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Recall: Convex Optimization Problem
A problem of minimizing a convex function (or maximizing a concave
function) over a convex set.

minimize f(x)
subject to x ∈ X

X ⊆ Rn is convex, and f : Rn → R is convex
Terminology: decision variable(s), objective function, feasible set,
optimal solution/value, ε-optimal solution/value
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Standard Form

Instances typically formulated in the following standard form

minimize f(x)
subject to gi(x) ≤ 0, for i ∈ C1.

aᵀi x = bi, for i ∈ C2.

gi is convex
Terminology: equality constraints, inequality constraints,
active/inactive at x, feasible/infeasible, unbounded

In principle, every convex optimization problem can be formulated
in this form (possibly implicitly)

Recall: every convex set is the intersection of halfspaces

When f(x) is immaterial (say f(x) = 0), we say this is convex
feasibility problem
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Local and Global Optimality

Fact
For a convex optimization problem, every locally optimal feasible
solution is globally optimal.

Proof
Let x be locally optimal, and y be any other feasible point.
The line segment from x to y is contained in the feasible set.
By local optimality f(x) ≤ f(θx+ (1− θ)y) for θ sufficiently close
to 1.
Jensen’s inequality then implies that y is suboptimal.

f(x) ≤ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

f(x) ≤ f(y)
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Representation
Typically, by problem we mean a family of instances, each of which is
described either explicitly via problem parameters, or given implicitly
via an oracle, or something in between.
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Representation
Typically, by problem we mean a family of instances, each of which is
described either explicitly via problem parameters, or given implicitly
via an oracle, or something in between.

Explicit Representation
A family of linear programs of the following form

maximize cTx
subject to Ax � b

x � 0

may be described by c ∈ Rn, A ∈ Rm×n, and b ∈ Rm.
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Representation
Typically, by problem we mean a family of instances, each of which is
described either explicitly via problem parameters, or given implicitly
via an oracle, or something in between.

Oracle Representation
At their most abstract, convex optimization problems of the following
form

minimize f(x)
subject to x ∈ X

are described via a separation oracle for X and epi f .

Given additional data about instances of the problem, namely a range
[L,H] for its optimal value and a ball of volume V containing X , the
ellipsoid method returns an ε-optimal solution using only
poly(n, log(H−Lε ), log V ) oracle calls.
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Representation
Typically, by problem we mean a family of instances, each of which is
described either explicitly via problem parameters, or given implicitly
via an oracle, or something in between.

In Between
Consider the following fractional relaxation of the Traveling Salesman
Problem, described by a network (V,E) and distances de on e ∈ E.

min
∑

e dexe
s.t.∑

e∈δ(S) xe ≥ 2, ∀S ⊂ V, S 6= ∅.
x � 0

Representation of LP is implicit, in the form of a network. Using this
representation, separation oracles can be implemented efficiently, and
used as subroutines in the ellipsoid method.
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Equivalence

Next up: we look at some common classes of convex optimization
problems
Technically, not all of them will be convex in their natural
representation
However, we will show that they are “equivalent” to a convex
optimization problem

Equivalence
Loosly speaking, two optimization problems are equivalent if an
optimal solution to one can easily be “translated” into an optimal
solution for the other.

Note
Deciding whether an optimization problem is equivalent to a tractable
convex optimization problem is, in general, a black art honed by
experience. There is no silver bullet.
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Linear Programming

We have already seen linear programming

minimize cᵀx
subject to Ax ≤ b
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Linear Fractional Programming

Generalizes linear programming

minimize cᵀx+d
eᵀx+f

subject to Ax ≤ b
eᵀx+ f ≥ 0

The objective is quasiconvex (in fact, quasilinear) over the
halfspace where the denominator is nonnegative.

Can be reformulated as an equivalent linear program

1 Change variables to y = x
eᵀx+f and z = 1

eᵀx+f

2 (y, z) is a solution to the above iff eᵀy + fz = 1

minimize cᵀy + dz
subject to Ay ≤ bz

z ≥ 0

eᵀy + fz = 1
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Example: Optimal Production Variant

n products, m raw materials
Every unit of product j uses aij units of raw material i
There are bi units of material i available
Product j yields profit cj dollars per unit, and requires an
investment of ej dollars per unit to produce, with f as a fixed cost
Facility wants to maximize “Return rate on investment”

maximize cᵀx
eᵀx+f

subject to aᵀi x ≤ bi, for i = 1, . . . ,m.
xj ≥ 0, for j = 1, . . . , n.
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Geometric Programming

Definition
A monomial is a function f : Rn+ → R+ of the form

f(x) = cxa11 x
a2
2 . . . xann ,

where c ≥ 0, ai ∈ R.
A posynomial is a sum of monomials.

