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Duality Correspondances

There are two equivalent ways to represent a convex set
The family of points in the set (standard representation)
The set of halfspaces containing the set (“dual” representation)

This equivalence between the two representations gives rise to a
variety of “duality” relationships among convex sets, cones, and
functions.

Definition
“Duality” is a woefully overloaded mathematical term for a relation that
groups elements of a set into “dual” pairs.

Convexity and Duality 0/13



Duality Correspondances

There are two equivalent ways to represent a convex set
The family of points in the set (standard representation)
The set of halfspaces containing the set (“dual” representation)

This equivalence between the two representations gives rise to a
variety of “duality” relationships among convex sets, cones, and
functions.

Definition
“Duality” is a woefully overloaded mathematical term for a relation that
groups elements of a set into “dual” pairs.

Convexity and Duality 0/13



Duality Correspondances

There are two equivalent ways to represent a convex set
The family of points in the set (standard representation)
The set of halfspaces containing the set (“dual” representation)

This equivalence between the two representations gives rise to a
variety of “duality” relationships among convex sets, cones, and
functions.

Definition
“Duality” is a woefully overloaded mathematical term for a relation that
groups elements of a set into “dual” pairs.

Convexity and Duality 0/13



Theorem
A closed convex set S is the intersection of all closed halfspaces H
containing it.

Proof
Clearly, S ⊆

⋂
H∈HH

To prove equality, consider x 6∈ S
By the separating hyperplane theorem, there is a hyperplane
separating S from x

Therefore there is H ∈ H with x 6∈ H, hence x 6∈
⋂

H∈HH
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Theorem
A closed convex cone K is the intersection of all closed homogeneous
halfspaces H containing it.

Proof
For every non-homogeneous halfspace aᵀx ≤ b containing K, the
smaller homogeneous halfspace aᵀx ≤ 0 contains K as well.
Therefore, can discard non-homogeneous halfspaces when taking
the intersection
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Theorem
A convex function is the point-wise supremum of all affine functions
under-estimating it everywhere.

Proof
epi f is convex
Therefore epi f is the intersection of a family of halfspaces of the
form aᵀx− t ≤ b, for some a ∈ Rn and b ∈ R.
Each such halfspace constrains (x, t) ∈ epi f to aᵀx− b ≤ t
f(x) is the lowest t s.t. (x, t) ∈ epi f

Therefore, f(x) is the point-wise maximum of aᵀx− b over all
halfspaces
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Polar Duality of Convex Sets

One way of representing the all halfspaces containing a convex set.

Polar
Let S ⊆ Rn be a closed convex set containing the origin. The polar of
S is defined as follows:

S◦ = {y : yᵀx ≤ 1 for all x ∈ S}

Note
Every halfspace aᵀx ≤ b with b 6= 0 can be written as a
“normalized” inequality yᵀx ≤ 1, by dividing by b.
S◦ can be thought of as the normalized representations of
halfspaces containing S.
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S◦ = {y : yᵀx ≤ 1 for all x ∈ S}

Properties of the Polar
1 S◦◦ = S

2 S◦ is a closed convex set containing the origin
3 When 0 is in the interior of S, then S◦ is bounded.
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S◦ = {y : yᵀx ≤ 1 for all x ∈ S}

Properties of the Polar
1 S◦◦ = S

2 S◦ is a closed convex set containing the origin
3 When 0 is in the interior of S, then S◦ is bounded.

2 Follows from representation as intersection of halfspaces
3 S contains an ε-ball centered at the origin, so ||y|| ≤ 1/ε for all
y ∈ S◦.

Duality of Convex Sets 5/13



S◦ = {y : yᵀx ≤ 1 for all x ∈ S}

Properties of the Polar
1 S◦◦ = S

2 S◦ is a closed convex set containing the origin
3 When 0 is in the interior of S, then S◦ is bounded.

1 Easy to see that S ⊆ S◦◦

Take x◦ 6∈ S, by SSHT and 0 ∈ S, there is a halfspace zᵀx ≤ 1
containing S but not x◦ (i.e. zᵀx◦ > 1)
z ∈ S◦, therefore x 6∈ S◦◦
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S◦ = {y : yᵀx ≤ 1 for all x ∈ S}

Properties of the Polar
1 S◦◦ = S

2 S◦ is a closed convex set containing the origin
3 When 0 is in the interior of S, then S◦ is bounded.

Note
When S is non-convex, S◦ = (convexhull(S))◦, and
S◦◦ = convexhull(S).
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Examples

Norm Balls
The polar of the Euclidean unit ball is itself (we say it is self-dual)
The polar of the 1-norm ball is the∞-norm ball
More generally, the p-norm ball is dual to the q-norm ball, where
1
p + 1

q = 1
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Examples

Polytopes

Given a polytope P represented as Ax � ~1, the polar P ◦ is the convex
hull of the rows of A.

