
CS675: Convex and Combinatorial Optimization
Fall 2014

Combinatorial Problems as Linear Programs

Instructor: Shaddin Dughmi

Outline

1 Introduction

2 Shortest Path

3 Algorithms for Single-Source Shortest Path

4 Bipartite Matching

5 Total Unimodularity

6 Duality of Bipartite Matching and its Consequences

7 Spanning Trees

8 Flows

Combinatorial Vs Convex Optimization

In CS, discrete problems are traditionally viewed/analyzed using
discrete mathematics and combinatorics

Algorithms are combinatorial in nature (greedy, dynamic
programming, divide and conquor, etc)

In OR and optimization community, these problems are often
expressed as continuous optimization problems

Usually linear programs, but increasingly more general convex
programs

Increasingly in recent history, it is becoming clear that combining
both viewpoints is the way to go

Better algorithms (runtime, approximation)
Structural insights (e.g. market clearing prices in matching markets)
Unifying theories and general results (Matroids, submodular
optimization, constraint satisfaction)

Introduction 0/46

Combinatorial Vs Convex Optimization

In CS, discrete problems are traditionally viewed/analyzed using
discrete mathematics and combinatorics

Algorithms are combinatorial in nature (greedy, dynamic
programming, divide and conquor, etc)

In OR and optimization community, these problems are often
expressed as continuous optimization problems

Usually linear programs, but increasingly more general convex
programs

Increasingly in recent history, it is becoming clear that combining
both viewpoints is the way to go

Better algorithms (runtime, approximation)
Structural insights (e.g. market clearing prices in matching markets)
Unifying theories and general results (Matroids, submodular
optimization, constraint satisfaction)

Introduction 0/46

Combinatorial Vs Convex Optimization

In CS, discrete problems are traditionally viewed/analyzed using
discrete mathematics and combinatorics

Algorithms are combinatorial in nature (greedy, dynamic
programming, divide and conquor, etc)

In OR and optimization community, these problems are often
expressed as continuous optimization problems

Usually linear programs, but increasingly more general convex
programs

Increasingly in recent history, it is becoming clear that combining
both viewpoints is the way to go

Better algorithms (runtime, approximation)
Structural insights (e.g. market clearing prices in matching markets)
Unifying theories and general results (Matroids, submodular
optimization, constraint satisfaction)

Introduction 0/46

Discrete Problems as Linear Programs

The oldest continuous formulations of discrete problems were
linear programs

In fact, Dantzig’s original application was the problem of matching
70 people to 70 jobs!

This is not surprising, since almost any finite family of discrete
objects can be encoded as a finite subset of Euclidean space

Convex hull of that set is a polytope
E.g. spanning trees, paths, cuts, TSP tours, assignments...

Introduction 1/46

Discrete Problems as Linear Programs

The oldest continuous formulations of discrete problems were
linear programs

In fact, Dantzig’s original application was the problem of matching
70 people to 70 jobs!

This is not surprising, since almost any finite family of discrete
objects can be encoded as a finite subset of Euclidean space

Convex hull of that set is a polytope
E.g. spanning trees, paths, cuts, TSP tours, assignments...

Introduction 1/46

Discrete Problems as Linear Programs

LP algorithms typically require representation as a “small” family
of inequalities,

Not possible in general (Say when problem is NP-hard, assuming
(P 6= NP))
Shown unconditionally impossible in some cases (e.g. TSP)

But, in many cases, polyhedra in inequality form can be shown to
encode a combinatorial problems at the vertices

Next
We examine some combinatorial problems shortest path through the
lense of LP and convex optimization, starting with shortest path.

Introduction 2/46

Discrete Problems as Linear Programs

LP algorithms typically require representation as a “small” family
of inequalities,

Not possible in general (Say when problem is NP-hard, assuming
(P 6= NP))
Shown unconditionally impossible in some cases (e.g. TSP)

But, in many cases, polyhedra in inequality form can be shown to
encode a combinatorial problems at the vertices

Next
We examine some combinatorial problems shortest path through the
lense of LP and convex optimization, starting with shortest path.

Introduction 2/46

Discrete Problems as Linear Programs

LP algorithms typically require representation as a “small” family
of inequalities,

Not possible in general (Say when problem is NP-hard, assuming
(P 6= NP))
Shown unconditionally impossible in some cases (e.g. TSP)

But, in many cases, polyhedra in inequality form can be shown to
encode a combinatorial problems at the vertices

Next
We examine some combinatorial problems shortest path through the
lense of LP and convex optimization, starting with shortest path.

Introduction 2/46

Outline

1 Introduction

2 Shortest Path

3 Algorithms for Single-Source Shortest Path

4 Bipartite Matching

5 Total Unimodularity

6 Duality of Bipartite Matching and its Consequences

7 Spanning Trees

8 Flows

The Shortest Path Problem

Given a directed graph G = (V,E) with cost ce ∈ R on edge e, find the
minimum cost path from s to t.

We use n and m to denote |V | and |E|, respectively.
We allow costs to be negative, but assume no negative cycles

s t

1

2

1

2

3

5

-2

3
0

0
-1

2

-3
1

When costs are nonnegative, Dijkstra’s algorithm finds the shortest
path from s to every other node in time O(m+ n log n).

Using primal/dual paradigm, we will design a polynomial-time algorithm
that works when graph has negative edges but no negative cycles

Shortest Path 3/46

The Shortest Path Problem

Given a directed graph G = (V,E) with cost ce ∈ R on edge e, find the
minimum cost path from s to t.

We use n and m to denote |V | and |E|, respectively.
We allow costs to be negative, but assume no negative cycles

s t

1

2

1

2

3

5

-2

3
0

0
-1

2

-3
1

When costs are nonnegative, Dijkstra’s algorithm finds the shortest
path from s to every other node in time O(m+ n log n).

Using primal/dual paradigm, we will design a polynomial-time algorithm
that works when graph has negative edges but no negative cycles

Shortest Path 3/46

Note: Negative Edges and Complexity

When the graph has no negative cycles, there is a shortest path
which is simple
When the graph has negative cycles, there may not be a shortest
path from s to t.
In these cases, the algorithm we design can be modified to “fail
gracefully” by detecting such a cycle

Can be used to detect arbitrage opportunities in currency exchange
networks

In the presence of negative cycles, finding the shortest simple
path is NP-hard (by reduction from Hamiltonian cycle)

Shortest Path 4/46

Note: Negative Edges and Complexity

When the graph has no negative cycles, there is a shortest path
which is simple
When the graph has negative cycles, there may not be a shortest
path from s to t.
In these cases, the algorithm we design can be modified to “fail
gracefully” by detecting such a cycle

Can be used to detect arbitrage opportunities in currency exchange
networks

In the presence of negative cycles, finding the shortest simple
path is NP-hard (by reduction from Hamiltonian cycle)

Shortest Path 4/46

An LP Relaxation of Shortest Path

Consider the following LP

Primal Shortest Path LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

where δv = −1 if v = s, 1 if v = t, and 0 otherwise.

This is a relaxation of the shortest path problem
Indicator vector xP of s− t path P is a feasible solution, with cost as
given by the objective
Fractional feasible solutions may not correspond to paths

A-priori, it is conceivable that optimal value of LP is less than
length of shortest path.

Shortest Path 5/46

An LP Relaxation of Shortest Path

Consider the following LP

Primal Shortest Path LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

where δv = −1 if v = s, 1 if v = t, and 0 otherwise.

