CS675: Convex and Combinatorial Optimization Fall 2016 Convex Functions

Instructor: Shaddin Dughmi

Outline

- Examples of Convex and Concave Functions
- Convexity-Preserving Operations

A function $f:\mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$, then

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

A function $f:\mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$, then

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Inequality called Jensen's inequality (basic form)

A function $f:\mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$, then

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen's inequality (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex

A function $f:\mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$, then

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen's inequality (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex

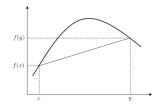
• f is strictly convex if inequality strict when $x \neq y$.

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x,y \in \mathbb{R}^n$ and $\theta \in [0,1]$, then

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen's inequality (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex
- f is strictly convex if inequality strict when $x \neq y$.
- Analogous definition when the domain of f is a convex subset D of \mathbb{R}^n

Concave and Affine Functions

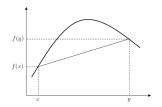


A function is $f: \mathbb{R}^n \to \mathbb{R}$ is concave if -f is convex. Equivalently:

- Line segment between any points on the graph of f lies below f.
- If $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$

Concave and Affine Functions



A function is $f: \mathbb{R}^n \to \mathbb{R}$ is concave if -f is convex. Equivalently:

- ullet Line segment between any points on the graph of f lies below f.
- If $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$

 $f: \mathbb{R}^n \to \mathbb{R}$ is affine if it is both concave and convex. Equivalently:

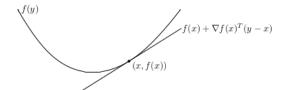
- Line segment between any points on the graph of f lies on the graph of f.
- $f(x) = a^{\mathsf{T}}x + b$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.

We will now look at some equivalent definitions of convex functions

First Order Definition

A differentiable $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

$$f(y) \ge f(x) + (\nabla f(x))^{\mathsf{T}}(y - x)$$

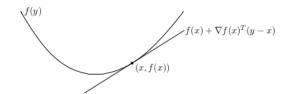


We will now look at some equivalent definitions of convex functions

First Order Definition

A differentiable $f:\mathbb{R}^n \to \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

$$f(y) \ge f(x) + (\nabla f(x))^{\mathsf{T}}(y - x)$$



- Local information → global information
- If $\nabla f(x) = 0$ then x is a global minimizer of f

Second Order Definition

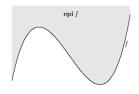
A twice differentiable $f:\mathbb{R}^n\to\mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^2 f(x)$ is positive semi-definite for all x. (We write $\nabla^2 f(x)\succeq 0$)

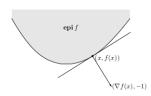
Second Order Definition

A twice differentiable $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^2 f(x)$ is positive semi-definite for all x. (We write $\nabla^2 f(x) \succeq 0$)

Intepretation

- Recall definition of PSD: $z^{\intercal} \nabla^2 f(x)z \geq 0$ for all $z \in \mathbb{R}^n$
- When n = 1, this is $f''(x) \ge 0$.
- More generally, $\frac{z^{\mathsf{T}} \bigtriangledown^2 f(x) z}{||z||^2}$ is the second derivative of f along the line $\{x+tz:t\in\mathbb{R}\}$. So if $\bigtriangledown^2 f(x)\succeq 0$ then f curves upwards along any line.
- Moving from x to $x + \delta \vec{z}$, infitisimal change in gradient is $\delta \bigtriangledown^2 f(x)z$. When $\bigtriangledown^2 f(x) \succeq 0$, this is in roughly the same direction as \vec{z} .

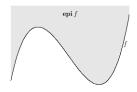


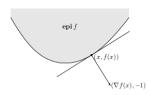


Epigraph

The epigraph of f is the set of points above the graph of f. Formally,

$$epi(f) = \{(x, t) : t \ge f(x)\}$$





Epigraph

The epigraph of f is the set of points above the graph of f. Formally,

$$epi(f) = \{(x, t) : t \ge f(x)\}$$

Epigraph Definition

f is a convex function if and only if its epigraph is a convex set.

