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Convex Functions
A function f : Rn → R is convex if the line segment between any points
on the graph of f lies above f . i.e. if x, y ∈ Rn and θ ∈ [0, 1], then

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

Inequality called Jensen’s inequality (basic form)
f is convex iff its restriction to any line {x+ tv : t ∈ R} is convex
f is strictly convex if inequality strict when x 6= y.
Analogous definition when the domain of f is a convex subset D
of Rn
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Concave and Affine Functions

A function is f : Rn → R is concave if −f is convex. Equivalently:
Line segment between any points on the graph of f lies below f .
If x, y ∈ Rn and θ ∈ [0, 1], then

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)

f : Rn → R is affine if it is both concave and convex. Equivalently:
Line segment between any points on the graph of f lies on the
graph of f .
f(x) = aᵀx+ b for some a ∈ Rn and b ∈ R.
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We will now look at some equivalent definitions of convex functions

First Order Definition
A differentiable f : Rn → R is convex if and only if the first-order
approximation centered at any point x underestimates f everywhere.

f(y) ≥ f(x) + (5f(x))ᵀ(y − x)

Local information→ global information
If 5f(x) = 0 then x is a global minimizer of f
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Second Order Definition
A twice differentiable f : Rn → R is convex if and only if its Hessian
matrix 52f(x) is positive semi-definite for all x. (We write 52f(x) � 0)

Intepretation
Recall definition of PSD: zᵀ 52 f(x)z ≥ 0 for all z ∈ Rn

When n = 1, this is f ′′(x) ≥ 0.

More generally, zᵀ52f(x)z
||z||2 is the second derivative of f along the

line {x+ tz : t ∈ R}. So if 52f(x) � 0 then f curves upwards
along any line.
Moving from x to x+ δ~z, infitisimal change in gradient is
δ52 f(x)z. When 52f(x) � 0, this is in roughly the same
direction as ~z.
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Epigraph
The epigraph of f is the set of points above the graph of f . Formally,

epi(f) = {(x, t) : t ≥ f(x)}

Epigraph Definition
f is a convex function if and only if its epigraph is a convex set.
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Jensen’s Inequality (General Form)

f : Rn → R is convex if and only if
For every x1, . . . , xk in the domain of f , and θ1, . . . , θk ≥ 0 such
that

∑
i θi = 1, we have

f(
∑
i

θixi) ≤
∑
i

θif(xi)

Given a probability measure D on the domain of f , and x ∼ D,

f(E[x]) ≤ E[f(x)]

Adding noise to x can only increase f(x) in expectation.
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Local and Global Optimality

Local minimum
x is a local minimum of f if there is a an open ball B containing x
where f(y) ≥ f(x) for all y ∈ B.

Local and Global Optimality
When f is convex, x is a local minimum of f if and only if it is a global
minimum.

This fact underlies much of the tractability of convex optimization.
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Sub-level sets

Level sets of f(x, y) =
√
x2 + y2

Sublevel set
The α-sublevel set of f is {x ∈ domain(f) : f(x) ≤ α}.

Fact
Every sub-level set of a convex function is a convex set.

This fact also underlies tractability of convex optimization

Note: converse false, but nevertheless useful check.
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Other Basic Properties

Continuity
Convex functions are continuous.

Extended-value extension
If a function f : D → R is convex on its domain, and D is convex, then
it can be extended to a convex function on Rn. by setting f(x) =∞
whenever x /∈ D.

This simplifies notation. Resulting function f̃ : D → R
⋃
∞ is “convex”

with respect to the ordering on R
⋃
∞
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Functions on the reals

Affine: ax+ b

Exponential: eax convex for any a ∈ R
Powers: xa convex on R++ when a ≥ 1 or a ≤ 0, and concave for
0 ≤ a ≤ 1

Logarithm: log x concave on R++.
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Norms
Norms are convex.

||θx+ (1− θ)y|| ≤ ||θx||+ ||(1− θ)y|| = θ||x||+ (1− θ)||y||

Uses both norm axioms: triangle inequality, and homogeneity.
Applies to matrix norms, such as the spectral norm (radius of
induced ellipsoid)

Max
maxi xi is convex

max
i

(θx+ (1− θ)y)i = max
i

(θxi + (1− θ)yi)

≤ max
i
θxi +max

i
(1− θ)yi

= θmax
i
xi + (1− θ)max

i
yi

If i’m allowed to pick the maximum entry of θx and θy independently, I
can do only better.
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Log-sum-exp: log(ex1 + ex2 + . . .+ exn) is
convex
Geometric mean: (

∏n
i=1 xi)

1
n is concave

Log-determinant: log detX is concave
Quadratic form: xᵀAx is convex iff A � 0

Other examples in book
f(x, y) = log(ex + ey)

Proving convexity often comes down to case-by-case reasoning,
involving:

Definition: restrict to line and check Jensen’s inequality
Write down the Hessian and prove PSD
Express as a combination of other convex functions through
convexity-preserving operations (Next)
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Nonnegative Weighted Combinations
If f1, f2, . . . , fk are convex, and w1, w2, . . . , wk ≥ 0, then
g = w1f1 + w2f2 . . .+ wkfk is convex.

