# CS675: Convex and Combinatorial Optimization Fall 2014 Optimality Conditions for Convex Optimization

Instructor: Shaddin Dughmi

## Outline

## Recall: Lagrangian Duality

#### Primal Problem

$$\begin{aligned} & \min \, f_0(x) \\ & \text{s.t.} \\ & f_i(x) \leq 0, \quad \forall i=1,\ldots,m. \\ & h_i(x) = 0, \quad \forall i=1,\ldots,k. \end{aligned}$$

#### **Dual Problem**

 $\max g(\lambda,\nu)$  s.t.  $\lambda \succeq 0$ 

## Recall: Lagrangian Duality

#### Primal Problem

 $\min f_0(x)$ 

s.t.

$$f_i(x) \le 0, \quad \forall i = 1, \dots, m.$$

$$h_i(x) = 0, \quad \forall i = 1, \dots, k.$$

#### **Dual Problem**

 $\max g(\lambda,\nu)$ 

s.t.

 $\lambda \succeq 0$ 

## Weak Duality

 $OPT(dual) \leq OPT(primal).$ 



## Recall: Lagrangian Duality

#### **Primal Problem**

 $\begin{aligned} & \min \ f_0(x) \\ & \text{s.t.} \\ & f_i(x) \leq 0, \quad \forall i=1,\ldots,m. \\ & h_i(x) = 0, \quad \forall i=1,\ldots,k. \end{aligned}$ 

#### **Dual Problem**

 $\max_{\mathbf{g}} g(\lambda, \nu)$  s.t.  $\lambda \succeq 0$ 

## Strong Duality

$$OPT(dual) = OPT(primal).$$



#### Dual Solution as a Certificate

#### Primal Problem

$$\begin{aligned} & \min f_0(x) \\ & \text{s.t.} \\ & f_i(x) \leq 0, \quad \forall i = 1, \dots, m. \\ & h_i(x) = 0, \quad \forall i = 1, \dots, k. \end{aligned}$$

#### **Dual Problem**

 $\begin{aligned} &\max \, g(\lambda,\nu) \\ &\text{s.t.} \\ &\lambda \succeq 0 \end{aligned}$ 

- Dual solutions serves as a certificate of optimality
- If  $f_0(x) = g(\lambda, \nu)$ , and both are feasible, then both are optimal.

#### Dual Solution as a Certificate

#### **Primal Problem**

 $\begin{aligned} & \min \, f_0(x) \\ & \text{s.t.} \\ & f_i(x) \leq 0, \quad \forall i=1,\ldots,m. \\ & h_i(x) = 0, \quad \forall i=1,\ldots,k. \end{aligned}$ 

#### **Dual Problem**

 $\begin{aligned} &\max \, g(\lambda,\nu) \\ &\text{s.t.} \\ &\lambda \succeq 0 \end{aligned}$ 

- Dual solutions serves as a certificate of optimality
- If  $f_0(x) = g(\lambda, \nu)$ , and both are feasible, then both are optimal.
- If  $f_0(x) g(\lambda, \nu) \le \epsilon$ , then both are within  $\epsilon$  of optimality.
  - OPT(primal) and OPT(dual) lie in the interval  $[g(\lambda, \nu), f_0(x)]$

#### Dual Solution as a Certificate

#### Primal Problem

 $\begin{aligned} & \min \, f_0(x) \\ & \text{s.t.} \\ & f_i(x) \leq 0, \quad \forall i=1,\ldots,m. \\ & h_i(x) = 0, \quad \forall i=1,\ldots,k. \end{aligned}$ 

#### **Dual Problem**

 $\max g(\lambda,\nu)$  s.t.  $\lambda \succeq 0$ 

- Dual solutions serves as a certificate of optimality
- If  $f_0(x) = g(\lambda, \nu)$ , and both are feasible, then both are optimal.
- If f<sub>0</sub>(x) − g(λ, ν) ≤ ε, then both are within ε of optimality.
   OPT(primal) and OPT(dual) lie in the interval [g(λ, ν), f<sub>0</sub>(x)]
- Primal-dual algorithms use dual certificates to recognize optimality, or bound sub-optimality.

## Complementary Slackness

#### Primal Problem

$$\begin{aligned} & \min f_0(x) \\ & \text{s.t.} \\ & f_i(x) \leq 0, \quad \forall i=1,\ldots,m. \\ & h_i(x) = 0, \quad \forall i=1,\ldots,k. \end{aligned}$$

#### **Dual Problem**

 $\begin{aligned} &\max g(\lambda,\nu)\\ &\text{s.t.}\\ &\lambda\succeq 0 \end{aligned}$ 

#### **Facts**

If strong duality holds, and  $x^*$  and  $(\lambda^*, \nu^*)$  are optimal, then

- $x^*$  minimizes  $L(x, \lambda^*, \nu^*)$  over all x.
- $\lambda_i^* f_i(x^*) = 0$  for all *i*. (Complementary Slackness)

## Complementary Slackness

Primal Problem

)

min  $f_0(x)$  s.t.

