CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Convex Programs

Instructor: Shaddin Dughmi

The Max Cut Problem

Given an undirected graph G = (V, E), find a partition of V into $(S, V \setminus S)$ maximizing number of edges with exactly one end in S.

 $\begin{array}{ll} \mbox{maximize} & \sum_{(i,j)\in E} \frac{1-x_i x_j}{2} \\ \mbox{subject to} & x_i \in \{-1,1\}\,, & \mbox{ for } i \in V. \end{array}$

The Max Cut Problem

Given an undirected graph G = (V, E), find a partition of V into $(S, V \setminus S)$ maximizing number of edges with exactly one end in S.

maximize
$$\sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$

subject to $x_i \in \{-1,1\}$, for $i \in V$.

Instead of requiring x_i to be on the 1 dimensional sphere, we relax and permit it to be in the *n*-dimensional sphere.

Vector Program relaxationmaximize
subject to $\sum_{(i,j)\in E} \frac{1-\vec{v}_i \cdot \vec{v}_j}{2}$
 $||\vec{v}_i||_2 = 1,$
 $\vec{v}_i \in \mathbb{R}^n,$ for $i \in V.$
for $i \in V.$

- Recall: An $n \times n$ matrix Y is PSD iff $Y = V^T V$ for $n \times n$ matrix V
- When diagonal entires of Y are 1, V has unit length columns
- Equivalently: PSD matrices encode pairwise dot products of columns of V
- Recall: Y and V can be recovered from each other efficiently

- Recall: An $n \times n$ matrix Y is PSD iff $Y = V^T V$ for $n \times n$ matrix V
- When diagonal entires of Y are 1, V has unit length columns
- Equivalently: PSD matrices encode pairwise dot products of columns of V
- Recall: Y and V can be recovered from each other efficiently

Vector Program relaxationmaximize $\sum_{(i,j)\in E} \frac{1-\vec{v_i}\cdot\vec{v_j}}{2}$ subject to $||\vec{v_i}||_2 = 1$, for $i \in V$. $\vec{v_i} \in \mathbb{R}^n$, for $i \in V$.

SDP Relaxation

$$\begin{array}{ll} \mbox{maximize} & \sum_{(i,j)\in E} \frac{1-Y_{ij}}{2} \\ \mbox{subject to} & Y_{ii}=1, \\ & Y\in S^n_+ \end{array} \mbox{ for } i\in V. \end{array}$$

$$\begin{array}{ll} \mbox{maximize} & \sum_{(i,j)\in E} \frac{1-Y_{ij}}{2} \\ \mbox{subject to} & Y_{ii}=1, \\ & Y\in S^n_+ \end{array} \mbox{ for } i\in V. \end{array}$$

Randomized Algorithm for Max Cut

- Solve the SDP to get $Y \succeq 0$
- 2 Decompose Y to VV^T
- Pick a random vector r on the unit sphere
- Place all nodes i with $v_i \cdot r \ge 0$ on one side of the cut, and all others on the other side

$$\begin{array}{ll} \mbox{maximize} & \sum_{(i,j)\in E} \frac{1-Y_{ij}}{2} \\ \mbox{subject to} & Y_{ii}=1, \\ & Y\in S^n_+ \end{array} \mbox{ for } i\in V. \end{array}$$

Randomized Algorithm for Max Cut

- Solve the SDP to get $Y \succeq 0$
- 2 Decompose Y to VV^T
- Pick a random vector r on the unit sphere
- I Place all nodes *i* with $v_i \cdot r \ge 0$ on one side of the cut, and all others on the other side

Lemma

The SDP cuts each edge with probability at least $0.878 \frac{1-Y_{ij}}{2}$

Consequently, by linearity of expectation, expected number of edges cut is at least $0.878 \ OPT$.

Lemma

The SDP cuts each edge with probability at least $0.878 \frac{1-Y_{ij}}{2}$

We use the following fact

Fact

For all angles $\theta \in [0, \pi]$,

$$\frac{\theta}{\pi} \ge 0.878 \cdot \frac{1}{2} (1 - \cos(\theta))$$

to prove the Lemma on the board.