This is a relaxation of the shortest path problem
Indicator vector xP of s− t path P is a feasible solution, with cost as
given by the objective
Fractional feasible solutions may not correspond to paths

A-priori, it is conceivable that optimal value of LP is less than
length of shortest path.

Shortest Path 5/46

An LP Relaxation of Shortest Path

Consider the following LP

Primal Shortest Path LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

where δv = −1 if v = s, 1 if v = t, and 0 otherwise.

This is a relaxation of the shortest path problem
Indicator vector xP of s− t path P is a feasible solution, with cost as
given by the objective
Fractional feasible solutions may not correspond to paths

A-priori, it is conceivable that optimal value of LP is less than
length of shortest path.

Shortest Path 5/46

Integrality of the Shortest Path Polyhedron

min
∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

We will show that above LP encodes the shortest path problem exactly

Claim
When c satisfies the no-negative-cycles property, the indicator vector of the
shortest s− t path is an optimal solution to the LP.

Shortest Path 6/46

Dual LP

We will use the following LP dual

Primal LP

min
∑

e∈E cexe
s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀(u, v) ∈ E.

Interpretation of dual variables yv: “height” or “potential”
Relative potential of vertices constrained by length of edge
between them (triangle inequality)
Dual is trying to maximize relative potential of s and t,

Shortest Path 7/46

Proof Using the Dual

Claim
When c satisfies the no-negative-cycles property, the indicator vector
of the shortest s− t path is an optimal solution to the LP.

Primal LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀(u, v) ∈ E.

Let x∗ be indicator vector of shortest s-t path
Feasible for primal

Let y∗v be shortest path distance from s to v
Feasible for dual (by triangle inequality)∑

e cex
∗
e = y∗t − y∗s , so both x∗ and y∗ optimal.

Shortest Path 8/46

Proof Using the Dual

Claim
When c satisfies the no-negative-cycles property, the indicator vector
of the shortest s− t path is an optimal solution to the LP.

Primal LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀(u, v) ∈ E.

Let x∗ be indicator vector of shortest s-t path
Feasible for primal

Let y∗v be shortest path distance from s to v
Feasible for dual (by triangle inequality)∑

e cex
∗
e = y∗t − y∗s , so both x∗ and y∗ optimal.

Shortest Path 8/46

Proof Using the Dual

Claim
When c satisfies the no-negative-cycles property, the indicator vector
of the shortest s− t path is an optimal solution to the LP.

Primal LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀(u, v) ∈ E.

Let x∗ be indicator vector of shortest s-t path
Feasible for primal

Let y∗v be shortest path distance from s to v
Feasible for dual (by triangle inequality)∑

e cex
∗
e = y∗t − y∗s , so both x∗ and y∗ optimal.

Shortest Path 8/46

Proof Using the Dual

Claim
When c satisfies the no-negative-cycles property, the indicator vector
of the shortest s− t path is an optimal solution to the LP.

Primal LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀(u, v) ∈ E.

Let x∗ be indicator vector of shortest s-t path
Feasible for primal

Let y∗v be shortest path distance from s to v
Feasible for dual (by triangle inequality)

∑
e cex

∗
e = y∗t − y∗s , so both x∗ and y∗ optimal.

Shortest Path 8/46

Proof Using the Dual

Claim
When c satisfies the no-negative-cycles property, the indicator vector
of the shortest s− t path is an optimal solution to the LP.

Primal LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀(u, v) ∈ E.

Let x∗ be indicator vector of shortest s-t path
Feasible for primal

Let y∗v be shortest path distance from s to v
Feasible for dual (by triangle inequality)∑

e cex
∗
e = y∗t − y∗s , so both x∗ and y∗ optimal.

Shortest Path 8/46

Integrality of Polyhedra

A stronger statement is true:

Integrality of Shortest Path LP
The vertices of the polyhedral feasible region are precisely the
indicator vectors of simple paths in G.

Implies that there always exists an optimal solution which is a path
whenever LP is bounded and feasible
Reduces computing shortest path in graphs with no negative
cycles to finding optimal vertex of LP

Shortest Path 9/46

Integrality of Polyhedra

A stronger statement is true:

Integrality of Shortest Path LP
The vertices of the polyhedral feasible region are precisely the
indicator vectors of simple paths in G.

Proof
1 LP is bounded iff c satisfies no-negative-cycles

←: previous proof
→: If c has a negative cycle, there are arbitrarily cheap “flows”
along that cycle

2 Fact: For every LP vertex x there is objective c such that x is
unique optimal. (Prove it!)

3 Since such a c satisfies no-negative-cycles property, our previous
claim shows that x is integral.

Shortest Path 9/46

Integrality of Polyhedra

A stronger statement is true:

Integrality of Shortest Path LP
The vertices of the polyhedral feasible region are precisely the
indicator vectors of simple paths in G.

Proof
1 LP is bounded iff c satisfies no-negative-cycles

←: previous proof
→: If c has a negative cycle, there are arbitrarily cheap “flows”
along that cycle

2 Fact: For every LP vertex x there is objective c such that x is
unique optimal. (Prove it!)

3 Since such a c satisfies no-negative-cycles property, our previous
claim shows that x is integral.

Shortest Path 9/46

Integrality of Polyhedra

A stronger statement is true:

Integrality of Shortest Path LP
The vertices of the polyhedral feasible region are precisely the
indicator vectors of simple paths in G.

Proof
1 LP is bounded iff c satisfies no-negative-cycles

←: previous proof
→: If c has a negative cycle, there are arbitrarily cheap “flows”
along that cycle

2 Fact: For every LP vertex x there is objective c such that x is
unique optimal. (Prove it!)

3 Since such a c satisfies no-negative-cycles property, our previous
claim shows that x is integral.

Shortest Path 9/46

Integrality of Polyhedra

A stronger statement is true:

Integrality of Shortest Path LP
The vertices of the polyhedral feasible region are precisely the
indicator vectors of simple paths in G.

In general, the approach we took applies in many contexts: To show a
polytope’s vertices integral, it suffices to show that there is an integral
optimal for any objective.

Shortest Path 9/46

Outline

1 Introduction

2 Shortest Path

3 Algorithms for Single-Source Shortest Path

4 Bipartite Matching

5 Total Unimodularity

6 Duality of Bipartite Matching and its Consequences

7 Spanning Trees

8 Flows

Ford’s Algorithm
Primal LP
min

∑
e∈E cexe

s.t.∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t.
yv − yu ≤ ce, ∀e = (u, v) ∈ E.

For convenience, add (s, v) of length∞ when one doesn’t exist.

Ford’s Algorithm
1 yv = c(s,v) and pred(v)← s for v 6= s

2 ys ← 0, pred(s) = null.
3 While some dual constraint is violated, i.e. yv > yu + ce for some
e = (u, v)

yv ← yu + ce
Set pred(v) = u

4 Output the path t, pred(t), pred(pred(t)), . . . , s.
Algorithms for Single-Source Shortest Path 10/46

Correctness

Lemma (Loop Invariant 1)
Assuming no negative cycles, pred defines a path P from s to t, of
length at most yt − ys.

Interpretation
Ford’s algorithm maintains an (initially infeasible) dual y
Also maintains feasible primal P of length ≤ dual objective yt − ys
Iteratively “fixes” dual y, tending towards feasibility
Once y is feasible, weak duality implies P optimal.

Correctness follows from loop invariant 1 and termination condition.

