CS675: Convex and Combinatorial Optimization Fall 2014 Submodular Function Optimization

Instructor: Shaddin Dughmi

Outline

Introduction to Submodular Functions

- Unconstrained Submodular Minimization
 - Definition and Examples
 - The Convex Closure and the Lovasz Extension
 - Wrapping up

Monotone Submodular Maximization s.t. a Matroid Constraint Definition and Examples Warmup: Cardinality Constraint

General Matroid Constraints

- We saw how matroids form a class of feasible sets over which optimization of modular objectives is tractable
- If matroids are discrete analogues of convex sets, then submodular functions are discrete analogues of convex/concave functions
 - Submodular functions behave like convex functions sometimes (minimization) and concave other times (maximization)
- Today we will introduce submodular functions, go through some examples, and mention some of their properties

- A set function takes as input a set, and outputs a real number
 - Inputs are subsets of some ground set X
 - $f: 2^X \to \mathbb{R}$
- We will focus on set functions where X is finite, and denote n=|X|

- A set function takes as input a set, and outputs a real number
 - Inputs are subsets of some ground set X
 - $f: 2^X \to \mathbb{R}$
- We will focus on set functions where X is finite, and denote n=|X|
- Equivalently: map points in the hypercube $\left\{0,1\right\}^n$ to the real numbers
 - Can be plotted as 2^n points in n+1 dimensional space

• We have already seen modular set functions

- Associate a weight w_i with each $i \in X$, and set $f(S) = \sum_{i \in S} w_i$
- Discrete analogue of linear functions

• We have already seen modular set functions

- Associate a weight w_i with each $i \in X$, and set $f(S) = \sum_{i \in S} w_i$
- Discrete analogue of linear functions
- Direct definition of modularity: $f(A) + f(B) = f(A \cap B) + f(A \cup B)$

- We have already seen modular set functions
 - Associate a weight w_i with each $i \in X$, and set $f(S) = \sum_{i \in S} w_i$
 - Discrete analogue of linear functions
 - Direct definition of modularity: $f(A) + f(B) = f(A \cap B) + f(A \cup B)$
- Supmodular/supermodular functions are weak analogues to convex/concave functions (in no particular order!)

- We have already seen modular set functions
 - Associate a weight w_i with each $i \in X$, and set $f(S) = \sum_{i \in S} w_i$
 - Discrete analogue of linear functions
 - Direct definition of modularity: $f(A) + f(B) = f(A \cap B) + f(A \cup B)$
- Supmodular/supermodular functions are weak analogues to convex/concave functions (in no particular order!)
- Other possibly useful properties a set function may have:
 - Monotone increasing or decreasing
 - Nonnegative: $f(A) \ge 0$ for all $S \subseteq X$
 - Normalized: $f(\emptyset) = 0$.

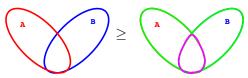
Definition 1

A set function $f: 2^X \to \mathbb{R}$ is submodular if and only if

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$

for all $A, B \subseteq X$.

• "Uncrossing" two sets reduces their total function value



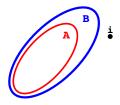
Definition 2

A set function $f: 2^X \to \mathbb{R}$ is submodular if and only if

$$f(B \cup \{i\}) - f(B) \le f(A \cup \{i\}) - f(A))$$

for all $A \subseteq B \subseteq X$ and $i \notin B$.

- The marginal value of an additional element exhibits "diminishing marginal returns"
- Should remind of concavity



Supermodular Functions

Definition 0

A set function $f: 2^X \to \mathbb{R}$ is supermodular if and only if -f is submodular.

Supermodular Functions

Definition 0

A set function $f : 2^X \to \mathbb{R}$ is supermodular if and only if -f is submodular.

Definition 1

A set function $f: 2^X \to \mathbb{R}$ is supermodular if and only if

$$f(A) + f(B) \le f(A \cap B) + f(A \cup B)$$

for all $A, B \subseteq X$.

Supermodular Functions

Definition 0

A set function $f : 2^X \to \mathbb{R}$ is supermodular if and only if -f is submodular.

Definition 1

A set function $f: 2^X \to \mathbb{R}$ is supermodular if and only if

$$f(A) + f(B) \le f(A \cap B) + f(A \cup B)$$

for all $A, B \subseteq X$.

Definition 2

A set function $f: 2^X \to \mathbb{R}$ is supermodular if and only if

$$f(B \cup \{i\}) - f(B) \ge f(A \cup \{i\}) - f(A))$$

for all $A \subseteq B \subseteq X$ and $i \notin B$.

Many common examples are monotone, normalized, and submodular. We mention some.

Coverage Functions

X is the left hand side of a graph, and f(S) is the total number of neighbors of $S. \label{eq:stable}$

• Can think of $i \in X$ as a set, and f(S) as the total "coverage" of S.

Many common examples are monotone, normalized, and submodular. We mention some.

Coverage Functions

X is the left hand side of a graph, and f(S) is the total number of neighbors of $S. \ensuremath{\mathbf{C}}$

• Can think of $i \in X$ as a set, and f(S) as the total "coverage" of S.

Probability

X is a set of probability events, and f(S) is the probability at least one of them occurs.

Social Influence

- X is the family of nodes in a social network
- A meme, idea, or product is adopted at a set of nodes S
- The idea propagates through the network through some random diffusion process
 - Many different models
- *f*(*S*) is the expected number of nodes in the network which end up adopting the idea.

Social Influence

- X is the family of nodes in a social network
- A meme, idea, or product is adopted at a set of nodes S
- The idea propagates through the network through some random diffusion process
 - Many different models
- *f*(*S*) is the expected number of nodes in the network which end up adopting the idea.

Utility Functions

When X is a set of goods, f(S) can represent the utility of an agent for a bundle of these goods. Utilities which exhibit diminishing marginal returns are natural in many settings.

Entropy

X is a set of random variables, and f(S) is the entropy of the joint distribution of a subset of them S.

Entropy

X is a set of random variables, and f(S) is the entropy of the joint distribution of a subset of them S.

Matroid Rank

The rank function of a matroid is monotone, submodular, and normalized.

Entropy

X is a set of random variables, and f(S) is the entropy of the joint distribution of a subset of them S.

Matroid Rank

The rank function of a matroid is monotone, submodular, and normalized.

Clustering Quality

X is the set of nodes in a graph G, and f(S) = E(S) is the internal connectedness of cluster S.

Supermodular

Examples

There are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental.

Graph Cuts

X is the set of nodes in a graph G, and f(S) is the number of edges crossing the cut $(S, X \setminus S)$.

- Submodular
- Non-monotone.

Examples

There are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental.

Graph Cuts

X is the set of nodes in a graph G, and f(S) is the number of edges crossing the cut $(S, X \setminus S)$.

- Submodular
- Non-monotone.

Graph Density

X is the set of nodes in a graph *G*, and $f(S) = \frac{E(S)}{|S|}$ where E(S) is the number of edges with both endpoints in *S*.

- Non-monotone
- Neither submodular nor supermodular

Examples

There are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental.

Graph Cuts

X is the set of nodes in a graph G, and f(S) is the number of edges crossing the cut $(S, X \setminus S)$.

- Submodular
- Non-monotone.

Graph Density

X is the set of nodes in a graph *G*, and $f(S) = \frac{E(S)}{|S|}$ where E(S) is the number of edges with both endpoints in *S*.