Jensen's Inequality (General Form)

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if

• For every x_1, \ldots, x_k in the domain of f, and $\theta_1, \ldots, \theta_k \geq 0$ such that $\sum_i \theta_i = 1$, we have

$$f(\sum_{i} \theta_{i} x_{i}) \leq \sum_{i} \theta_{i} f(x_{i})$$

• Given a probability measure $\mathcal D$ on the domain of f, and $x \sim \mathcal D$,

$$f(\mathbf{E}[x]) \le \mathbf{E}[f(x)]$$

Jensen's Inequality (General Form)

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if

• For every x_1, \ldots, x_k in the domain of f, and $\theta_1, \ldots, \theta_k \geq 0$ such that $\sum_i \theta_i = 1$, we have

$$f(\sum_{i} \theta_{i} x_{i}) \leq \sum_{i} \theta_{i} f(x_{i})$$

• Given a probability measure $\mathcal D$ on the domain of f, and $x \sim \mathcal D$,

$$f(\mathbf{E}[x]) \le \mathbf{E}[f(x)]$$

Adding noise to x can only increase f(x) in expectation.

Local and Global Optimality

Local minimum

x is a local minimum of f if there is a an open ball B containing x where $f(y) \ge f(x)$ for all $y \in B$.

Local and Global Optimality

When f is convex, x is a local minimum of f if and only if it is a global minimum.

Local and Global Optimality

Local minimum

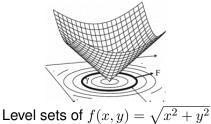
x is a local minimum of f if there is a an open ball B containing x where $f(y) \ge f(x)$ for all $y \in B$.

Local and Global Optimality

When f is convex, x is a local minimum of f if and only if it is a global minimum.

• This fact underlies much of the tractability of convex optimization.

Sub-level sets

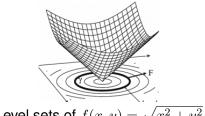


Level sets of $f(x,y) = \sqrt{x^2 + y}$

Sublevel set

The α -sublevel set of f is $\{x \in domain(f) : f(x) \leq \alpha\}$.

Sub-level sets



Level sets of $f(x,y) = \sqrt{x^2 + y^2}$

Sublevel set

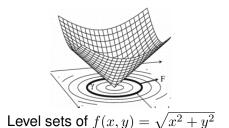
The α -sublevel set of f is $\{x \in domain(f) : f(x) \leq \alpha\}$.

Fact

Every sub-level set of a convex function is a convex set.

This fact also underlies tractability of convex optimization

Sub-level sets



Sublevel set

The α -sublevel set of f is $\{x \in domain(f) : f(x) \leq \alpha\}$.

Fact

Every sub-level set of a convex function is a convex set.

This fact also underlies tractability of convex optimization

Note: converse false, but nevertheless useful check.

Other Basic Properties

Continuity

Convex functions are continuous.

Other Basic Properties

Continuity

Convex functions are continuous.

Extended-value extension

If a function $f:D\to\mathbb{R}$ is convex on its domain, and D is convex, then it can be extended to a convex function on \mathbb{R}^n . by setting $f(x)=\infty$ whenever $x\notin D$.

This simplifies notation. Resulting function $\widetilde{f}:D\to\mathbb{R}\bigcup\infty$ is "convex" with respect to the ordering on $\mathbb{R}\bigcup\infty$

Outline

Convex Functions

Examples of Convex and Concave Functions

Convexity-Preserving Operations

Functions on the reals

- Affine: ax + b
- Exponential: e^{ax} convex for any $a \in \mathbb{R}$
- Powers: x^a convex on \mathbb{R}_{++} when $a \geq 1$ or $a \leq 0$, and concave for $0 \leq a \leq 1$
- Logarithm: $\log x$ concave on \mathbb{R}_{++} .

Norms

Norms are convex.

$$||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y|| = \theta ||x|| + (1 - \theta)||y||$$

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)

Norms

Norms are convex.

$$||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y|| = \theta ||x|| + (1 - \theta)||y||$$

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)

Max

 $\max_i x_i$ is convex

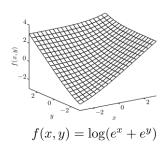
$$\max_{i} (\theta x + (1 - \theta)y)_{i} = \max_{i} (\theta x_{i} + (1 - \theta)y_{i})$$

$$\leq \max_{i} \theta x_{i} + \max_{i} (1 - \theta)y_{i}$$

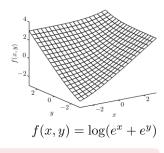
$$= \theta \max_{i} x_{i} + (1 - \theta) \max_{i} y_{i}$$

If i'm allowed to pick the maximum entry of θx and θy independently, I can do only better.