Theorem (Correctness)
If Ford’s algorithm terminates, then it outputs a shortest path from s to t

Algorithms of this form, that output a matching primal and dual
solution, are called Primal-Dual Algorithms.

Algorithms for Single-Source Shortest Path 11/46

Correctness

Lemma (Loop Invariant 1)
Assuming no negative cycles, pred defines a path P from s to t, of
length at most yt − ys.

Interpretation
Ford’s algorithm maintains an (initially infeasible) dual y
Also maintains feasible primal P of length ≤ dual objective yt − ys
Iteratively “fixes” dual y, tending towards feasibility
Once y is feasible, weak duality implies P optimal.

Correctness follows from loop invariant 1 and termination condition.

Theorem (Correctness)
If Ford’s algorithm terminates, then it outputs a shortest path from s to t

Algorithms of this form, that output a matching primal and dual
solution, are called Primal-Dual Algorithms.

Algorithms for Single-Source Shortest Path 11/46

Correctness

Lemma (Loop Invariant 1)
Assuming no negative cycles, pred defines a path P from s to t, of
length at most yt − ys.

Interpretation
Ford’s algorithm maintains an (initially infeasible) dual y
Also maintains feasible primal P of length ≤ dual objective yt − ys
Iteratively “fixes” dual y, tending towards feasibility
Once y is feasible, weak duality implies P optimal.

Correctness follows from loop invariant 1 and termination condition.

Theorem (Correctness)
If Ford’s algorithm terminates, then it outputs a shortest path from s to t

Algorithms of this form, that output a matching primal and dual
solution, are called Primal-Dual Algorithms.

Algorithms for Single-Source Shortest Path 11/46

Termination

Lemma (Loop Invariant 2)
Assuming no negative cycles, yv is the length of some simple path
from s to v.

Theorem (Termination)
When the graph has no negative cycles, Ford’s algorithm terminates in
a finite number of steps.

Proof
The graph has a finite number N of simple paths
By loop invariant 2, every dual variable yv is the length of some
simple path.
Dual variables are nonincreasing throughout algorithm, and one
decreases each iteration.
There can be at most nN iterations.

Algorithms for Single-Source Shortest Path 12/46

Termination

Lemma (Loop Invariant 2)
Assuming no negative cycles, yv is the length of some simple path
from s to v.

Theorem (Termination)
When the graph has no negative cycles, Ford’s algorithm terminates in
a finite number of steps.

Proof
The graph has a finite number N of simple paths
By loop invariant 2, every dual variable yv is the length of some
simple path.
Dual variables are nonincreasing throughout algorithm, and one
decreases each iteration.
There can be at most nN iterations.

Algorithms for Single-Source Shortest Path 12/46

Observation: Single sink shortest paths

Ford’s Algorithm
1 yv = c(s,v) and pred(v)← s for v 6= s

2 ys ← 0, pred(s) = null.
3 While some dual constraint is violated, i.e. yv > yu + ce for some
e = (u, v)

yv ← yu + ce
Set pred(v) = u

4 Output the path t, pred(t), pred(pred(t)), . . . , s.

Observation
Algorithm does not depend on t till very last step. So essentially solves
the single-source shortest path problem. i.e. finds shortest paths from
s to all other vertices v.

Algorithms for Single-Source Shortest Path 13/46

Loop Invariant 1

We prove Loop Invariant 1 through two Lemmas

Lemma (Loop Invariant 1a)
For every node w, we have yw − ypred(w) ≥ cpred(w),w

Proof
Fix w
Holds at first iteration
Preserved by Induction on iterations

If neither yw nor ypred(w) updated, nothing changes.
If yw (and pred(w)) updated, then yw ← ypred(w) + cpred(w),w

ypred(w) updated, it only goes down, preserving inequality.

Algorithms for Single-Source Shortest Path 14/46

Loop Invariant 1

Lemma (Invariant 1b)
Assuming no negative cycles, pred forms a directed tree rooted out of
s.

We denote this path from s to a node w by P (s, w).

Proof
Holds at first iteration
For a contradiction, consider iteration of first violation

v and u with yv > yu + cu,v

P (s, u) passes through v
Otherwise tree property preserved by pred(v)← u

Let P (v, u) be the portion of P (s, u) starting at v.
By Invariant 1a, and telescoping sum, length of P (v, u) is at most
yu − yv.
Length of cycle {P (v, u), (u, v)} at most yu − yv + cu,v < 0.

Algorithms for Single-Source Shortest Path 15/46

Summarizing Loop Invariant 1

Lemma (Invariant 1a)
For every node w, we have yw − ypred(w) ≥ cpred(w),w.

By telescoping sum, can bound yw − ys when pred leads back to s

Lemma (Invariant 1b)
Assuming no negative cycles, pred forms a directed tree rooted out of
s.

Implies that ys remains 0

Corollary (Loop Invariant 1)
Assuming no negative cycles, pred defines a path P (s, w) from s to
each node w, of length at most yw − ys = yw.

Algorithms for Single-Source Shortest Path 16/46

Loop Invariant 2

Lemma (Loop Invariant 2)
Assuming no negative cycles, yw is the length of some simple path
Q(s, w) from s to w, for all w.

Proof is technical, by induction, so we will skip. Instead, we will modify
Ford’s algorithm to guarantee polynomial time termination.

Algorithms for Single-Source Shortest Path 17/46

Bellman-Ford Algorithm

The following algorithm fixes an (arbitrary) order on edges E

Bellman-Ford Algorithm
1 yv = c(s,v) and pred(v)← s for v 6= s

2 ys ← 0, pred(s) = null.
3 While y is infeasible for the dual

For e = (u, v) in order, if yv > yu + ce then
yv ← yu + ce
Set pred(v) = u

4 Output the path t, pred(t), pred(pred(t)), . . . , s.

Note
Correctness follows from the correctness of Ford’s Algorithm.

Algorithms for Single-Source Shortest Path 18/46

Bellman-Ford Algorithm

The following algorithm fixes an (arbitrary) order on edges E

Bellman-Ford Algorithm
1 yv = c(s,v) and pred(v)← s for v 6= s

2 ys ← 0, pred(s) = null.
3 While y is infeasible for the dual

For e = (u, v) in order, if yv > yu + ce then
yv ← yu + ce
Set pred(v) = u

4 Output the path t, pred(t), pred(pred(t)), . . . , s.

Note
Correctness follows from the correctness of Ford’s Algorithm.

Algorithms for Single-Source Shortest Path 18/46

Runtime

Theorem
Bellman-Ford terminates after n− 1 scans through E, for a total
runtime of O(nm).

Follows immediately from the following Lemma

Lemma
After k scans through E, vertices v with a shortest s− v path
consisting of ≤ k edges are correctly labeled. (i.e., yv = distance(s, v))

Algorithms for Single-Source Shortest Path 19/46

Runtime

Theorem
Bellman-Ford terminates after n− 1 scans through E, for a total
runtime of O(nm).