- Non-monotone
- Neither submodular nor supermodular
- However, maximizing it reduces to maximizing supermodular function $E(S) \alpha |S|$ for various $\alpha > 0$ (binary search)

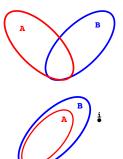
Equivalence of Both Definitions

Definition 1

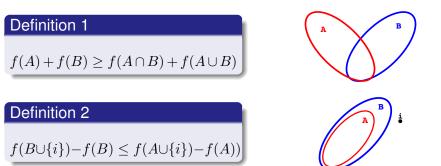
$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$

Definition 2

$$f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A))$$



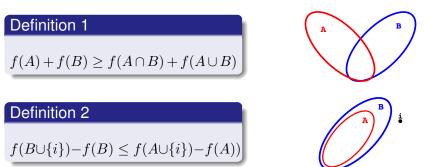
Equivalence of Both Definitions



Definition 1 \Rightarrow Definition 2

• To prove (2), let $A' = A \bigcup \{i\}$ and B' = B and apply (1) $f(A \cup \{i\}) + f(B) = f(A') + f(B')$ $\ge f(A' \cap B') + f(A' \cup B')$ $= f(A) + f(B \cup \{i\})$

Equivalence of Both Definitions



Definition $2 \Rightarrow$ Definition 1

- To prove (1), start with *A* = *B* and repeatedly elements to one but not the other
- At each step, (2) implies that the LHS of inequality (1) increases more than the RHS

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_1, \ldots, f_k are submodular, and $w_1, \ldots, w_k \ge 0$, then $g(S) = \sum_i w_i f_i(S)$ is also submodular
 - Special case: adding or subtracting a modular function

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_1, \ldots, f_k are submodular, and $w_1, \ldots, w_k \ge 0$, then $g(S) = \sum_i w_i f_i(S)$ is also submodular
 - Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S) = f(S \cap T)$ is submodular

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_1, \ldots, f_k are submodular, and $w_1, \ldots, w_k \ge 0$, then $g(S) = \sum_i w_i f_i(S)$ is also submodular
 - Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S) = f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_T(S) = f(S \cup T)$ is submodular

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_1, \ldots, f_k are submodular, and $w_1, \ldots, w_k \ge 0$, then $g(S) = \sum_i w_i f_i(S)$ is also submodular
 - Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S) = f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_T(S) = f(S \cup T)$ is submodular
- Reflection: If *f* is a submodular function on *X*, then $\overline{f}(S) = f(X \setminus S)$ is also submodular

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_1, \ldots, f_k are submodular, and $w_1, \ldots, w_k \ge 0$, then $g(S) = \sum_i w_i f_i(S)$ is also submodular
 - Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S) = f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_T(S) = f(S \cup T)$ is submodular
- Reflection: If *f* is a submodular function on *X*, then $\overline{f}(S) = f(X \setminus S)$ is also submodular
- Others: Dilworth trucation, convolution with modular functions, ...

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_1, \ldots, f_k are submodular, and $w_1, \ldots, w_k \ge 0$, then $g(S) = \sum_i w_i f_i(S)$ is also submodular
 - Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S) = f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_T(S) = f(S \cup T)$ is submodular
- Reflection: If *f* is a submodular function on *X*, then $\overline{f}(S) = f(X \setminus S)$ is also submodular
- Others: Dilworth trucation, convolution with modular functions, ...

Note

The minimum or maximum of two submodular functions is not necessarily submodular

Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$rac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constriants)	

Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$rac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constriants)	

Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$rac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constriants)	

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating f(S).

Introduction to Submodular Functions

Unconstrained Submodular Minimization

- Definition and Examples
- The Convex Closure and the Lovasz Extension
- Wrapping up

3 Monotone Submodular Maximization s.t. a Matroid Constraint

- Definition and Examples
- Warmup: Cardinality Constraint
- General Matroid Constraints

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constraints)	

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constraints)	

Given a submodular function $f: 2^X \to \mathbb{R}$ on a finite ground set X,

 $\begin{array}{ll} \mbox{minimize} & f(S) \\ \mbox{subject to} & S \subseteq X \end{array}$

- We denote n = |X|
- We assume f(S) is a rational number with at most b bits

Given a submodular function $f: 2^X \to \mathbb{R}$ on a finite ground set X,

 $\begin{array}{ll} \mbox{minimize} & f(S) \\ \mbox{subject to} & S \subseteq X \end{array}$

- We denote n = |X|
- We assume f(S) is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating f(S) in constant time.

Given a submodular function $f: 2^X \to \mathbb{R}$ on a finite ground set X,

 $\begin{array}{ll} \text{minimize} & f(S) \\ \text{subject to} & S \subseteq X \end{array}$

- We denote n = |X|
- We assume f(S) is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating f(S) in constant time.

Goal

An algorithm which runs in time polynomial in n and b.

Given a submodular function $f: 2^X \to \mathbb{R}$ on a finite ground set X,

 $\begin{array}{ll} \mbox{minimize} & f(S) \\ \mbox{subject to} & S \subseteq X \end{array}$

- We denote n = |X|
- We assume f(S) is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating f(S) in constant time.

Goal

An algorithm which runs in time polynomial in n and b.

Note: weakly polynomial. There are strongly polytime algorithms.

Unconstrained Submodular Minimization

Minimum Cut

Given a graph G = (V, E), find a set $S \subseteq V$ minimizing the number of edges crossing the cut $(S, V \setminus S)$.

- *G* may be directed or undirected.
- Extends to hypergraphs.

Minimum Cut

Given a graph G = (V, E), find a set $S \subseteq V$ minimizing the number of edges crossing the cut $(S, V \setminus S)$.

- *G* may be directed or undirected.
- Extends to hypergraphs.

Densest Subgraph

Given an undirected graph G = (V, E), find a set $S \subseteq V$ maximizing the average internal degree.

• Reduces to supermodular maximization via binary search for the right density.

Continuous Extensions of a Set Function

Recall

A set function f on $X = \{1, ..., n\}$ with can be thought of as a map from the vertices $\{0, 1\}^n$ of the *n*-dimensional hypercube to the real numbers.

Continuous Extensions of a Set Function

Recall

A set function f on $X = \{1, ..., n\}$ with can be thought of as a map from the vertices $\{0, 1\}^n$ of the *n*-dimensional hypercube to the real numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function

Given a set function $f : \{0, 1\}^n \to \mathbb{R}$, an extension of f to the hypercube $[0, 1]^n$ is a function $g : [0, 1]^n \to \mathbb{R}$ satisfying g(x) = f(x) for every $x \in \{0, 1\}^n$.

Continuous Extensions of a Set Function

Recall

A set function f on $X = \{1, ..., n\}$ with can be thought of as a map from the vertices $\{0, 1\}^n$ of the *n*-dimensional hypercube to the real numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function

Given a set function $f : \{0, 1\}^n \to \mathbb{R}$, an extension of f to the hypercube $[0, 1]^n$ is a function $g : [0, 1]^n \to \mathbb{R}$ satisfying g(x) = f(x) for every $x \in \{0, 1\}^n$.

Long story short...

We will exhibit an extension which is convex when f is submodular, and can be minimized efficiently. We will then show that minimizing it yields a solution to the submodular minimization problem.

The Convex Closure

Convex Closure

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, the convex closure $f^- : [0,1]^n \to \mathbb{R}$ of f is the point-wise greatest convex function under-estimating f on $\{0,1\}^n$.

The Convex Closure

Convex Closure

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, the convex closure $f^- : [0,1]^n \to \mathbb{R}$ of f is the point-wise greatest convex function under-estimating f on $\{0,1\}^n$.