A Geometric Program is an optimization problem of the following form

minimize f0(x)
subject to fi(x) ≤ bi, for i ∈ C1.

hi(x) = bi, for i ∈ C2.
x � 0

where fi’s are posynomials, hi’s are monomials, and bi > 0 (wlog 1).

Interpretation
GP model volume/area minimization problems, subject to constraints.
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Example: Designing a Suitcase

A suitcase manufacturer is designing a suitcase
Variables: h, w,d
Want to minimize surface area 2(hw + hd+ wd) (i.e. amount of
material used)
Have a target volume hwd ≥ 5
Practical/aesthetic constraints limit aspect ratio: h/w ≤ 2, h/d ≤ 3
Constrained by airline to h+ w + d ≤ 7

minimize 2hw + 2hd+ 2wd
subject to h−1w−1d−1 ≤ 1

5
hw−1 ≤ 2
hd−1 ≤ 3
h+ w + d ≤ 7
h,w, d ≥ 0

More interesting applications involve optimal component layout in chip
design.
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Designing a Suitcase in Convex Form

minimize 2hw + 2hd+ 2wd
subject to h−1w−1d−1 ≤ 1

5
hw−1 ≤ 2
hd−1 ≤ 3
h+ w + d ≤ 7
h,w, d ≥ 0

Change of variables to h̃ = log h, w̃ = logw, d̃ = log d

minimize 2eh̃+w̃ + 2eh̃+d̃ + 2ew̃+d̃

subject to e−h̃−w̃−d̃ ≤ 1
5

eh̃−w̃ ≤ 2

eh̃−d̃ ≤ 3

eh̃ + ew̃ + ed̃ ≤ 7
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Geometric Programs in Convex Form

minimize f0(x)
subject to fi(x) ≤ bi, for i ∈ C1.

hi(x) = bi, for i ∈ C2.
x � 0

where fi’s are posynomials, hi’s are monomials, and bi > 0 (wlog 1).

In their natural parametrization by x1, . . . , xn ∈ R+, geometric
programs are not convex optimization problems

However, the feasible set and objective function are convex in the
variables y1, . . . , yn ∈ R where yi = log xi
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subject to fi(x) ≤ bi, for i ∈ C1.

hi(x) = bi, for i ∈ C2.
x � 0

where fi’s are posynomials, hi’s are monomials, and bi > 0 (wlog 1).

Each monomial cxa11 x
a2
2 . . . xakk can be rewritten as a convex

function cea1y1+a2y2+...+akyk

Therefore, each posynomial becomes the sum of these convex
exponential functions
Inequality constraints and objective become convex
Equality constraint cxa11 x

a2
2 . . . xakk = b reduces to an affine

constraint a1y1 + a2y2 . . . akyk = log b
c
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Symmetric Matrices
A matrix A ∈ Rn×n is symmetric if and only if it is square and Aij = Aji
for all i, j.

We denote the cone of n× n symmetric matrices by Sn.

Fact
A matrix A ∈ Rn×n is symmetric if and only if it is orthogonally
diagonalizable.

i.e. A = QDQᵀ where Q is an orthogonal matrix and
D = diag(λ1, . . . , λn).
The columns of Q are the (normalized) eigenvectors of A, with
corresponding eigenvalues λ1, . . . , λn
Equivalently: As a linear operator, A scales the space along an
orthonormal basis Q
The scaling factor λi along direction qi may be negative, positive,
or 0.
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Positive Semi-Definite Matrices
A matrix A ∈ Rn×n is positive semi-definite if it is symmetric and
moreover all its eigenvalues are nonnegative.

