of the cut, and all others on the other side

SDP Relaxation

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{(i, j) \in E} \frac{1-Y_{i j}}{2} \\
\text { subject to } & Y_{i i}=1,
\end{array} \text { for } i \in V .
$$

Randomized Algorithm for Max Cut

(1) Solve the SDP to get $Y \succeq 0$
(2) Decompose Y to $V V^{T}$
(3) Pick a random vector r on the unit sphere
(4) Place all nodes i with $v_{i} \cdot r \geq 0$ on one side of the cut, and all others on the other side

Lemma

The SDP cuts each edge with probability at least $0.878 \frac{1-Y_{i j}}{2}$
Consequently, by linearity of expectation, expected number of edges cut is at least 0.878 OPT.

Lemma

The SDP cuts each edge with probability at least $0.878 \frac{1-Y_{i j}}{2}$
We use the following fact
Fact
For all angles $\theta \in[0, \pi]$,

$$
\frac{\theta}{\pi} \geq 0.878 \cdot \frac{1}{2}(1-\cos (\theta))
$$

to prove the Lemma on the board.