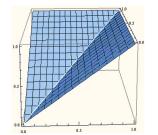
Geometric Intuition

What you would get by placing a blanket under the plot of f and pulling up.

$$\begin{split} f(\emptyset) &= 0 \\ f(\{1\}) &= f(\{2\}) = 1 \\ f(\{1,2\}) &= 1 \end{split}$$

$$f^{-}(x_1, x_2) = \max(x_1, x_2)$$

Unconstrained Submodular Minimization



17/52

The Convex Closure

Convex Closure

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, the convex closure $f^- : [0,1]^n \to \mathbb{R}$ of f is the point-wise greatest convex function under-estimating f on $\{0,1\}^n$.

Claim

The convex closure exists for any set function.

- If g₁, g₂ : [0,1]ⁿ → ℝ are convex under-estimators of f, then so is max {g₁, g₂}
- Holds for infinite set of convex under-estimators
- Therefore $f^- = \max \{g : g \text{ is a convex underestimator of } f\}$ is the point-wise greatest convex underestimator of f.

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

Interpretation

- The minimum expected value of *f* over all distributions on $\{0,1\}^n$ with expectation *x*.
- Equivalently: the minimum expected value of f for a random set $S \subseteq X$ including each $i \in X$ with probability x_i .
- The upper bound on $f^{-}(x)$ implied by applying Jensen's inequality to every convex combination $\{0,1\}^{n}$.

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \quad \text{for } y \in \{0,1\}^n \,. \end{array}$$

Implication

• f^- is a convex extension of f.

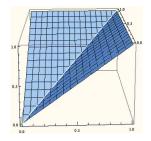
- $f^{-}(x)$ has no "integrality gap"
 - For every $x \in [0,1]^n$, there is a random integer vector $y \in \{0,1\}^n$ such that $\mathbf{E}_y f(y) = f^-(x)$.
 - Therefore, there is an integer vector y such that $f(y) \leq f^{-}(x)$.

The value of the convex closure at $x \in [0, 1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \geq 0, \end{array} \quad \text{for } y \in \{0,1\}^n \,. \end{array}$$

$$\begin{array}{l} f(\emptyset) = 0 \\ f(\{1\}) = f(\{2\}) = 1 \\ f(\{1,2\}) = 1 \end{array}$$

When $x_1 \le x_2$ $f^-(x_1, x_2) = x_1 f(\{1, 2\})$ $+ (x_2 - x_1) f(\{2\})$ $+ (1 - x_2) f(\emptyset)$



The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

Proof

• OPT(x) is at least $f^{-}(x)$ for every x: By Jensen's inequality

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

- OPT(x) is at least $f^{-}(x)$ for every x: By Jensen's inequality
- To show that OPT(x) is equal to $f^{-}(x)$, suffices to show that is a convex under-estimate of f

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

- OPT(x) is at least $f^{-}(x)$ for every x: By Jensen's inequality
- To show that OPT(x) is equal to $f^{-}(x)$, suffices to show that is a convex under-estimate of f
- Under-estimate: OPT(x) = f(x) for $x \in \{0, 1\}^n$

The value of the convex closure at $x \in [0,1]^n$ is the solution of the following optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{y \in \{0,1\}^n} \lambda_y f(y) \\ \text{subject to} & \sum_{y \in \{0,1\}^n} \lambda_y y = x \\ & \sum_{y \in \{0,1\}^n} \lambda_y = 1 \\ & \lambda_y \ge 0, \end{array} \text{ for } y \in \{0,1\}^n \,. \end{array}$$

- OPT(x) is at least $f^{-}(x)$ for every x: By Jensen's inequality
- To show that OPT(x) is equal to $f^{-}(x)$, suffices to show that is a convex under-estimate of f
- Under-estimate: OPT(x) = f(x) for $x \in \{0, 1\}^n$
- Convex: The value of a minimization LP is convex in its right hand side constants (check)

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

•
$$f^-(y) = f(y)$$
 for every $y \in \{0,1\}^n$

• Therefore
$$\min_{x \in [0,1]^n} f^-(x) \le \min_{y \in \{0,1\}^n} f(y)$$

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

- $f^-(y) = f(y)$ for every $y \in \{0,1\}^n$
- Therefore $\min_{x \in [0,1]^n} f^-(x) \le \min_{y \in \{0,1\}^n} f(y)$
- For every x, f⁻(x) is the expected value of f(y), for a random variable y ∈ {0,1}ⁿ with expectation x.
- Therefore, $\min_{x \in [0,1]^n} f^-(x) \ge \min_{y \in \{0,1\}^n} f(y)$

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Good News?

We reduced minimizing set function f to minimizing a convex function f^- over a convex set $[0, 1]^n$. Are we done?

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Good News?

We reduced minimizing set function f to minimizing a convex function f^- over a convex set $[0, 1]^n$. Are we done?

Problem

In general, it is hard to evaluate f^- efficiently, let alone its derivative. This is indispensible for convex optimization algorithms.

The minimum of f^- is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Good News?

We reduced minimizing set function f to minimizing a convex function f^- over a convex set $[0, 1]^n$. Are we done?

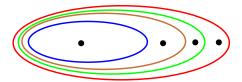
Problem

In general, it is hard to evaluate f^- efficiently, let alone its derivative. This is indispensible for convex optimization algorithms.

We will show that, when f is submodular, f^- is in fact equivalent to another extension which is easier to evaluate.

Chain Distribution

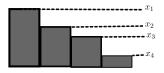
A chain distribution on the ground set X is a distribution over $S \subseteq X$ who's support forms a chain in the inclusion order.

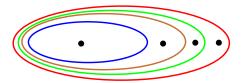


Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set $X = \{1, ..., n\}$. The chain distribution with marginals $x \in [0, 1]^n$ is the unique chain distribution $D^{\mathcal{L}}(x)$ satisfying $\mathbf{Pr}_{S \sim D^{\mathcal{L}}(x)}[i \in S] = x_i$ for all $i \in X$.

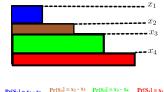


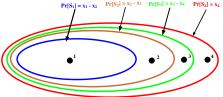


Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set $X = \{1, ..., n\}$. The chain distribution with marginals $x \in [0, 1]^n$ is the unique chain distribution $D^{\mathcal{L}}(x)$ satisfying $\mathbf{Pr}_{S \sim D^{\mathcal{L}}(x)}[i \in S] = x_i$ for all $i \in X$.

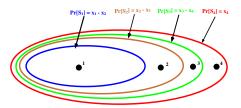




Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set $X = \{1, ..., n\}$. The chain distribution with marginals $x \in [0, 1]^n$ is the unique chain distribution $D^{\mathcal{L}}(x)$ satisfying $\mathbf{Pr}_{S \sim D^{\mathcal{L}}(x)}[i \in S] = x_i$ for all $i \in X$.



 $D^{\mathcal{L}}(x)$ is the distribution given by the following process:

- Sort $x_1 \ge x_2 \ldots \ge x_n$
- Let $S_i = \{x_1, \dots, x_i\}$
- Let $\Pr[S_i] = x_i x_{i+1}$

Definition

The Lovasz extension of a set function f is defined as follows.

$$f^{\mathcal{L}}(x) = \mathop{\mathbf{E}}_{S \sim D^{\mathcal{L}}(x)} f(S)$$

i.e. the Lovasz extension at x is the expected value of a set drawn from the unique chain distribution with marginals x.

Observations

• $f^{\mathcal{L}}$ is an extension, since the chain distribution with marginals $y \in \{0,1\}^n$ is the point distribution at y.