 $f_i(x) \le 0, \quad \forall i = 1, \dots, m.$  $h_i(x) = 0, \quad \forall i = 1, \dots, k.$ 

max

 $\max g(\lambda, \nu)$  s.t.  $\lambda \succeq 0$ 

**Dual Problem** 

## Facts

If strong duality holds, and  $x^*$  and  $(\lambda^*, \nu^*)$  are optimal, then

- $x^*$  minimizes  $L(x, \lambda^*, \nu^*)$  over all x.
- $\lambda_i^* f_i(x^*) = 0$  for all i. (Complementary Slackness)

#### Proof

$$f_0(x^*) = g(\lambda^*, \nu^*)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^k \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

## Complementary Slackness

Primal Problem

 $\begin{aligned} & \min \ f_0(x) \\ & \text{s.t.} \\ & f_i(x) \leq 0, \quad \forall i=1,\ldots,m. \\ & h_i(x) = 0, \quad \forall i=1,\ldots,k. \end{aligned}$ 

Dual Problem

 $\max g(\lambda, \nu)$  s.t.  $\lambda \succ 0$ 

#### **Facts**

If strong duality holds, and  $x^*$  and  $(\lambda^*, \nu^*)$  are optimal, then

- $x^*$  minimizes  $L(x, \lambda^*, \nu^*)$  over all x.
- $\lambda_i^* f_i(x^*) = 0$  for all i. (Complementary Slackness)

### Interpretation

- Lagrange multipliers  $(\lambda^*, \nu^*)$  "simulate" the primal feasibility constraints
- Interpreting  $\lambda_i$  as the "value" of the i'th constraint, at optimality only the binding constraints are "valuable"
  - Recall economic interpretation of LP

 $\begin{array}{ll} \min \, f_0(x) \\ \text{s.t.} \\ f_i(x) \leq 0, \quad \forall i=1,\ldots,m. \\ h_i(x) = 0, \quad \forall i=1,\ldots,k. \end{array} \qquad \begin{array}{ll} \max \, g(\lambda,\nu) \\ \text{s.t.} \\ \lambda \succeq 0 \end{array}$ 

#### **KKT Conditions**

When strong duality holds, the primal problem is convex, and the constraint functions are differentiable,  $x^*$  and  $(\lambda^*, \nu^*)$  are optimal iff:

- $x^*$  and  $(\lambda^*, \nu^*)$  are feasible
- $\lambda_i^* f_i(x^*) = 0$  (Complementary Slackness)

$$\begin{aligned} & \min f_0(x) \\ & \text{s.t.} \\ & f_i(x) \leq 0, \quad \forall i = 1, \dots, m. \\ & h_i(x) = 0, \quad \forall i = 1, \dots, k. \end{aligned}$$

$$\begin{aligned} &\max g(\lambda,\nu)\\ &\text{s.t.}\\ &\lambda\succeq 0 \end{aligned}$$

3/6

#### **KKT Conditions**

When strong duality holds, the primal problem is convex, and the constraint functions are differentiable,  $x^*$  and  $(\lambda^*, \nu^*)$  are optimal iff:

- $x^*$  and  $(\lambda^*, \nu^*)$  are feasible
- $\lambda_i^* f_i(x^*) = 0$  (Complementary Slackness)

#### Why are KKT Conditions Useful?

- Derive an analytical solution to some convex optimization problems
- Gain structural insights

## Example: Equality-constrained Quadratic Program

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x + r \\ \text{subject to} & Ax = b \end{array}$$

- KKT Conditions:  $Ax^* = b$  and  $Px^* + q + A^{\mathsf{T}}\nu^* = 0$
- Simply a solution of a linear system with variables  $x^*$  and  $\nu^*$ .

- Buyers B, and goods G.
- Buyer i has utility  $u_{ij}$  for each unit of good G.
- ullet Buyer i has budget  $m_i$ , and there's one divisible unit of each good.

- Buyers B, and goods G.
- Buyer i has utility u<sub>ij</sub> for each unit of good G.
- Buyer i has budget  $m_i$ , and there's one divisible unit of each good.
- Does there exist a market equilibrium?
  - Prices  $p_j$  on items, such that each player can buy his favorite bundle and the market clears.

- Buyers B, and goods G.
- Buyer i has utility  $u_{ij}$  for each unit of good G.
- Buyer i has budget  $m_i$ , and there's one divisible unit of each good.
- Does there exist a market equilibrium?
  - Prices  $p_j$  on items, such that each player can buy his favorite bundle and the market clears.

### Eisenberg-Gale Convex Program

```
\begin{array}{ll} \text{maximize} & \sum_i m_i \log \sum_j u_{ij} x_{ij} \\ \text{subject to} & \sum_i x_{ij} \leq 1, & \text{for } j \in G. \\ & x \succ 0 \end{array}
```

- Buyers B, and goods G.
- Buyer i has utility  $u_{ij}$  for each unit of good G.
- Buyer i has budget  $m_i$ , and there's one divisible unit of each good.
- Does there exist a market equilibrium?
  - Prices  $p_j$  on items, such that each player can buy his favorite bundle and the market clears.

#### Eisenberg-Gale Convex Program

$$\begin{array}{ll} \text{maximize} & \sum_i m_i \log \sum_j u_{ij} x_{ij} \\ \text{subject to} & \sum_i x_{ij} \leq 1, & \text{for } j \in G. \end{array}$$

Using KKT conditions, we can prove that the dual variables corresponding to the item supply constraints are market-clearing prices!

Optimality Conditions

5/6