Follows immediately from the following Lemma

Lemma
After k scans through E, vertices v with a shortest s− v path
consisting of ≤ k edges are correctly labeled. (i.e., yv = distance(s, v))

Algorithms for Single-Source Shortest Path 19/46

Proof

Lemma
After k scans through E, vertices v with a shortest s− v path
consisting of ≤ k edges are correctly labeled. (i.e., yv = distance(s, v))

Proof
Holds for k = 0

By induction on k.
Assume it holds for k − 1.
Let v be a node with a shortest path P from s with k edges.
P = {Q, e}, for some e = (u, v) and s− u path Q, where Q is a
shortest s− u path and Q has k − 1 edges.
By inductive hypothesis, u is correctly labeled just before e is
scanned – i.e. yu = distance(s, u).
Therefore, v is correctly labeled yv ← yu + cu,v = distance(s, v)
after e is scanned

Algorithms for Single-Source Shortest Path 20/46

A Note on Negative Cycles

Question
What if there are negative cycles? What does that say about LP? What
about Ford’s algorithm?

Algorithms for Single-Source Shortest Path 21/46

Outline

1 Introduction

2 Shortest Path

3 Algorithms for Single-Source Shortest Path

4 Bipartite Matching

5 Total Unimodularity

6 Duality of Bipartite Matching and its Consequences

7 Spanning Trees

8 Flows

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (V,E), with V = L
⋃
R, and weights we on

edges e, find a maximum weight matching.

Matching: a set of edges covering each node at most once
We use n and m to denote |V | and |E|, respectively.
Equivalent to maximum weight / minimum cost perfect matching.

1 2

1.5

3

Our focus will be less on algorithms, and more on using polyhedral
interpretation to gain insights about a combinatorial problem.

Bipartite Matching 22/46

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (V,E), with V = L
⋃
R, and weights we on

edges e, find a maximum weight matching.

Matching: a set of edges covering each node at most once
We use n and m to denote |V | and |E|, respectively.
Equivalent to maximum weight / minimum cost perfect matching.

1 2

1.5

3

Our focus will be less on algorithms, and more on using polyhedral
interpretation to gain insights about a combinatorial problem.

Bipartite Matching 22/46

An LP Relaxation of Bipartite Matching

Bipartite Matching LP

max
∑

e∈E wexe
s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Feasible region is a polytope P (i.e. a bounded polyhedron)
This is a relaxation of the bipartite matching problem

Integer points in P are the indicator vectors of matchings.

P ∩ Zm = {xM :M is a matching}

Bipartite Matching 23/46

An LP Relaxation of Bipartite Matching

Bipartite Matching LP

max
∑

e∈E wexe
s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Feasible region is a polytope P (i.e. a bounded polyhedron)
This is a relaxation of the bipartite matching problem

Integer points in P are the indicator vectors of matchings.

P ∩ Zm = {xM :M is a matching}

Bipartite Matching 23/46

Integrality of the Bipartite Matching Polytope

∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Theorem
The feasible region of the matching LP is the convex hull of indicator
vectors of matchings.

P = convexhull {xM :M is a matching}

Note
This is the strongest guarantee you could hope for of an LP
relaxation of a combinatorial problem
Solving LP is equivalent to solving the combinatorial problem
Stronger guarantee than shortest path LP from last time

Bipartite Matching 24/46

Integrality of the Bipartite Matching Polytope

∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Theorem
The feasible region of the matching LP is the convex hull of indicator
vectors of matchings.

P = convexhull {xM :M is a matching}

Note
This is the strongest guarantee you could hope for of an LP
relaxation of a combinatorial problem
Solving LP is equivalent to solving the combinatorial problem
Stronger guarantee than shortest path LP from last time

Bipartite Matching 24/46

Proof

1

1

0.7

0

0.3

0.6

0.1

Suffices to show that all vertices are integral (why?)

Consider x ∈ P non-integral, we will show that x is not a vertex.
Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Bipartite Matching 25/46

Proof

1

1

0.7

0

0.3

0.6

0.1

Suffices to show that all vertices are integral (why?)
Consider x ∈ P non-integral, we will show that x is not a vertex.

Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Bipartite Matching 25/46

Proof

0.7

0.3

0.6

0.1

Suffices to show that all vertices are integral (why?)
Consider x ∈ P non-integral, we will show that x is not a vertex.
Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Bipartite Matching 25/46

Proof

0.7

0.3

0.6

0.1

Suffices to show that all vertices are integral (why?)
Consider x ∈ P non-integral, we will show that x is not a vertex.
Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Bipartite Matching 25/46

Proof

0.7

0.3

0.6

Suffices to show that all vertices are integral (why?)
Consider x ∈ P non-integral, we will show that x is not a vertex.
Let H be the subgraph formed by edges with xe ∈ (0, 1)

H either contains a cycle, or else a maximal path which is simple.

Bipartite Matching 25/46

Proof

0.7

0.3

0.6

0.1

Case 1: Cycle C

Let C = (e1, . . . , ek), with k even
There is ε > 0 such that adding ±ε(+1,−1, . . . ,+1,−1) to xC
preserves feasibility
x is the midpoint of x+ ε(+1,−1, ...,+1,−1)C and
x− ε(+1,−1, . . . ,+1,−1)C , so x is not a vertex.

Bipartite Matching 26/46

Proof

0.7

0.3

0.6

Case 2: Maximal Path P

Let P = (e1, . . . , ek), going through vertices v0, v1, . . . , vk
By maximality, e1 is the only edge of v0 with non-zero x-weight

Similarly for ek and vk.

There is ε > 0 such that adding ±ε(+1,−1, . . . , ?1) to xP
preserves feasibility
x is the midpoint of x+ ε(+1,−1, ..., ?1)P and
x− ε(+1,−1, . . . , ?1)P , so x is not a vertex.

Bipartite Matching 27/46

Related Fact: Birkhoff Von-Neumann Theorem∑
e∈δ(v)

xe = 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.
The analogous statement holds for the perfect matching LP
above, by an essentially identical proof.

When bipartite graph is complete and has the same # of nodes on
either side, can be equivalently phrased as a property of matrices.

Birkhoff Von-Neumann Theorem
The set of n× n doubly stochastic matrices is the convex hull of n× n
permutation matrices.(

0.5 0.5
0.5 0.5

)
= 0.5

(
1 0
0 1

)
+ 0.5

(
0 1
1 0

)
By Caratheodory’s theorem, we can express every doubly stochastic
matrix as a convex combination of n2 + 1 permutation matrices.

We will see later: this decomposition can be computed efficiently!

Bipartite Matching 28/46

Related Fact: Birkhoff Von-Neumann Theorem∑
e∈δ(v)

xe = 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.
The analogous statement holds for the perfect matching LP
above, by an essentially identical proof.
When bipartite graph is complete and has the same # of nodes on
either side, can be equivalently phrased as a property of matrices.

Birkhoff Von-Neumann Theorem
The set of n× n doubly stochastic matrices is the convex hull of n× n
permutation matrices.(

0.5 0.5
0.5 0.5

)
= 0.5

(
1 0
0 1

)
+ 0.5

(
0 1
1 0

)
By Caratheodory’s theorem, we can express every doubly stochastic
matrix as a convex combination of n2 + 1 permutation matrices.

We will see later: this decomposition can be computed efficiently!

Bipartite Matching 28/46

Related Fact: Birkhoff Von-Neumann Theorem∑
e∈δ(v)

xe = 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.
The analogous statement holds for the perfect matching LP
above, by an essentially identical proof.
When bipartite graph is complete and has the same # of nodes on
either side, can be equivalently phrased as a property of matrices.

Birkhoff Von-Neumann Theorem
The set of n× n doubly stochastic matrices is the convex hull of n× n
permutation matrices.(

0.5 0.5
0.5 0.5

)
= 0.5

(
1 0
0 1

)
+ 0.5

(
0 1
1 0

)

By Caratheodory’s theorem, we can express every doubly stochastic
matrix as a convex combination of n2 + 1 permutation matrices.