Definition

The Lovasz extension of a set function f is defined as follows.

$$f^{\mathcal{L}}(x) = \mathop{\mathbf{E}}_{S \sim D^{\mathcal{L}}(x)} f(S)$$

i.e. the Lovasz extension at x is the expected value of a set drawn from the unique chain distribution with marginals x.

Observations

- $f^{\mathcal{L}}$ is an extension, since the chain distribution with marginals $y \in \{0,1\}^n$ is the point distribution at y.
- $f^{\mathcal{L}}(x)$ is the expected value of f on some distribution on $\{0, 1\}^n$ with marginals x, therefore $f^{\mathcal{L}}(x) \ge f^{-}(x)$.

Definition

The Lovasz extension of a set function f is defined as follows.

$$f^{\mathcal{L}}(x) = \mathop{\mathbf{E}}_{S \sim D^{\mathcal{L}}(x)} f(S)$$

i.e. the Lovasz extension at x is the expected value of a set drawn from the unique chain distribution with marginals x.

Observations

- $f^{\mathcal{L}}$ is an extension, since the chain distribution with marginals $y \in \{0,1\}^n$ is the point distribution at y.
- $f^{\mathcal{L}}(x)$ is the expected value of f on some distribution on $\{0, 1\}^n$ with marginals x, therefore $f^{\mathcal{L}}(x) \ge f^-(x)$.
- Together, those imply: if $f^{\mathcal{L}}$ is convex, then $f^{\mathcal{L}} = f^{-}$.

Equivalence of the Convex Closure and Lovasz Extension

Theorem

If f is submodular, then $f^{\mathcal{L}} = f^{-}$.

Converse holds: if f is not submodular, then $f^{\mathcal{L}}$ is not convex.

Equivalence of the Convex Closure and Lovasz Extension

Theorem

If f is submodular, then $f^{\mathcal{L}} = f^{-}$.

Converse holds: if f is not submodular, then $f^{\mathcal{L}}$ is not convex.

Intuition

- Recall: *f*⁻(*x*) evaluates *f* on the "lowest" distribution with marginals *x*
- It turns out that, when f is submodular, this lowest distribution is the chain distribution $D^{\mathcal{L}}(x)$.

Equivalence of the Convex Closure and Lovasz Extension

Theorem

If f is submodular, then $f^{\mathcal{L}} = f^{-}$.

Converse holds: if f is not submodular, then $f^{\mathcal{L}}$ is not convex.

Intuition

- Recall: *f*⁻(*x*) evaluates *f* on the "lowest" distribution with marginals *x*
- It turns out that, when f is submodular, this lowest distribution is the chain distribution $D^{\mathcal{L}}(x)$.
- Contingent on marginals x, submodularity implies that cost is minimized by "packing" as many elements together as possible
 - diminishing marginal returns
- This gives the chain distribution

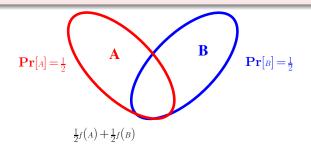
It suffices to show that the chain distribution with marginals x is in fact the "lowest" distribution with marginals x.

Proof (Special case)

It suffices to show that the chain distribution with marginals x is in fact the "lowest" distribution with marginals x.

Proof (Special case)

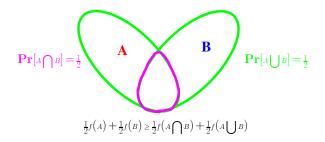
• Consider a distribution \mathcal{D} on two "crossing" sets A and B, with probability 0.5 each.



It suffices to show that the chain distribution with marginals x is in fact the "lowest" distribution with marginals x.

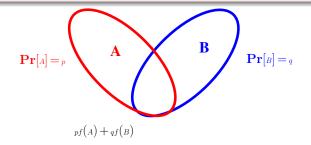
Proof (Special case)

- Consider a distribution \mathcal{D} on two "crossing" sets A and B, with probability 0.5 each.
- "uncrossing" implies that replacing them with A ∩ B and A ∪ B, with probability 0.5 each, gives a chain distribution with lower expected value of f.

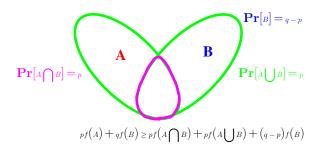


Unconstrained Submodular Minimization

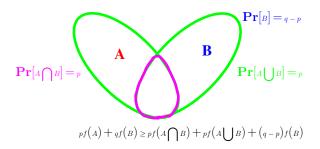
 Consider a distribution D on two "crossing" sets A and B, with probabilities p ≤ q.



- Consider a distribution D on two "crossing" sets A and B, with probabilities p ≤ q.
- Can "uncross" a probability mass of *p* of each, decreasing the expected value of *f*

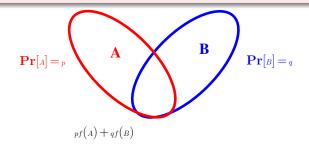


- Consider a distribution D on two "crossing" sets A and B, with probabilities p ≤ q.
- Can "uncross" a probability mass of *p* of each, decreasing the expected value of *f*
- Now a chain distribution

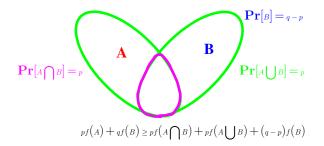


Unconstrained Submodular Minimization

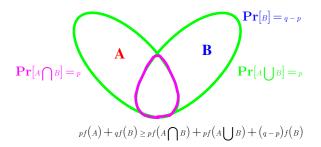
• Consider a distribution \mathcal{D} which includes two "crossing" sets A and B in its support



- Consider a distribution \mathcal{D} which includes two "crossing" sets A and B in its support
- Can "uncross" a probability mass of $\min(\mathbf{Pr}[A], \mathbf{Pr}[B])$ of each, decreasing expected value of f



- Consider a distribution \mathcal{D} which includes two "crossing" sets A and B in its support
- Can "uncross" a probability mass of $\min(\mathbf{Pr}[A], \mathbf{Pr}[B])$ of each, decreasing expected value of f
- Decreases number of crossing pairs of sets in the support.
 - Closer to being a chain distribution.



Minimizing the Lovasz Extension

Because $f^{\mathcal{L}} = f^{-}$, we know the following:

Fact

The minimum of $f^{\mathcal{L}}$ is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Minimizing the Lovasz Extension

Because $f^{\mathcal{L}} = f^{-}$, we know the following:

Fact

The minimum of $f^{\mathcal{L}}$ is equal to the minimum of f, and moreover is attained at minimizers $y \in \{0, 1\}^n$ of f.

Therefore, minimizing f reduces to the following convex optimization problem

Minimizing the Lovasz Extension	
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$

Weak Solvability

An algorithm weakly solves our optimization problem if it takes in approximation parameter $\epsilon > 0$, runs in $poly(n, \log \frac{1}{\epsilon})$ time, and returns $x \in [0, 1]^n$ which is ϵ -optimal:

$$f^{\mathcal{L}}(x) \le \min_{y \in [0,1]^n} f^{\mathcal{L}}(y) + \epsilon [\max_{y \in [0,1]^n} f^{\mathcal{L}}(y) - \min_{y \in [0,1]^n} f^{\mathcal{L}}(y)]$$

Polynomial Solvability of CP

In order to weakly minimize $f^{\mathcal{L}}$, we need the following operations to run in poly(n) time:

Compute a starting ellipsoid $E \supseteq [0,1]^n$ with $\frac{\operatorname{vol}(E)}{\operatorname{vol}([0,1]^n)} = O(\exp(n)).$

- 2 A separation oracle for the feasible set $[0,1]^n$
- A first order oracle for f^L: evaluates f^L(x) and a subgradient of f^L at x.