- Log-sum-exp: $\log(e^{x_1} + e^{x_2} + \ldots + e^{x_n})$ is convex
- Geometric mean: $(\prod_{i=1}^n x_i)^{\frac{1}{n}}$ is concave
- Log-determinant: $\log \det X$ is concave
- Quadratic form: $x^{T}Ax$ is convex iff $A \succeq 0$
- Other examples in book



- Log-sum-exp: $\log(e^{x_1} + e^{x_2} + \ldots + e^{x_n})$ is convex
- Geometric mean: $(\prod_{i=1}^n x_i)^{\frac{1}{n}}$ is concave
- ullet Log-determinant: $\log \det X$ is concave
- Quadratic form: $x^{\mathsf{T}}Ax$ is convex iff $A \succeq 0$
- Other examples in book



Proving convexity often comes down to case-by-case reasoning, involving:

- Definition: restrict to line and check Jensen's inequality
- Write down the Hessian and prove PSD
- Express as a combination of other convex functions through convexity-preserving operations (Next)

Outline

Convex Functions

Examples of Convex and Concave Functions

Convexity-Preserving Operations

If f_1, f_2, \ldots, f_k are convex, and $w_1, w_2, \ldots, w_k \ge 0$, then $g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k$ is convex.

If f_1, f_2, \ldots, f_k are convex, and $w_1, w_2, \ldots, w_k \ge 0$, then $g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k$ is convex.

proof (k=2)

$$g\left(\frac{x+y}{2}\right) = w_1 f_1\left(\frac{x+y}{2}\right) + w_2 f_2\left(\frac{x+y}{2}\right)$$

$$\leq w_1 \frac{f_1(x) + f_1(y)}{2} + w_2 \frac{f_2(x) + f_2(y)}{2}$$

$$= \frac{g(x) + g(y)}{2}$$

If f_1,f_2,\ldots,f_k are convex, and $w_1,w_2,\ldots,w_k\geq 0$, then $g=w_1f_1+w_2f_2\ldots+w_kf_k$ is convex.

Extends to integrals $g(x) = \int_y w(y) f_y(x)$ with $w(y) \ge 0$, and therefore expectations $\mathbf{E}_y f_y(x)$.

If f_1,f_2,\ldots,f_k are convex, and $w_1,w_2,\ldots,w_k\geq 0$, then $g=w_1f_1+w_2f_2\ldots+w_kf_k$ is convex.

Extends to integrals $g(x) = \int_y w(y) f_y(x)$ with $w(y) \ge 0$, and therefore expectations $\mathbf{E}_y f_y(x)$.

Worth Noting

Minimizing the expectation of a random convex cost function is also a convex optimization problem!

 A stochastic convex optimization problem is a convex optimization problem.

Example: Stochastic Facility Location

Average Distance

- k customers located at $y_1, y_2, \dots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, average distance to a customer is $g(x) = \sum_i \frac{1}{k} ||x-y_i||$

Example: Stochastic Facility Location

Average Distance

Convexity-Preserving Operations

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, average distance to a customer is $g(x) = \sum_i \frac{1}{k} ||x y_i||$
- Since distance to any one customer is convex in x, so is the average distance.
- Extends to probability measure over customers

Implication

Convex functions are a convex cone in the vector space of functions from \mathbb{R}^n to \mathbb{R} .

The set of convex functions is the intersection of an infinite set of homogeneous linear inequalities indexed by x,y,θ

$$f(\theta x + (1 - \theta)y) - \theta f(x) + (1 - \theta)f(y) \le 0$$

If $f: \mathbb{R}^n \to \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a convex function from \mathbb{R}^m to \mathbb{R} .

If $f: \mathbb{R}^n \to \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a convex function from \mathbb{R}^m to \mathbb{R} .

Proof

$$(x,t) \in \mathbf{graph}(g) \iff t = g(x) = f(Ax+b) \iff (Ax+b,t) \in \mathbf{graph}(f)$$

If $f:\mathbb{R}^n \to \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then q(x) = f(Ax + b)

is a convex function from \mathbb{R}^m to \mathbb{R} .

Proof

$$(x,t) \in \mathbf{graph}(g) \iff t = g(x) = f(Ax+b) \iff (Ax+b,t) \in \mathbf{graph}(f)$$

 $(x,t) \in \mathbf{epi}(g) \iff t \ge g(x) = f(Ax+b) \iff (Ax+b,t) \in \mathbf{epi}(f)$

If $f:\mathbb{R}^n \to \mathbb{R}$ is convex, and $A\in\mathbb{R}^{n\times m},$ $b\in\mathbb{R}^n,$ then g(x)=f(Ax+b)

is a convex function from \mathbb{R}^m to \mathbb{R} .