We will see later: this decomposition can be computed efficiently!

Bipartite Matching 28/46

Related Fact: Birkhoff Von-Neumann Theorem∑
e∈δ(v)

xe = 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.
The analogous statement holds for the perfect matching LP
above, by an essentially identical proof.
When bipartite graph is complete and has the same # of nodes on
either side, can be equivalently phrased as a property of matrices.

Birkhoff Von-Neumann Theorem
The set of n× n doubly stochastic matrices is the convex hull of n× n
permutation matrices.(

0.5 0.5
0.5 0.5

)
= 0.5

(
1 0
0 1

)
+ 0.5

(
0 1
1 0

)
By Caratheodory’s theorem, we can express every doubly stochastic
matrix as a convex combination of n2 + 1 permutation matrices.

We will see later: this decomposition can be computed efficiently!
Bipartite Matching 28/46

Outline

1 Introduction

2 Shortest Path

3 Algorithms for Single-Source Shortest Path

4 Bipartite Matching

5 Total Unimodularity

6 Duality of Bipartite Matching and its Consequences

7 Spanning Trees

8 Flows

Total Unimodularity

We could have proved integrality of the bipartite matching LP using a
more general tool

Definition
A matrix A is Totally Unimodular if every square submatrix has
determinant 0, +1 or −1.

Theorem
If A ∈ Rm×n is totally unimodular, and b is an integer vector, then
{x : Ax ≤ b, x ≥ 0} has integer vertices.

Proof
Non-zero entries of vertex x are solution of A′x′ = b′ for some
nonsignular square submatrix A′ and corresponding sub-vector b′

Cramer’s rule:

x′i =
det(A′i|b′)
detA′

Total Unimodularity 29/46

Total Unimodularity

We could have proved integrality of the bipartite matching LP using a
more general tool

Definition
A matrix A is Totally Unimodular if every square submatrix has
determinant 0, +1 or −1.

Theorem
If A ∈ Rm×n is totally unimodular, and b is an integer vector, then
{x : Ax ≤ b, x ≥ 0} has integer vertices.

Proof
Non-zero entries of vertex x are solution of A′x′ = b′ for some
nonsignular square submatrix A′ and corresponding sub-vector b′

Cramer’s rule:

x′i =
det(A′i|b′)
detA′

Total Unimodularity 29/46

Total Unimodularity of Bipartite Matching
∑

e∈δ(v)
xe ≤ 1, ∀v ∈ V.

Claim
The constraint matrix of the bipartite matching LP is totally unimodular.

Proof
Ave = 1 if e incident on v, and 0 otherwise.
By induction on size of submatrix A′. Trivial for base case k = 1.
If A′ has all-zero column, then detA′ = 0

If A′ has column with single 1, then holds by induction.
If all columns of A′ have two 1’s,

Partition rows (vertices) into L and R
Sum of rows L is (1, 1, . . . , 1), similarly for R
A′ is singular, so detA′ = 0.

Total Unimodularity 30/46

Total Unimodularity of Bipartite Matching
∑

e∈δ(v)
xe ≤ 1, ∀v ∈ V.

Claim
The constraint matrix of the bipartite matching LP is totally unimodular.

Proof
Ave = 1 if e incident on v, and 0 otherwise.
By induction on size of submatrix A′. Trivial for base case k = 1.

If A′ has all-zero column, then detA′ = 0

If A′ has column with single 1, then holds by induction.
If all columns of A′ have two 1’s,

Partition rows (vertices) into L and R
Sum of rows L is (1, 1, . . . , 1), similarly for R
A′ is singular, so detA′ = 0.

Total Unimodularity 30/46

Total Unimodularity of Bipartite Matching
∑

e∈δ(v)
xe ≤ 1, ∀v ∈ V.

Claim
The constraint matrix of the bipartite matching LP is totally unimodular.

Proof
Ave = 1 if e incident on v, and 0 otherwise.
By induction on size of submatrix A′. Trivial for base case k = 1.
If A′ has all-zero column, then detA′ = 0

If A′ has column with single 1, then holds by induction.
If all columns of A′ have two 1’s,

Partition rows (vertices) into L and R
Sum of rows L is (1, 1, . . . , 1), similarly for R
A′ is singular, so detA′ = 0.

Total Unimodularity 30/46

Total Unimodularity of Bipartite Matching
∑

e∈δ(v)
xe ≤ 1, ∀v ∈ V.

Claim
The constraint matrix of the bipartite matching LP is totally unimodular.

Proof
Ave = 1 if e incident on v, and 0 otherwise.
By induction on size of submatrix A′. Trivial for base case k = 1.
If A′ has all-zero column, then detA′ = 0

If A′ has column with single 1, then holds by induction.

If all columns of A′ have two 1’s,
Partition rows (vertices) into L and R
Sum of rows L is (1, 1, . . . , 1), similarly for R
A′ is singular, so detA′ = 0.

Total Unimodularity 30/46

Total Unimodularity of Bipartite Matching
∑

e∈δ(v)
xe ≤ 1, ∀v ∈ V.

Claim
The constraint matrix of the bipartite matching LP is totally unimodular.

Proof
Ave = 1 if e incident on v, and 0 otherwise.
By induction on size of submatrix A′. Trivial for base case k = 1.
If A′ has all-zero column, then detA′ = 0

If A′ has column with single 1, then holds by induction.
If all columns of A′ have two 1’s,

Partition rows (vertices) into L and R
Sum of rows L is (1, 1, . . . , 1), similarly for R
A′ is singular, so detA′ = 0.

Total Unimodularity 30/46

Outline

1 Introduction

2 Shortest Path

3 Algorithms for Single-Source Shortest Path

4 Bipartite Matching

5 Total Unimodularity

6 Duality of Bipartite Matching and its Consequences

7 Spanning Trees

8 Flows

Primal and Dual LPs

Primal LP
max

∑
e∈E wexe

s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
min

∑
v∈V yv

s.t.
yu + yv ≥ we, ∀e = (u, v) ∈ E.
yv � 0, ∀v ∈ V.

Primal interpertation: Player 1 looking to build a set of projects
Each edge e is a project generating “profit” we
Each project e = (u, v) needs two resources, u and v
Each resource can be used by at most one project at a time
Must choose a profit-maximizing set of projects

Dual interpertation: Player 2 looking to buy resources
Offer a price yv for each resource.
Prices should incentivize player 1 to sell resources
Want to pay as little as possible.

Duality of Bipartite Matching and its Consequences 31/46

Primal and Dual LPs

Primal LP
max

∑
e∈E wexe

s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
min

∑
v∈V yv

s.t.
yu + yv ≥ we, ∀e = (u, v) ∈ E.
yv � 0, ∀v ∈ V.

Primal interpertation: Player 1 looking to build a set of projects
Each edge e is a project generating “profit” we
Each project e = (u, v) needs two resources, u and v
Each resource can be used by at most one project at a time
Must choose a profit-maximizing set of projects

Dual interpertation: Player 2 looking to buy resources
Offer a price yv for each resource.
Prices should incentivize player 1 to sell resources
Want to pay as little as possible.

Duality of Bipartite Matching and its Consequences 31/46

Vertex Cover Interpretation

Primal LP
max

∑
e∈E xe

s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP

min
∑
v∈V yv

s.t.
yu + yv ≥ 1, ∀e = (u, v) ∈ E.
yv � 0, ∀v ∈ V.