Polynomial Solvability of CP

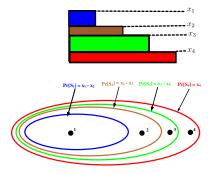
In order to weakly minimize $f^{\mathcal{L}}$, we need the following operations to run in poly(n) time:

Compute a starting ellipsoid $E \supseteq [0,1]^n$ with $\frac{\operatorname{vol}(E)}{\operatorname{vol}([0,1]^n)} = O(\exp(n)).$

- **2** A separation oracle for the feasible set $[0, 1]^n$
- A first order oracle for f^L: evaluates f^L(x) and a subgradient of f^L at x.

1 and 2 are trivial.

First order Oracle for $f^{\mathcal{L}}$



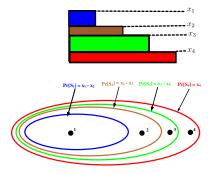
• Recall: the chain distribution with marginals x

• Sort
$$x_1 \ge x_2 \ldots \ge x_n$$

• Let
$$S_i = \{x_1, \dots, x_i\}$$

• Let
$$\mathbf{Pr}[S_i] = x_i - x_{i+1}$$

First order Oracle for $f^{\mathcal{L}}$



• Recall: the chain distribution with marginals x

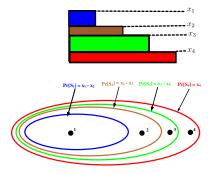
• Sort
$$x_1 \ge x_2 \ldots \ge x_n$$

• Let
$$S_i = \{x_1, \dots, x_i\}$$

• Let
$$\mathbf{Pr}[S_i] = x_i - x_{i+1}$$

• Can evaluate $f^{\mathcal{L}}(x) = \sum_{i} f(S_i)(x_i - x_{i+1})$

First order Oracle for $f^{\mathcal{L}}$



• Recall: the chain distribution with marginals x

• Sort
$$x_1 \ge x_2 \ldots \ge x_n$$

• Let
$$S_i = \{x_1, \dots, x_i\}$$

• Let
$$\Pr[S_i] = x_i - x_{i+1}$$

• Can evaluate $f^{\mathcal{L}}(x) = \sum_{i} f(S_i)(x_i - x_{i+1})$

• $f^{\mathcal{L}}$ is peicewise linear, so can compute a sub-gradient.

Unconstrained Submodular Minimization

We can get an $\epsilon\text{-optimal solution }x^*$ to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

We can get an $\epsilon\text{-optimal solution }x^*$ to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

• Set $\epsilon < 2^{-b}$, runtime is poly(n, b).

We can get an ϵ -optimal solution x^* to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

Set ε < 2^{-b}, runtime is poly(n, b).
 min_S f(S) ≤ f^L(x*) < min 2_Sf(S)

We can get an ϵ -optimal solution x^* to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

- Set $\epsilon < 2^{-b}$, runtime is poly(n, b).
- $\min_S f(S) \le f^{\mathcal{L}}(x^*) < \min 2_S f(S)$
- $f^{\mathcal{L}}(x^*)$ is the expectation f over a distribution of sets
 - It must include an optimal set in its support

We can get an ϵ -optimal solution x^* to the optimization problem in $\mathrm{poly}(n,\log\frac{1}{\epsilon})$ time.

Minimizing the Lovasz Extension		
minimize subject to	$f^{\mathcal{L}}(x) x \in [0,1]^n$	

- Set $\epsilon < 2^{-b}$, runtime is poly(n, b).
- $\min_S f(S) \le f^{\mathcal{L}}(x^*) < \min 2_S f(S)$
- $f^{\mathcal{L}}(x^*)$ is the expectation f over a distribution of sets
 - It must include an optimal set in its support
- We can identify this set by examining the chain distribution with marginals *x*^{*}

Introduction to Submodular Functions

- 2 Unconstrained Submodular Minimization
 - Definition and Examples
 - The Convex Closure and the Lovasz Extension
 - Wrapping up

Monotone Submodular Maximization s.t. a Matroid Constraint

- Definition and Examples
- Warmup: Cardinality Constraint
- General Matroid Constraints

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Ūsually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constriants)	

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Ūsually NP-hard	Usually NP-hard to apx.
	1-1/e (mono, matroid)	Few easy special cases
	O(1) ("nice" constriants)	

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

 $\begin{array}{ll} \mbox{maximize} & f(S) \\ \mbox{subject to} & S \in \mathcal{I} \end{array}$

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset) = 0$.

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

 $\begin{array}{ll} \mbox{maximize} & f(S) \\ \mbox{subject to} & S \in \mathcal{I} \end{array}$

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset) = 0$.
- We denote n = |X|

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

 $\begin{array}{ll} \mbox{maximize} & f(S) \\ \mbox{subject to} & S \in \mathcal{I} \end{array}$

- \bullet Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset) = 0$.
- We denote n = |X|

Representation

As before, we work in the value oracle and independence oracle models. Namely, we assume we have access to a subroutine evaluating f(S), and a subroutine for checking whether $S \in \mathcal{I}$, each in constant time.

Maximum Coverage

X is the left hand side of a graph, and f(S) is the total number of neighbors of $S. \ensuremath{\mathsf{S}}$

• Can think of $i \in X$ as a set, and f(S) as the total "coverage" of S.

Goal is to cover as much of the RHS as possible with k LHS nodes.

Social Influence

- X is the family of nodes in a social network
- $\bullet\,$ A meme, idea, or product is adopted at a set of nodes S
- *f*(*S*) is the expected number of nodes in the network which end up adopting the idea.
- · Goal is to obtain maximum influence subject to a constraint
 - Cardinality
 - Transversal
 - . . .

Combinatorial Allocation

- G is a set of goods
- $f_i(B)$ is submodular utility of agent $i \in N$ for bundle $B \subseteq G$
- Allocation: A partition (B_1, \ldots, B_n) of *G* among agents.
- Aggregate utility is $\sum_i f_i(B_i)$.

Combinatorial Allocation

- G is a set of goods
- $f_i(B)$ is submodular utility of agent $i \in N$ for bundle $B \subseteq G$
- Allocation: A partition (B_1, \ldots, B_n) of *G* among agents.
- Aggregate utility is $\sum_i f_i(B_i)$.
- Let $X = G \times N$ be the set of good/agent pairs
- Allocations correspond to subsets *S* of *X* in which at most one "copy" of each good is chosen
 - Partition matroid constraint
- $f(S) = \sum_{i \in N} f_i(\{j \in G : (j,i) \in X\})$
 - Submodular

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of 1 - 1/e.

Holds even for max coverage

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of 1 - 1/e.

Holds even for max coverage

Goal

An algorithm in the value oracle model which

- Runs in time poly(n)
- Returns a feasible set S^{*} ∈ I satisfying f(S^{*}) ≥ (1 − 1/e) max_{S∈I} f(S).

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of 1 - 1/e.

• Holds even for max coverage

Goal

An algorithm in the value oracle model which

- Runs in time poly(n)
- Returns a feasible set $S^* \in \mathcal{I}$ satisfying $f(S^*) \ge (1 1/e) \max_{S \in \mathcal{I}} f(S)$.

Holds for arbitrary matroid, but much simpler for uniform matroids.