Proof

$$(x,t) \in \mathbf{graph}(g) \iff t = g(x) = f(Ax+b) \iff (Ax+b,t) \in \mathbf{graph}(f)$$

 $(x,t) \in \mathbf{epi}(g) \iff t \ge g(x) = f(Ax+b) \iff (Ax+b,t) \in \mathbf{epi}(f)$ $\mathbf{epi}(g)$ is the inverse image of $\mathbf{epi}(f)$ under the affine mapping $(x,t) \to (Ax+b,t)$

Examples

- ||Ax + b|| is convex
- $\max(Ax + b)$ is convex
- $\log(e^{a_1^{\mathsf{T}}x+b_1}+e^{a_2^{\mathsf{T}}x+b_2}+\ldots+e^{a_n^{\mathsf{T}}x+b_n})$ is convex

Maximum

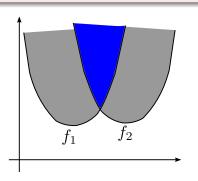
If f_1, f_2 are convex, then $g(x) = \max\{f_1(x), f_2(x)\}\$ is also convex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^k f_i(x)$, and also to the supremum of an infinite set of functions $\sup_y f_y(x)$.

Maximum

If f_1, f_2 are convex, then $g(x) = \max\{f_1(x), f_2(x)\}$ is also convex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^k f_i(x)$, and also to the supremum of an infinite set of functions $\sup_y f_y(x)$.



$$\operatorname{epi} g = \operatorname{epi} f_1 \bigcap \operatorname{epi} f_2$$

Example: Robust Facility Location

Maximum Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is $g(x) = \max_i ||x y_i||$

Example: Robust Facility Location

Maximum Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is $g(x) = \max_i ||x y_i||$

Since distance to any one customer is convex in \boldsymbol{x} , so is the worst-case distance.

Example: Robust Facility Location

Maximum Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is $g(x) = \max_i ||x y_i||$

Worth Noting

When a convex cost function is uncertain, minimizing the worst-case cost is also a convex optimization problem!

• A robust (in the worst-case sense) convex optimization problem is a convex optimization problem.

Other Examples

ullet Maximum eigenvalue of a symmetric matrix A is convex in A

$$\max \{ v^{\mathsf{T}} A v : ||v|| = 1 \}$$

ullet Sum of k largest components of a vector x is convex in x

$$\max\left\{\vec{\mathbf{1}}_S \cdot x : |S| = k\right\}$$

Minimization

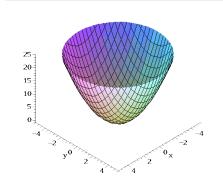
If f(x,y) is convex and $\mathcal C$ is convex and nonempty, then $g(x)=\inf_{y\in C}f(x,y)$ is convex.

Minimization

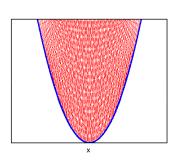
If f(x,y) is convex and $\mathcal C$ is convex and nonempty, then $g(x)=\inf_{y\in C}f(x,y)$ is convex.

Proof (for $\mathcal{C} = \mathbb{R}^k$)

 $\operatorname{\mathbf{epi}} g$ is the projection of $\operatorname{\mathbf{epi}} f$ onto hyperplane y=0.



$$f(x,y) = x^2 + y^2$$



 $g(x) = x^2$

Example

Distance from a convex set $\mathcal C$

$$f(x,y) = \inf_{y \in \mathcal{C}} ||x - y||$$

Composition Rules

If $g: \mathbb{R}^n \to \mathbb{R}^k$ and $h: \mathbb{R}^k \to \mathbb{R}$, then $f = h \circ g$ is convex if

- g_i are convex, and h is convex and nondecreasing in each argument.
- g_i are concave, and h is convex and nonincreasing in each argument.

Proof (n = k = 1)

$$f''(x) = h''(g(x))g'(x)^{2} + h'(g(x))g''(x)$$

Perspective

If f is convex then g(x,t) = tf(x/t) is also convex.

Proof

 $\mathbf{epi}\,g$ is inverse image of $\mathbf{epi}\,f$ under the perspective function.