When edge weights are 1, binary solutions to dual are vertex covers

Definition
C ⊆ V is a vertex cover if every e ∈ E has
at least one endpoint in C

Dual is a relaxation of the minimum vertex cover problem for
bipartite graphs.
By weak duality: min-vertex-cover ≥ max-cardinality-matching

Duality of Bipartite Matching and its Consequences 32/46

Vertex Cover Interpretation

Primal LP
max

∑
e∈E xe

s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP

min
∑
v∈V yv

s.t.
yu + yv ≥ 1, ∀e = (u, v) ∈ E.
yv � 0, ∀v ∈ V.

When edge weights are 1, binary solutions to dual are vertex covers

Definition
C ⊆ V is a vertex cover if every e ∈ E has
at least one endpoint in C

Dual is a relaxation of the minimum vertex cover problem for
bipartite graphs.
By weak duality: min-vertex-cover ≥ max-cardinality-matching

Duality of Bipartite Matching and its Consequences 32/46

König’s Theorem

Primal LP
max

∑
e∈E xe

s.t.∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP

min
∑
v∈V yv

s.t.
yu + yv ≥ 1, ∀e = (u, v) ∈ E.
yv � 0, ∀v ∈ V.

König’s Theorem
In a bipartite graph, the cardinality of the maximum matching is equal
to the cardinality of the minimum vertex cover.

i.e. the dual LP has an optimal integral solution

Duality of Bipartite Matching and its Consequences 33/46

Let M(G) be a max cardinality of a matching in G
Let C(G) be min cardinality of a vertex cover in G
We already proved that M(G) ≤ C(G)
We will prove C(G) ≤M(G) by induction on number of nodes in
G.

Note: Could have proved the same using total unimodularity

Duality of Bipartite Matching and its Consequences 34/46

Let y be an optimal dual, and v a vertex with yv > 0

By complementary slackness, every maximum cardinality
matching must match v.

M(G \ v) =M(G)− 1

By inductive hypothesis, C(G \ v) =M(G \ v) =M(G)− 1

C(G) ≤ C(G \ v) + 1 =M(G).

Note: Could have proved the same using total unimodularity

Duality of Bipartite Matching and its Consequences 34/46

Let y be an optimal dual, and v a vertex with yv > 0

By complementary slackness, every maximum cardinality
matching must match v.

M(G \ v) =M(G)− 1

By inductive hypothesis, C(G \ v) =M(G \ v) =M(G)− 1

C(G) ≤ C(G \ v) + 1 =M(G).

Note: Could have proved the same using total unimodularity

Duality of Bipartite Matching and its Consequences 34/46

Let y be an optimal dual, and v a vertex with yv > 0

By complementary slackness, every maximum cardinality
matching must match v.

M(G \ v) =M(G)− 1

By inductive hypothesis, C(G \ v) =M(G \ v) =M(G)− 1

C(G) ≤ C(G \ v) + 1 =M(G).

Note: Could have proved the same using total unimodularity

Duality of Bipartite Matching and its Consequences 34/46

Let y be an optimal dual, and v a vertex with yv > 0

By complementary slackness, every maximum cardinality
matching must match v.

M(G \ v) =M(G)− 1

By inductive hypothesis, C(G \ v) =M(G \ v) =M(G)− 1

C(G) ≤ C(G \ v) + 1 =M(G).

Note: Could have proved the same using total unimodularity

Duality of Bipartite Matching and its Consequences 34/46

Let y be an optimal dual, and v a vertex with yv > 0

By complementary slackness, every maximum cardinality
matching must match v.

M(G \ v) =M(G)− 1

By inductive hypothesis, C(G \ v) =M(G \ v) =M(G)− 1

C(G) ≤ C(G \ v) + 1 =M(G).

Note: Could have proved the same using total unimodularity

Duality of Bipartite Matching and its Consequences 34/46

Let y be an optimal dual, and v a vertex with yv > 0

By complementary slackness, every maximum cardinality
matching must match v.

M(G \ v) =M(G)− 1

By inductive hypothesis, C(G \ v) =M(G \ v) =M(G)− 1

C(G) ≤ C(G \ v) + 1 =M(G).

Note: Could have proved the same using total unimodularity

Duality of Bipartite Matching and its Consequences 34/46

Consequences of König’s Theorem

Vertex covers can serve as a certificate of optimality for bipartite
matchings, and vice versa

Like maximum cardinality matching, minimum vertex cover in
bipartite graphs can be formulated as an LP, and solved in
polynomial time
The same is true for the maximum independent set problem in
bipartite graphs.

C is a vertex cover iff V \ C is an independent set.

Duality of Bipartite Matching and its Consequences 35/46

Consequences of König’s Theorem

Vertex covers can serve as a certificate of optimality for bipartite
matchings, and vice versa
Like maximum cardinality matching, minimum vertex cover in
bipartite graphs can be formulated as an LP, and solved in
polynomial time

The same is true for the maximum independent set problem in
bipartite graphs.

C is a vertex cover iff V \ C is an independent set.

Duality of Bipartite Matching and its Consequences 35/46

Consequences of König’s Theorem

Vertex covers can serve as a certificate of optimality for bipartite
matchings, and vice versa
Like maximum cardinality matching, minimum vertex cover in
bipartite graphs can be formulated as an LP, and solved in
polynomial time
The same is true for the maximum independent set problem in
bipartite graphs.

C is a vertex cover iff V \ C is an independent set.

Duality of Bipartite Matching and its Consequences 35/46

Outline

1 Introduction

2 Shortest Path

3 Algorithms for Single-Source Shortest Path

4 Bipartite Matching

5 Total Unimodularity

6 Duality of Bipartite Matching and its Consequences

7 Spanning Trees

8 Flows

The Minimum Cost Spanning Tree Problem

Given a connected undirected graph G = (V,E), and costs ce on
edges e, find a minimum cost spanning tree of G.

Spanning Tree: an acyclic set of edges connecting every pair of
nodes
When graph is disconnected, can search for min-cost spanning
forest instead
We use n and m to denote |V | and |E|, respectively.

Spanning Trees 36/46

Kruskal’s Algorithm

The minimum spanning tree problem can be solved efficiently by a
simple greedy algorithm

Kruskal’s algorithm
1 T ← ∅
2 Sort edges in increasing order of cost
3 For each edge e in order

if T
⋃
e is acyclic, add e to T .

Proof of correctness is via a simple exchange argument.
Generalizes to Matroids

Spanning Trees 37/46

Kruskal’s Algorithm

The minimum spanning tree problem can be solved efficiently by a
simple greedy algorithm

Kruskal’s algorithm
1 T ← ∅
2 Sort edges in increasing order of cost
3 For each edge e in order

if T
⋃
e is acyclic, add e to T .

Proof of correctness is via a simple exchange argument.
Generalizes to Matroids

Spanning Trees 37/46

MST Linear Program

MST LP
minimize

∑
e∈E cexe

subject to
∑
e∈E

xe = n− 1∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.

xe ≥ 0, for e ∈ E.

Theorem
The feasible region of the above LP is the convex hull of spanning
trees.

Proof by finding a dual solution with cost matching the output of
Kruskal’s algorithm.
Generalizes to Matroids
Note: this LP has an exponential (in n) number of constraints

Spanning Trees 38/46

MST Linear Program

MST LP
minimize

∑
e∈E cexe

subject to
∑
e∈E

xe = n− 1∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.

xe ≥ 0, for e ∈ E.