Problem Definition

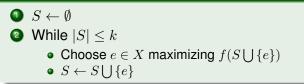
Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set X with |X| = n, and an integer $k \le n$ maximize f(S)subject to $|S| \le k$

k-uniform matroid constraint

Monotone Submodular Maximization s.t. a Matroid Constraint

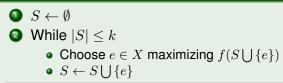
The following is the straightforward adaptation of the greedy algorithm for maximizing modular functions over a matroid.

The Greedy Algorithm



The following is the straightforward adaptation of the greedy algorithm for maximizing modular functions over a matroid.

The Greedy Algorithm



Theorem

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Let
$$f : 2^X \to \mathbb{R}$$
 and $A \subseteq X$. Define $f_A(S) = f(A \bigcup S) - f(A)$.

Lemma

If f is monotone and submodular, then f_A is monotone, submodular, and normalized for any A.

Let
$$f : 2^X \to \mathbb{R}$$
 and $A \subseteq X$. Define $f_A(S) = f(A \bigcup S) - f(A)$.

Lemma

If f is monotone and submodular, then f_A is monotone, submodular, and normalized for any A.

Proof

Normalized: trivial

Let
$$f : 2^X \to \mathbb{R}$$
 and $A \subseteq X$. Define $f_A(S) = f(A \bigcup S) - f(A)$.

Lemma

If f is monotone and submodular, then f_A is monotone, submodular, and normalized for any A.

- Normalized: trivial
- Monotone:
 - Let $S \subseteq T$
 - $f_A(S) = f(S \cup A) f(A) \le f(T \cup A) f(A) = f_A(T).$

Let
$$f : 2^X \to \mathbb{R}$$
 and $A \subseteq X$. Define $f_A(S) = f(A \bigcup S) - f(A)$.

Lemma

If f is monotone and submodular, then f_A is monotone, submodular, and normalized for any A.

Proof

- Normalized: trivial
- Monotone:
 - Let $S \subseteq T$

•
$$f_A(S) = f(S \cup A) - f(A) \le f(T \cup A) - f(A) = f_A(T)$$

Submodular:

$$f_A(S) + f_A(T) = f(S \cup A) - f(A) + f(T \cup A) - f(A)$$

$$\geq f(S \cup T \cup A) - f(A) + f((S \cap T) \cup A) - f(A)$$

$$= f_A(S \cup T) - f_A(S \cap T)$$

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \ge \frac{1}{|A|}f(A)$.

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \ge \frac{1}{|A|}f(A)$.

Proof

• If A_1, A_2 partition A, then

 $f(A_1) + f(A_2) \ge f(A_1 \cup A_2) + f(A_1 \cap A_2) = f(A)$

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \ge \frac{1}{|A|}f(A)$.

Proof

• If A_1, A_2 partition A, then

 $f(A_1) + f(A_2) \ge f(A_1 \cup A_2) + f(A_1 \cap A_2) = f(A)$

• Applying recursively, we get

$$\sum_{j \in A} f(\{j\}) \ge f(A)$$

Monotone Submodular Maximization s.t. a Matroid Constraint

If *f* is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \ge \frac{1}{|A|}f(A)$.

Proof

• If A_1, A_2 partition A, then

 $f(A_1) + f(A_2) \ge f(A_1 \cup A_2) + f(A_1 \cap A_2) = f(A)$

• Applying recursively, we get

$$\sum_{j \in A} f(\{j\}) \ge f(A)$$

• Therefore,
$$\max_{j \in A} f(\{j\}) \ge \frac{1}{|A|} f(A)$$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

• Let S be the working set in the algorithm

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- Let S be the working set in the algorithm
- Let S^* be optimal solution with $f(S^*) = OPT$.

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- Let S be the working set in the algorithm
- Let S^* be optimal solution with $f(S^*) = OPT$.
- We will show that the suboptimality OPT f(S) shrinks by a factor of (1 1/k) each iteration

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- Let S be the working set in the algorithm
- Let S^* be optimal solution with $f(S^*) = OPT$.
- We will show that the suboptimality OPT f(S) shrinks by a factor of (1 1/k) each iteration
- After k iterations, it has shrunk to $(1-1/k)^k \leq 1/e$ from its original value

$$OPT - f(S) \le \frac{1}{e}OPT$$

 $(1 - 1/e)OPT \le f(S)$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

• By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$
- By our lemmas, there is $j \in S^*$ s.t.

$$f_S(\{j\}) \ge \frac{1}{|S^*|} f_S(S^*)$$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$
- By our lemmas, there is $j \in S^*$ s.t.

$$f_S(\{j\}) \ge \frac{1}{|S^*|} f_S(S^*)$$

= $\frac{1}{k} (f(S \cup S^*) - f(S))$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

- By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$
- By our lemmas, there is $j \in S^*$ s.t.

$$f_{S}(\{j\}) \ge \frac{1}{|S^{*}|} f_{S}(S^{*})$$

= $\frac{1}{k} (f(S \cup S^{*}) - f(S))$
 $\ge \frac{1}{k} (OPT - f(S))$

The greedy algorithm is a (1 - 1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration f(S) increases by $\max_j f_S(\{j\})$
- By our lemmas, there is $j \in S^*$ s.t.

$$f_{S}(\{j\}) \ge \frac{1}{|S^{*}|} f_{S}(S^{*})$$

= $\frac{1}{k} (f(S \cup S^{*}) - f(S))$
 $\ge \frac{1}{k} (OPT - f(S))$

• Therefore, suboptimality decreases by factor of $1 - \frac{1}{k}$, as needed.

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

- The discrete greedy algorithm is no longer a 1 1/e approximation
 - It is, however, a 1/2 approximation

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

- The discrete greedy algorithm is no longer a 1 1/e approximation
 - It is, however, a 1/2 approximation
- Nevertheless, a continuous greedy algorithm gives 1 1/e

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^X \to \mathbb{R}_+$ on a finite ground set *X*, and a matroid $M = (X, \mathcal{I})$

- The discrete greedy algorithm is no longer a 1 1/e approximation
 - It is, however, a 1/2 approximation
- Nevertheless, a continuous greedy algorithm gives 1 1/e
- Approach resembles that for minimization
 - Define a continous extension of f
 - Optimize continuous extension over matroid polytope
 - Extract an integer point

Given a set function $f : \{0, 1\}^n \to \mathbb{R}$, its multilinear extension $F : [0, 1]^n \to \mathbb{R}$ evaluated at $x \in [0, 1]^n$ gives the expected value of f(S)for the random set S which includes each i independently with probability x_i .

$$F(x) = \sum_{S \subseteq X} f(S) \prod_{i \in S} x_i \prod_{i \neq S} (1 - x_i)$$

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, its multilinear extension $F : [0,1]^n \to \mathbb{R}$ evaluated at $x \in [0,1]^n$ gives the expected value of f(S)for the random set S which includes each i independently with probability x_i .

$$F(x) = \sum_{S \subseteq X} f(S) \prod_{i \in S} x_i \prod_{i \neq S} (1 - x_i)$$

• For each point x, evaluates f on the independent distribution D(x)

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, its multilinear extension $F : [0,1]^n \to \mathbb{R}$ evaluated at $x \in [0,1]^n$ gives the expected value of f(S)for the random set S which includes each i independently with probability x_i .

$$F(x) = \sum_{S \subseteq X} f(S) \prod_{i \in S} x_i \prod_{i \neq S} (1 - x_i)$$

- For each point x, evaluates f on the independent distribution D(x)
- Clearly an extension of *f*

Given a set function $f : \{0,1\}^n \to \mathbb{R}$, its multilinear extension $F : [0,1]^n \to \mathbb{R}$ evaluated at $x \in [0,1]^n$ gives the expected value of f(S)for the random set S which includes each i independently with probability x_i .

$$F(x) = \sum_{S \subseteq X} f(S) \prod_{i \in S} x_i \prod_{i \neq S} (1 - x_i)$$

- For each point x, evaluates f on the independent distribution D(x)
- Clearly an extension of f
- Not concave (or convex) in general
 - Recall f with $f(\emptyset)=0$ and $f(\{1\})=f(\{2\})=f(\{1,2\})=1$
 - $F(x) = 1 (1 x_1)(1 x_2)$

Easy Properties of the Multilinear Extension

Normalized

When f is normalized, F(0) = 0

Follows from the fact that F is an extension of f

Normalized

When f is normalized, F(0) = 0

Follows from the fact that F is an extension of f

Nondecreasing

When f is monotone non-decreasing, $F(x) \leq F(y)$ whenever $x \preceq y$ component-wise.