Facets of P correspond to vertices of P ◦.
Dually, vertices of P correspond to facets of P ◦.
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Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

Polar
The polar of a closed convex cone K is given by

K◦ = {y : yᵀx ≤ 0 for all x ∈ K}

Note
If halfspace yᵀx ≤ b contains K, then so does smaller yᵀx ≤ 0.
K◦ represents all homogeneous halfspaces containing K.
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Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

Polar
The polar of a closed convex cone K is given by

K◦ = {y : yᵀx ≤ 0 for all x ∈ K}

Dual Cone
By convention, K∗ = −K◦ is referred to as the dual cone of K.

K∗ = {y : yᵀx ≥ 0 for all x ∈ K}
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K◦ = {y : yᵀx ≤ 0 for all x ∈ K}

Properties of the Polar Cone
1 K◦◦ = K

2 K◦ is a closed convex cone
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K◦ = {y : yᵀx ≤ 0 for all x ∈ K}

Properties of the Polar Cone
1 K◦◦ = K

2 K◦ is a closed convex cone

1 Same as before
2 Intersection of homogeneous halfspaces
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Examples

The polar of a subspace is its orthogonal complement
The polar cone of the nonnegative orthant is the nonpositive
orthant

Self-dual

The polar of a polyhedral cone Ax � 0 is the conic hull of the rows
of A
The polar of the cone of positive semi-definite matrices is the cone
of negative semi-definite matrices

Self-dual
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Recall: Farkas’ Lemma
Let K be a closed convex cone and let w 6∈ K. There is z ∈ Rn such
that zᵀx ≤ 0 for all x ∈ K, and zᵀw > 0.

Equivalently: there is z ∈ K◦ with zᵀw > 0.
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Conjugation of Convex Functions

Conjugate
Let f : Rn → R

⋃
{∞} be a convex function. The conjugate of f is

f∗(y) = sup
x
(yᵀx− f(x))

Note
f∗(y) is the minimal value of β such that the affine function
yTx− β underestimates f(x) everywhere.
Equivalently, the distance we need to lower the hyperplane
yᵀx− t = 0 in order to get a supporting hyperplane to epi f .
yᵀx− t = f∗(y) are the supporting hyperplanes of epi f
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f∗(y) = sup
x
(yᵀx− f(x))

Properties of the Conjugate
1 f∗∗ = f when f is convex
2 f∗ is a convex function
3 xy ≤ f(x) + f∗(y) for all x, y ∈ Rn (Fenchel’s Inequality)
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x
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Properties of the Conjugate
1 f∗∗ = f when f is convex
2 f∗ is a convex function
3 xy ≤ f(x) + f∗(y) for all x, y ∈ Rn (Fenchel’s Inequality)

2 Supremum of affine functions of y
3 By definition of f∗(y)
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f∗(y) = sup
x
(yᵀx− f(x))

Properties of the Conjugate
1 f∗∗ = f when f is convex
2 f∗ is a convex function
3 xy ≤ f(x) + f∗(y) for all x, y ∈ Rn (Fenchel’s Inequality)

1 f∗∗(x) = maxy y
ᵀx− f∗(y) when f is convex

For fixed y, f∗(y) is minimal β such that yᵀx− β underestimates f .
Therefore f∗∗(x) is the maximum, over all y, of affine
underestimates yᵀx− β of f
By our characterization early in this lecture, this is equal to f .
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Note
When f is non-convex, f∗ = (convexhull(f))∗, and
f∗∗ = convexhull(f).
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Examples

Affine function: f(x) = ax+ b. Conjugate has f∗(a) = b, and∞
elsewhere
f(x) = x2/2 is self-conjugate
Exponential: f(x) = ex. Conjugate has f∗(y) = y log y − y for
y ∈ R+, and∞ elsewhere.
Quadratic: f(x) = 1

2x
ᵀQx with Q � 0. Self conjugate.

Log-sum-exp: f(x) = log(
∑

i e
xi). Conjugate has

f∗(y) =
∑

i yi log yi for y � 0 and 1ᵀy = 1,∞ otherwise.
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