Theorem
The feasible region of the above LP is the convex hull of spanning
trees.

Proof by finding a dual solution with cost matching the output of
Kruskal’s algorithm.
Generalizes to Matroids
Note: this LP has an exponential (in n) number of constraints

Spanning Trees 38/46

MST Linear Program

MST LP
minimize

∑
e∈E cexe

subject to
∑
e∈E

xe = n− 1∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.

xe ≥ 0, for e ∈ E.

Theorem
The feasible region of the above LP is the convex hull of spanning
trees.

Proof by finding a dual solution with cost matching the output of
Kruskal’s algorithm.

Generalizes to Matroids
Note: this LP has an exponential (in n) number of constraints

Spanning Trees 38/46

MST Linear Program

MST LP
minimize

∑
e∈E cexe

subject to
∑
e∈E

xe = n− 1∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.

xe ≥ 0, for e ∈ E.

Theorem
The feasible region of the above LP is the convex hull of spanning
trees.

Proof by finding a dual solution with cost matching the output of
Kruskal’s algorithm.
Generalizes to Matroids

Note: this LP has an exponential (in n) number of constraints

Spanning Trees 38/46

MST Linear Program

MST LP
minimize

∑
e∈E cexe

subject to
∑
e∈E

xe = n− 1∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.

xe ≥ 0, for e ∈ E.

Theorem
The feasible region of the above LP is the convex hull of spanning
trees.

Proof by finding a dual solution with cost matching the output of
Kruskal’s algorithm.
Generalizes to Matroids
Note: this LP has an exponential (in n) number of constraints

Spanning Trees 38/46

Solving the MST Linear Program

Definition
A separation oracle for a linear program with feasible set P ⊆ Rm is an
algorithm which takes as input x ∈ Rm, and either certifies that x ∈ P
or identifies a violated constraint.

Theorem
A linear program with a polynomial number of variables is solvable in
polynomial time if and only if it admits a polynomial time separation
oracle.

Follows from the ellipsoid method, which we will see next week.

Spanning Trees 39/46

Solving the MST Linear Program

Definition
A separation oracle for a linear program with feasible set P ⊆ Rm is an
algorithm which takes as input x ∈ Rm, and either certifies that x ∈ P
or identifies a violated constraint.

Theorem
A linear program with a polynomial number of variables is solvable in
polynomial time if and only if it admits a polynomial time separation
oracle.

Follows from the ellipsoid method, which we will see next week.
Spanning Trees 39/46

Solving the MST Linear Program
Primal LP

minimize
∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≥ 0, for e ∈ E.

Given x ∈ Rm, separation oracle must find a violated constraint if
one exists

Reduces to finding X ⊂ V with
∑

e⊆X xe > |X| − 1, if one exists

Equivalently
1+

∑
e⊆X xe

|X| > 1

In turn, this reduces to maximizing
1+

∑
e⊆X xe

|X| over X

We will see how to do this efficiently later in the class, since
1+

∑
e⊆X xe

|X|
is a supermodular function of the set X.

Spanning Trees 40/46

Solving the MST Linear Program
Primal LP

minimize
∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≥ 0, for e ∈ E.

Given x ∈ Rm, separation oracle must find a violated constraint if
one exists
Reduces to finding X ⊂ V with

∑
e⊆X xe > |X| − 1, if one exists

Equivalently
1+

∑
e⊆X xe

|X| > 1

In turn, this reduces to maximizing
1+

∑
e⊆X xe

|X| over X

We will see how to do this efficiently later in the class, since
1+

∑
e⊆X xe

|X|
is a supermodular function of the set X.

Spanning Trees 40/46

Solving the MST Linear Program
Primal LP

minimize
∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≥ 0, for e ∈ E.

Given x ∈ Rm, separation oracle must find a violated constraint if
one exists
Reduces to finding X ⊂ V with

∑
e⊆X xe > |X| − 1, if one exists

Equivalently
1+

∑
e⊆X xe

|X| > 1

In turn, this reduces to maximizing
1+

∑
e⊆X xe

|X| over X

We will see how to do this efficiently later in the class, since
1+

∑
e⊆X xe

|X|
is a supermodular function of the set X.

Spanning Trees 40/46

Solving the MST Linear Program
Primal LP

minimize
∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≥ 0, for e ∈ E.

Given x ∈ Rm, separation oracle must find a violated constraint if
one exists
Reduces to finding X ⊂ V with

∑
e⊆X xe > |X| − 1, if one exists

Equivalently
1+

∑
e⊆X xe

|X| > 1

In turn, this reduces to maximizing
1+

∑
e⊆X xe

|X| over X

We will see how to do this efficiently later in the class, since
1+

∑
e⊆X xe

|X|
is a supermodular function of the set X.

Spanning Trees 40/46

Application of Fractional Spanning Trees

The LP formulation of spanning trees has many applications
We will look at one contrived yet simple application that shows the
flexibility enabled by polyhedral formulation

Fault-Tolerant MST
Your tree is an overlay network on the internet used to transmit
data
A hacker is looking to attack your tree, by knocking off one of the
edges of the graph
You can foil the hacker by choosing a random tree
The hacker knows the algorithm you use, but not your random
coins

Spanning Trees 41/46

Fault-tolerant MST LP
minimize

∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≤ p, for e ∈ E.
xe ≥ 0, for e ∈ E.

Above LP can be solved efficiently
Can interpret resulting fractional spanning tree x as a recipe for a
probability distribution over trees T

e ∈ T with probability xe
Since xe ≤ p, no edge is in the tree with probability more than p.

Such a probability distribution exists!
x is in the (original) MST polytope
Caratheodory’s theorem: x is a convex combination of m+ 1
vertices of MST polytope
By integrality of MST polytope: x is the “expectation” of a probability
distribution over spanning trees.

Consequence of Ellipsoid algorithm: can compute such a
decomposition of x efficiently!

Spanning Trees 42/46

Fault-tolerant MST LP
minimize

∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≤ p, for e ∈ E.
xe ≥ 0, for e ∈ E.

Such a probability distribution exists!

x is in the (original) MST polytope
Caratheodory’s theorem: x is a convex combination of m+ 1
vertices of MST polytope
By integrality of MST polytope: x is the “expectation” of a probability
distribution over spanning trees.

Consequence of Ellipsoid algorithm: can compute such a
decomposition of x efficiently!

Spanning Trees 42/46

Fault-tolerant MST LP
minimize

∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≤ p, for e ∈ E.
xe ≥ 0, for e ∈ E.

Such a probability distribution exists!
x is in the (original) MST polytope
Caratheodory’s theorem: x is a convex combination of m+ 1
vertices of MST polytope
By integrality of MST polytope: x is the “expectation” of a probability
distribution over spanning trees.

Consequence of Ellipsoid algorithm: can compute such a
decomposition of x efficiently!

Spanning Trees 42/46

Fault-tolerant MST LP
minimize

∑
e∈E cexe

subject to
∑
e⊆X

xe ≤ |X| − 1, for X ⊂ V.∑
e∈E

xe = n− 1

xe ≤ p, for e ∈ E.
xe ≥ 0, for e ∈ E.

Such a probability distribution exists!
x is in the (original) MST polytope
Caratheodory’s theorem: x is a convex combination of m+ 1
vertices of MST polytope
By integrality of MST polytope: x is the “expectation” of a probability
distribution over spanning trees.