Increasing the probability of selecting each element increases the expected value.

Even though F is not concave, it is concave in "upwards" directions.

Up-concavity

Assume *f* is submodular. For every $\vec{a} \in [0, 1]^n$ and $\vec{d} \in [0, 1]^n$ satisfying $d \succeq 0$, the function $F(\vec{a} + \vec{d} t)$ is a concave function of $t \in \mathbb{R}$.

- This follows almost directly from diminishing marginal returns interpretation of submodularity.
- Proof sketch:
 - Up concave \equiv mixed derivatives $\frac{\partial^2 F}{\partial x_i \partial x_i}$ negative everywhere
 - Negative mixed derivatives follow from diminishing marginal returns

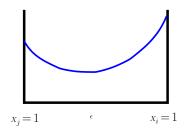
Cross-convexity

Nevertheless, F is convex in "cross" directions.

Cross-convexity

Assume f is submodular. For every $a \in [0, 1]^n$ and $\vec{d} = e_i - e_j$ for some $i, j \in X$, the function $F(\vec{a} + \vec{d} t)$ is a convex function of $t \in \mathbb{R}$.

- i.e. trading off one item's probability for anothers gives a convex curve
- Follows from submodularity: as we "remove" *j*, the marginal benefit of "adding" *i* increases



Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a 1 - 1/e approximation to the following continuous (non-convex) optimization problem.

 $\begin{array}{ll} \text{maximize} & F(x) \\ \text{subject to} & x \in \mathcal{P}(\mathcal{M}) \end{array}$

• i.e. Computes x^* s.t. $F(x^*) \ge (1 - 1/e) \max \{F(x) : x \in \mathcal{P}(\mathcal{M})\}$

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a 1 - 1/e approximation to the following continuous (non-convex) optimization problem.

 $\begin{array}{ll} \text{maximize} & F(x) \\ \text{subject to} & x \in \mathcal{P}(\mathcal{M}) \end{array}$

• i.e. Computes x^* s.t. $F(x^*) \ge (1 - 1/e) \max \{F(x) : x \in \mathcal{P}(\mathcal{M})\}$ • Note: $\max \{F(x) : x \in \mathcal{P}(\mathcal{M})\} \ge \max \{f(S) : S \in \mathcal{I}\}$

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a 1 - 1/e approximation to the following continuous (non-convex) optimization problem.

 $\begin{array}{ll} \text{maximize} & F(x) \\ \text{subject to} & x \in \mathcal{P}(\mathcal{M}) \end{array}$

- i.e. Computes x^* s.t. $F(x^*) \ge (1 1/e) \max \{F(x) : x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x) : x \in \mathcal{P}(\mathcal{M})\} \ge \max \{f(S) : S \in \mathcal{I}\}\$
- $D(x^*)$ is a distribution over sets with expected value at least (1-1/e) of our target
- Would we be done?

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a 1 - 1/e approximation to the following continuous (non-convex) optimization problem.

 $\begin{array}{ll} \text{maximize} & F(x) \\ \text{subject to} & x \in \mathcal{P}(\mathcal{M}) \end{array}$

- i.e. Computes x^* s.t. $F(x^*) \ge (1 1/e) \max \{F(x) : x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x) : x \in \mathcal{P}(\mathcal{M})\} \ge \max \{f(S) : S \in \mathcal{I}\}\$
- $D(x^*)$ is a distribution over sets with expected value at least (1-1/e) of our target
- Would we be done?

No! $D(x^*)$ may be mostly supported on infeasible sets (i.e. not independent in matroid \mathcal{M}).

Step B: Pipage Rounding

"Rounds" x^* to some vertex y^* of the matroid polytope (i.e. an independent set) satisfying

 $F(y^*) \geq F(x^*)$

Step B: Pipage Rounding

"Rounds" x^* to some vertex y^* of the matroid polytope (i.e. an independent set) satisfying

 $F(y^*) \ge F(x^*)$

• A-priori, not obvious that such a y^* exists

- The following "continuous" descent algorithm works for an arbitrary nondecreasing and up-concave function *F*, and solvable downwards-closed polytope *P* ⊆ ℝⁿ₊.
- Continuously moves a particle inside the matroid polytope, starting at 0, for a total of 1 time unit.

• Position at time t given by x(t).

 Discretized to time steps of *ϵ*, which we will assume to be arbitrarily small for convenience of analysis, but may be taken to be 1/poly(n) in the actual implementation.

- The following "continuous" descent algorithm works for an arbitrary nondecreasing and up-concave function *F*, and solvable downwards-closed polytope *P* ⊆ ℝⁿ₊.
- Continuously moves a particle inside the matroid polytope, starting at 0, for a total of 1 time unit.
 - Position at time t given by x(t).
- Discretized to time steps of *ε*, which we will assume to be arbitrarily small for convenience of analysis, but may be taken to be 1/poly(n) in the actual implementation.

Continuous Greedy Algorithm $(F, \mathcal{P}, \epsilon)$

1
$$x(0) \leftarrow \vec{0}$$

2 For $t \in [0, \epsilon, 2\epsilon, \dots, 1-\epsilon]$
• $x(t+\epsilon) \leftarrow x(t) + \epsilon \operatorname{argmax}_{y \in \mathcal{P}} \{ \bigtriangledown F(x(t)) \cdot y \}$
3 Return $x(1)$

Continuous Greedy Algorithm $(F, \mathcal{P}, \epsilon)$

•
$$x(0) \leftarrow \vec{0}$$

• For $t \in [0, \epsilon, 2\epsilon, \dots, 1-\epsilon]$
• $x(t+\epsilon) \leftarrow x(t) + \epsilon \operatorname{argmax}_{y \in \mathcal{P}} \{ \bigtriangledown F(x(t)) \cdot y \}$
• Return $x(1)$

- I.e. When the particle is at x, it moves in direction y maximizing the linear function $\nabla F(x) \cdot y$ over $y \in \mathcal{P}$
 - The direction is actually a vertex of our matroid polytope
 - This is NOT gradient descent

Continuous Greedy Algorithm $(F, \mathcal{P}, \epsilon)$

- $x(0) \leftarrow \vec{0}$ • For $t \in [0, \epsilon, 2\epsilon, \dots, 1-\epsilon]$ • $x(t+\epsilon) \leftarrow x(t) + \epsilon \operatorname{argmax}_{y \in \mathcal{P}} \{ \bigtriangledown F(x(t)) \cdot y \}$
- 3 Return x(1)
 - I.e. When the particle is at x, it moves in direction y maximizing the linear function $\nabla F(x) \cdot y$ over $y \in \mathcal{P}$
 - The direction is actually a vertex of our matroid polytope
 - This is NOT gradient descent
 - Observe: Algorithm forms a convex combination of $\frac{1}{\epsilon}$ vertices of the polytope \mathcal{P} , each with weight ϵ .
 - $x(1) \in \mathcal{P}$.