Extends to integrals g(x) =
∫
y w(y)fy(x) with w(y) ≥ 0, and therefore

expectations Ey fy(x).

Worth Noting
Minimizing the expectation of a random convex cost function is also a
convex optimization problem!

A stochastic convex optimization problem is a convex optimization
problem.

Convexity-Preserving Operations 12/23
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g

(
x+ y

2

)
= w1f1

(
x+ y

2

)
+ w2f2

(
x+ y

2

)
≤ w1

f1(x) + f1(y)

2
+ w2

f2(x) + f2(y)

2

=
g(x) + g(y)

2
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Example: Stochastic Facility Location

Average Distance
k customers located at y1, y2, . . . , yk ∈ Rn

If I place a facility at x ∈ Rn, average distance to a customer is
g(x) =

∑
i
1
k ||x− yi||

Since distance to any one customer is convex in x, so is the
average distance.
Extends to probability measure over customers
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Implication
Convex functions are a convex cone in the vector space of functions
from Rn to R.

The set of convex functions is the intersection of an infinite set of
homogeneous linear inequalities indexed by x, y, θ

f(θx+ (1− θ)y)− θf(x) + (1− θ)f(y) ≤ 0

Convexity-Preserving Operations 14/23



Composition with Affine Function
If f : Rn → R is convex, and A ∈ Rn×m, b ∈ Rn, then

g(x) = f(Ax+ b)

is a convex function from Rm to R.

Proof

(x, t) ∈ graph(g) ⇐⇒ t = g(x) = f(Ax+b) ⇐⇒ (Ax+b, t) ∈ graph(f)

(x, t) ∈ epi(g) ⇐⇒ t ≥ g(x) = f(Ax+ b) ⇐⇒ (Ax+ b, t) ∈ epi(f)

epi(g) is the inverse image of epi(f) under the affine mapping
(x, t)→ (Ax+ b, t)
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Examples
||Ax+ b|| is convex
max(Ax+ b) is convex
log(ea

ᵀ
1x+b1 + ea

ᵀ
2x+b2 + . . .+ ea

ᵀ
nx+bn) is convex
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Maximum
If f1, f2 are convex, then g(x) = max {f1(x), f2(x)} is also convex.

Generalizes to the maximum of any number of functions, maxki=1 fi(x),
and also to the supremum of an infinite set of functions supy fy(x).

epi g = epi f1
⋂

epi f2
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Example: Robust Facility Location

Maximum Distance
k customers located at y1, y2, . . . , yk ∈ Rn

If I place a facility at x ∈ Rn, maximum distance to a customer is
g(x) = maxi ||x− yi||
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If I place a facility at x ∈ Rn, maximum distance to a customer is
g(x) = maxi ||x− yi||

Worth Noting
When a convex cost function is uncertain, minimizing the worst-case
cost is also a convex optimization problem!

A robust (in the worst-case sense) convex optimization problem is
a convex optimization problem.
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Other Examples
Maximum eigenvalue of a symmetric matrix A is convex in A

max {vᵀAv : ||v|| = 1}

Sum of k largest components of a vector x is convex in x

max
{
~1S · x : |S| = k

}
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Minimization
If f(x, y) is convex and C is convex and nonempty, then
g(x) = infy∈C f(x, y) is convex.

Proof (for C = Rk)
epi g is the projection of epi f onto hyperplane y = 0.

f(x, y) = x2 + y2 g(x) = x2
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Example
Distance from a convex set C

f(x, y) = inf
y∈C
||x− y||
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Composition Rules
If g : Rn → Rk and h : Rk → R, then f = h ◦ g is convex if

gi are convex, and h is convex and nondecreasing in each
argument.
gi are concave, and h is convex and nonincreasing in each
argument.

Proof (n = k = 1)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)
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Perspective
If f is convex then g(x, t) = tf(x/t) is also convex.

Proof
epi g is inverse image of epi f under the perspective function.
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