Consequence of Ellipsoid algorithm: can compute such a
decomposition of x efficiently!

Spanning Trees 42/46

Outline

1 Introduction

2 Shortest Path

3 Algorithms for Single-Source Shortest Path

4 Bipartite Matching

5 Total Unimodularity

6 Duality of Bipartite Matching and its Consequences

7 Spanning Trees

8 Flows

The Maximum Flow Problem
Given a directed graph G = (V,E) with capacities ue on edges e, a
source node s, and a sink node t, find a maximum flow from s to t
respecting the capacities.

maximize
∑

e∈δ+(s) xe −
∑

e∈δ−(s) xe
subject to

∑
e∈δ−(v) xe =

∑
e∈δ+(v) xe, for v ∈ V \ {s, t} .

xe ≤ ue, for e ∈ E.
xe ≥ 0, for e ∈ E.

Can be computed either by solving the LP, or by a combinatorial
algorithm such as Ford Fulkerson.

Flows 43/46

Primal LP
max

∑
e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Dual LP (Simplified)
min

∑
e∈E ueze

s.t.
yv − yu ≤ ze, ∀e = (u, v) ∈ E.
ys = 0
yt = 1
ze ≥ 0, ∀e ∈ E.

Dual solution describes fraction ze of each edge to fractionally cut

Dual constraints require that at least 1 edge is cut on every path
from s to t.∑

(u,v)∈P zuv ≥
∑

(u,v)∈P yv − yu = yt − ys = 1

Every integral s− t cut is feasible.
By weak duality: max flow ≤ minimum cut
Ford-Fulkerson shows that max flow = min cut

i.e. dual has integer optimal
Ford-Fulkerson also shows that there is an integral optimal flow
when capacities are integer.

Flows 44/46

Primal LP
max

∑
e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Dual LP (Simplified)
min

∑
e∈E ueze

s.t.
yv − yu ≤ ze, ∀e = (u, v) ∈ E.
ys = 0
yt = 1
ze ≥ 0, ∀e ∈ E.

Dual solution describes fraction ze of each edge to fractionally cut
Dual constraints require that at least 1 edge is cut on every path
from s to t.∑

(u,v)∈P zuv ≥
∑

(u,v)∈P yv − yu = yt − ys = 1

Every integral s− t cut is feasible.
By weak duality: max flow ≤ minimum cut
Ford-Fulkerson shows that max flow = min cut

i.e. dual has integer optimal
Ford-Fulkerson also shows that there is an integral optimal flow
when capacities are integer.

Flows 44/46

Primal LP
max

∑
e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Dual LP (Simplified)
min

∑
e∈E ueze

s.t.
yv − yu ≤ ze, ∀e = (u, v) ∈ E.
ys = 0
yt = 1
ze ≥ 0, ∀e ∈ E.

Every integral s− t cut is feasible.

By weak duality: max flow ≤ minimum cut
Ford-Fulkerson shows that max flow = min cut

i.e. dual has integer optimal
Ford-Fulkerson also shows that there is an integral optimal flow
when capacities are integer.

Flows 44/46

Primal LP
max

∑
e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Dual LP (Simplified)
min

∑
e∈E ueze

s.t.
yv − yu ≤ ze, ∀e = (u, v) ∈ E.
ys = 0
yt = 1
ze ≥ 0, ∀e ∈ E.

Every integral s− t cut is feasible.
By weak duality: max flow ≤ minimum cut

Ford-Fulkerson shows that max flow = min cut
i.e. dual has integer optimal

Ford-Fulkerson also shows that there is an integral optimal flow
when capacities are integer.

Flows 44/46

Primal LP
max

∑
e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Dual LP (Simplified)
min

∑
e∈E ueze

s.t.
yv − yu ≤ ze, ∀e = (u, v) ∈ E.
ys = 0
yt = 1
ze ≥ 0, ∀e ∈ E.

Every integral s− t cut is feasible.
By weak duality: max flow ≤ minimum cut
Ford-Fulkerson shows that max flow = min cut

i.e. dual has integer optimal

Ford-Fulkerson also shows that there is an integral optimal flow
when capacities are integer.

Flows 44/46

Primal LP
max

∑
e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Dual LP (Simplified)
min

∑
e∈E ueze

s.t.
yv − yu ≤ ze, ∀e = (u, v) ∈ E.
ys = 0
yt = 1
ze ≥ 0, ∀e ∈ E.

Every integral s− t cut is feasible.
By weak duality: max flow ≤ minimum cut
Ford-Fulkerson shows that max flow = min cut

i.e. dual has integer optimal
Ford-Fulkerson also shows that there is an integral optimal flow
when capacities are integer.Flows 44/46

Generalizations of Max Flow

max
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Writing as an LP shows that many generalizations are also tractable

Lower and upper bound constraints on flow: `e ≤ xe ≤ ue
minimum cost flow of a certain amount r

Objective min
∑
e cexe

Additional constraint:
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe = r

Multiple commodities sharing the network
. . .

Flows 45/46

Generalizations of Max Flow

max
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Writing as an LP shows that many generalizations are also tractable
Lower and upper bound constraints on flow: `e ≤ xe ≤ ue

minimum cost flow of a certain amount r
Objective min

∑
e cexe

Additional constraint:
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe = r

Multiple commodities sharing the network
. . .

Flows 45/46

Generalizations of Max Flow

max
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Writing as an LP shows that many generalizations are also tractable
Lower and upper bound constraints on flow: `e ≤ xe ≤ ue
minimum cost flow of a certain amount r

Objective min
∑
e cexe

Additional constraint:
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe = r

Multiple commodities sharing the network
. . .

Flows 45/46

Generalizations of Max Flow

max
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Writing as an LP shows that many generalizations are also tractable
Lower and upper bound constraints on flow: `e ≤ xe ≤ ue
minimum cost flow of a certain amount r

Objective min
∑
e cexe

Additional constraint:
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe = r

Multiple commodities sharing the network

. . .

Flows 45/46

Generalizations of Max Flow

max
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

s.t.∑
e∈δ−(v)

xe =
∑

e∈δ+(v)

xe, ∀v ∈ V \ {s, t} .

xe ≤ ue, ∀e ∈ E.
xe ≥ 0, ∀e ∈ E.

Writing as an LP shows that many generalizations are also tractable
Lower and upper bound constraints on flow: `e ≤ xe ≤ ue
minimum cost flow of a certain amount r

Objective min
∑
e cexe

Additional constraint:
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe = r

Multiple commodities sharing the network
. . .

Flows 45/46

Minimum Congestion Flow
You are given a directed graph G = (V,E) with congestion functions
ce(.) on edges e, a source node s, a sink node t, and a desired flow
amount r. Find a minimum average congestion flow from s to t.

minimize
∑

e xece(xe)
subject to

∑
e∈δ+(s) xe −

∑
e∈δ−(s) xe = r∑

e∈δ−(v) xe =
∑

e∈δ+(v) xe, for v ∈ V \ {s, t} .
xe ≥ 0, for e ∈ E.

When ce(.) are polynomials with nonnegative co-efficients, e.g.
ce(x) = aex

2 + bex+ ce with ae, be, ce ≥ 0, this is a (non-linear) convex
program.

Flows 46/46

	Introduction
	Shortest Path
	Algorithms for Single-Source Shortest Path
	Bipartite Matching
	Total Unimodularity
	Duality of Bipartite Matching and its Consequences
	Spanning Trees
	Flows