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

 $dF(x(t))$

$$\ge OPT - F(x(t))$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \bigtriangledown F(x(t)) \cdot \frac{d\vec{x}}{dt}$$

$$\ge OPT - F(x(t))$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \nabla F(x(t)) \cdot \frac{d\vec{x}}{dt}$$
$$= \nabla F(x(t)) \cdot y(t)$$

$$\ge OPT - F(x(t))$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \nabla F(x(t)) \cdot \frac{d\vec{x}}{dt}$$

$$= \nabla F(x(t)) \cdot y(t)$$

$$\geq \nabla F(x(t)) \cdot [x_{opt} - x(t)]^{-1}$$

$$\geq OPT - F(x(t))$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \nabla F(x(t)) \cdot \frac{d\vec{x}}{dt}$$

$$= \nabla F(x(t)) \cdot y(t)$$

$$\geq \nabla F(x(t)) \cdot [x_{opt} - x(t)]^{+}$$

$$= \nabla F(x(t)) \cdot [\max(x_{opt}, x(t)) - x(t)]$$

$$\ge OPT - F(x(t))$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

• Denote
$$y(t) = \operatorname{argmax}_{y \in \mathcal{P}} \nabla F(x(t)) \cdot y$$

•
$$\frac{d\vec{x}}{dt} = y(t)$$

• Let x_{opt} be the vertex of $\mathcal{P}(\mathcal{M})$ maximizing F(x).

•
$$F(x_{opt}) = f(x_{opt}) = OPT$$

$$\frac{dF(x(t))}{dt} = \nabla F(x(t)) \cdot \frac{d\vec{x}}{dt}$$

$$= \nabla F(x(t)) \cdot y(t)$$

$$\geq \nabla F(x(t)) \cdot [x_{opt} - x(t)]^{+}$$

$$= \nabla F(x(t)) \cdot [\max(x_{opt}, x(t)) - x(t)]$$

$$\geq F(\max(x_{opt}, x(t))) - F(x(t))$$

$$\geq OPT - F(x(t))$$

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Proof Sketch

•
$$v(t) = F(x(t))$$
 satisfies $\frac{dv}{dt} \ge OPT - v$.

• Differential equation $\frac{dv}{dt} = OPT - v$ with boundary condition v(0) = 0 has a unique solution

$$v(t) = OPT(1 - e^{-t})$$

•
$$v(1) \ge OPT(1-1/e)$$

Implementation Details

Continuous Greedy Algorithm $(F, \mathcal{P}, \epsilon)$

2 For
$$t \in [0, \epsilon, 2\epsilon, \dots, 1-\epsilon]$$

•
$$x(t + \epsilon) \leftarrow x(t) + \epsilon \operatorname{argmax}_{y \in \mathcal{P}} \left\{ \bigtriangledown F(x(t)) \cdot y \right\}$$

3 Return x(1)

- $\nabla F(x)$ is not readily available, but can be estimated "accurately enough" using poly(n) random samples from D(x), w.h.p.
- Step 2 can be implemented because $\ensuremath{\mathcal{P}}$ is solvable
- Discretization: Taking $\epsilon = 1/O(n^2)$ is "fine enough"
- Both the above introduce error into the approximation guarantee, yielding 1 1/e 1/O(n) w.h.p
- This can be shaved off to 1 1/e with some additional "tricks".

 The following algorithm takes *x* in matroid base polytope *P*_{base}(*M*), and non-decreasing cross-convex function *F*, and outputs integral *y* with *F*(*y*) ≥ *F*(*x*)

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry

- Let T be a minimum-size tight set containing some fractional entry
 - i.e. $x(T) = rank_{\mathcal{M}}(T)$, and some $i \in T$ satisfies $x_i \in (0, 1)$.
- 2 Let $j \in T$ be such that $j \neq i$ and x_j is fractional.
- S Let $x(\mu) = x + \mu(e_i e_j)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.

$$x \leftarrow x(\mu).$$

 The following algorithm takes *x* in matroid base polytope *P*_{base}(*M*), and non-decreasing cross-convex function *F*, and outputs integral *y* with *F*(*y*) ≥ *F*(*x*)

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry

• Let T be a minimum-size tight set containing some fractional entry

• i.e. $x(T) = rank_{\mathcal{M}}(T)$, and some $i \in T$ satisfies $x_i \in (0, 1)$.

- 2 Let $j \in T$ be such that $j \neq i$ and x_j is fractional.
- S Let $x(\mu) = x + \mu(e_i e_j)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.

$$x \leftarrow x(\mu).$$

Theorem

On input $x \in \mathcal{P}_{base}(\mathcal{M})$, Pipage rounding terminates in $O(n^2)$ iterations, and outputs a matroid vertex y with $f(y) = F(y) \ge F(x)$

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry

• Let T be a minimum-size tight set containing some fractional entry

• i.e. $x(T) = rank_{\mathcal{M}}(T)$, and some $i \in T$ satisfies $x_i \in (0, 1)$.

- 2 Let $j \in T$ be such that $j \neq i$ and x_j is fractional.
- So Let $x(\mu) = x + \mu(e_i e_j)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.

$$x \leftarrow x(\mu).$$

Step 1

 T is the minimum tight set including i, because tight sets with respect to P(M) form a lattice

Proof:

- Tight sets in x are the minimizers of the set function $rank_{\mathcal{M}}(S)-x(S)$
- This set function is submodular.
- Minimizers of a submodular function form a lattice (implied by submodular inequality).

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry

Let T be a minimum-size tight set containing some fractional entry

• i.e. $x(T) = rank_{\mathcal{M}}(T)$, and some $i \in T$ satisfies $x_i \in (0, 1)$.

- **2** Let $j \in T$ be such that $j \neq i$ and x_j is fractional.
- S Let $x(\mu) = x + \mu(e_i e_j)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
- $x \leftarrow x(\mu).$

Step 2

 Since rank is integer valued, any tight set containing fractional variable should have another.

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry

• Let T be a minimum-size tight set containing some fractional entry

• i.e. $x(T) = rank_{\mathcal{M}}(T)$, and some $i \in T$ satisfies $x_i \in (0, 1)$.

- **2** Let $j \in T$ be such that $j \neq i$ and x_j is fractional.
- S Let $x(\mu) = x + \mu(e_i e_j)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.

$$x \leftarrow x(\mu).$$

Step 3

- Either the number of fractional variables decreases, or a smaller tight set containing x_i or x_j is created.
- This leads to termination after $O(n^2)$ iterations
- By cross convexity, objective increases

To summarize

Theorem

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Theorem

On input *x*, Pipage rounding terminates in $O(n^2)$ iterations, and outputs a matroid vertex *y* with $f(y) = F(y) \ge F(x)$

To summarize

Theorem

Let *F* be nondecreasing and up-concave, and \mathcal{P} be a downwards closed polytope. In the limit as $\epsilon \to 0$, the continuous greedy algorithm outputs a 1 - 1/e approximation to maximizing F(x) over \mathcal{P} .

Theorem

On input *x*, Pipage rounding terminates in $O(n^2)$ iterations, and outputs a matroid vertex *y* with $f(y) = F(y) \ge F(x)$

Together, these imply a 1 - 1/e approximation algorithm for monotone submodular maximization subject to a matroid constraint