CS675: Convex and Combinatorial Optimization
Fall 2014

Optimality Conditions for Convex Optimization

Instructor: Shaddin Dughmi



6 Optimality Conditions



Recall: Lagrangian Duality

Primal Problem

Dual Problem
;ntm o) max g(\, v)
filzx) <0, Vi=1,...,m. iio
hi(z) =0, Vi=1,...,k. -
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Recall: Lagrangian Duality

Primal Problem

min fo(z)
s.t.
filz) <0, Vi=1,...,m.
hi(z) =0, Vi=1,... k.
Ague + 1= g(ha)
Weak Duallty Mau+t=g(A)
OPT(dual) < OPT(primal). Nu+t=glh)

Dual Problem

max g(\, v)
s.t.
A=0
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Recall: Lagrangian Duality

Primal Problem

Dual Problem
;ntm o) max g(\, v)
filz) <0, Yi=1,...,m. i.t.}()
hi(z) =0, Vi=1,...,k. -
(ﬁ:a
A

Strong Duality
OPT(dual) = OPT (primal).

S
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Dual Solution as a Certificate

Primal Problem

Dual Problem
rsntm fo@) max g(\,v)
filz) <0, Vi=1,. S
hi(x) =0, Vi=1,. k; -

@ Dual solutions serves as a certificate of optimality
o If fo(x) = g(\,v), and both are feasible, then both are optimal.
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@ Dual solutions serves as a certificate of optimality

o If fo(x) = g(\,v), and both are feasible, then both are optimal.
o If fo(z) — g(\,v) < ¢, then both are within e of optimality.
e OPT(primal) and OPT(dual) lie in the interval [g()\, v), fo(z)]

Optimality Conditions 1/6



Dual Solution as a Certificate

Primal Problem

Dual Problem
rsntm fo@) max g(\,v)
filz) <0, Vi=1,. S
hi(x) =0, Vi=1,. k; -

@ Dual solutions serves as a certificate of optimality
o If fo(x) = g(\,v), and both are feasible, then both are optimal.
o If fo(z) — g(\,v) < ¢, then both are within e of optimality.
e OPT(primal) and OPT(dual) lie in the interval [g()\, v), fo(z)]
@ Primal-dual algorithms use dual certificates to recognize
optimality, or bound sub-optimality.
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Complementary Slackness

Primal Problem

Dual Problem
min fo(z)
st max g(\, v)
fi(x) <0, Vi=1,...,m. f\to
hi(z) =0, Vi=1,... k. >

If strong duality holds, and z* and (\*, v*) are optimal, then
@ z* minimizes L(x, \*,v*) over all x.
@ X\ fi(z*) = 0 for all i. (Complementary Slackness)
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Complementary Slackness

Primal Problem Dual Problem

rSn’ln o) max g(\, v)
fi(x) <0, Vi=1,...,m. it> ;
hi(z) =0, Vi=1,... k. >

If strong duality holds, and z* and (\*, v*) are optimal, then
@ z* minimizes L(x, \*,v*) over all x.
@ X\ fi(z*) = 0 for all i. (Complementary Slackness)

k

< fo(z Zx\"‘fZ Zuz‘hi(m
i=1

< fo(z")
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Complementary Slackness

Primal Problem Dual Problem

rSn’ln o) max g(\, v)
fi(x) <0, Vi=1,...,m. §t> ;
hi(z) =0, Vi=1,... k. >

If strong duality holds, and z* and (\*, v*) are optimal, then
@ z* minimizes L(x, \*,v*) over all x.
@ X\ fi(z*) = 0 for all i. (Complementary Slackness)

Interpretation

@ Lagrange multipliers (\*,v*) “simulate” the primal feasibility
constraints

@ Interpreting \; as the “value” of the i’th constraint, at optimality
only the binding constraints are “valuable”

o Recall economic interpretation of LP
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min fo() max g(\,v)
s.t.

AN 1) A0

—1
i=1,...,k

KKT Conditions

When strong duality holds, the primal problem is convex, and the
constraint functions are differentiable, 2* and (\*, v*) are optimal iff:

@ z* and (\*,v*) are feasible
@ X\ fi(z*) = 0 (Complementary Slackness)

0 VoL(a®, X", v*) = v fole”)+ 7 N v file)+ i, v Vhi(e®) =0

v

Optimality Conditions 3/6



min fo() max g(\,v)

s.t. st
hi(@) =0, Vi=1,... .k =

KKT Conditions

When strong duality holds, the primal problem is convex, and the
constraint functions are differentiable, 2* and (\*, v*) are optimal iff:

@ z* and (\*,v*) are feasible
@ X\ fi(z*) = 0 (Complementary Slackness)

® VuL(a*, X', 1) = Vfole)+ LIy NV file?)+ b, v Vhi(a®) =0

Why are KKT Conditions Useful?

@ Derive an analytical solution to some convex optimization
problems

@ Gain structural insights
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Example: Equality-constrained Quadratic Program

minimize %zTPm +qTx+r
subjectto Az =1b

@ KKT Conditions: Az* =band Px*+q+ ATv* =0
@ Simply a solution of a linear system with variables =* and v*.
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Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer i has budget m;, and there’s one divisible unit of each good.
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@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.

@ Buyer i has budget m;, and there’s one divisible unit of each good.
@ Does there exist a market equilibrium?

e Prices p; on items, such that each player can buy his favorite
bundle and the market clears.

Optimality Conditions 5/6



Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer i has budget m;, and there’s one divisible unit of each good.

@ Does there exist a market equilibrium?

e Prices p; on items, such that each player can buy his favorite
bundle and the market clears.

Eisenberg-Gale Convex Program

maximize ), m;log Zj g 7B
subjectto >, x;; <1, forjeG.
x>0

Optimality Conditions 5/6



Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer i has budget m;, and there’s one divisible unit of each good.

@ Does there exist a market equilibrium?

e Prices p; on items, such that each player can buy his favorite
bundle and the market clears.

Eisenberg-Gale Convex Program

maximize ), m;log Zj g 7B
subjectto >, x;; <1, forjeG.
x>0

Using KKT conditions, we can prove that the dual variables
corresponding to the item supply constraints are market-clearing
prices!
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