We denote the cone of n× n positive semi-definite matrices by Sn+
We use A � 0 as shorthand for A ∈ Sn+

A = QDQᵀ where Q is an orthogonal matrix and
D = diag(λ1, . . . , λn), where λi ≥ 0.
As a linear operator, A performs nonnegative scaling along an
orthonormal basis Q

Note
Positive definite, negative semi-definite, and negative definite defined
similarly.
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Geometric Intuition for PSD Matrices

For A � 0, let q1, . . . , qn be the orthonormal eigenbasis for A, and
let λ1, . . . , λn ≥ 0 be the corresponding eigenvalues.
The linear operator x→ Ax scales the qi component of x by λi
When applied to every x in the unit ball, the image of A is an
ellipsoid with principal directions q1, . . . , qn and corresponding
diameters 2λ1, . . . , 2λn

When A is positive definite (i.e.λi > 0), and therefore invertible, the
ellipsoid is the set

{
x : xTA−1x ≤ 1

}
Interlude: Positive Semi-Definite Matrices 14/21



Useful Properties of PSD Matrices

If A � 0, then
xTAx ≥ 0 for all x
A has a positive semi-definite square root A

1
2

A
1
2 = Qdiag(

√
λ1, . . . ,

√
λn)Qᵀ

A = BBT for some matrix B.
Interpretation: PSD matrices encode the “pairwise similarity”
relationships of a family of vectors
Interpretation: The quadratic form xTAx is the length of an affine
transformation of x, namely ||Bx||22

The quadratic function xTAx is convex
A can be expressed as a sum of vector outer-products (xxᵀ)

E.g., sum of outerproducts of columns of B with A = BBT

As it turns out, each of the above is also sufficient for A � 0 (assuming
A is symmetric).
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Quadratic Programming

Minimizing a convex quadratic function over a polyhedron.

minimize xᵀPx+ cᵀx+ d
subject to Ax ≤ b

P � 0

Objective can be rewritten as (x− x0)ᵀP (x− x0) for some center
x0

Sublevel sets are scaled copies of an ellipsoid centered at x0
More Convex Optimization Problems 16/21



Examples

Constrained Least Squares
Given a set of measurements (a1, b1), . . . , (am, bm), where ai ∈ Rn is
the i’th input and bi ∈ R is the i’th output, fit a linear function minimizing
mean square error, subject to known bounds on the linear coefficients.

minimize ||Ax− b||22 = xᵀAᵀAx− 2bᵀAx+ bᵀb
subject to li ≤ xi ≤ ui, for i = 1, . . . , n.

More Convex Optimization Problems 17/21



Examples

Distance Between Polyhedra
Given two polyhedra Ax � b and Cx � d, find the distance between
them.

minimize ||z||22 = zᵀIz
subject to z = y − x

Ax � b
By � d
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Conic Optimization Problems

This is an umbrella term for problems of the following form

minimize cᵀx
subject to Ax+ b ∈ K

Where K is a convex cone (e.g. Rn+, positive semi-definite matrices,
etc). Evidently, such optimization problems are convex.

As shorthand, the cone containment constraint is often written using
generalized inequalities

Ax+ b �K 0

−Ax �K b

. . .

More Convex Optimization Problems 18/21
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Example: Second Order Cone Programming

We will exhibit an example of a conic optimization problem with K as
the second order cone

K = {(x, t) : ||x||2 ≤ t}

Linear Program with Random Constraints
Consider the following optimization problem, where each ai is a
gaussian random variable with mean ai and covariance matrix Σi.

minimize cᵀx
subject to aᵀi x ≤ bi w.p. at least 0.9, for i = 1, . . . ,m.

ui := aᵀi x is a univariate normal r.v. with mean ui := aᵀi x and

stddev σi :=
√
xᵀΣix = ||Σ

1
2
i x||2

ui ≤ bi with probability φ( bi−uiσi
), where φ is the CDF of the

standard normal random variable.
Since we want this probability to exceed 0.9, we require that

bi − ui
σi

≥ φ−1(0.9) ≈ 1.3 ≈ 1/0.77
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Semi-Definite Programming

These are conic optimization problems where the cone in question is
the set of positive semi-definite matrices.

minimize cᵀx
subject to x1F1 + x2F2 . . . xnFn +G � 0

Where F1, . . . , Fn are matrices, and � refers to the positive
semi-definite cone Sn+.

Examples
Fitting a distribution, say a Gaussian, to observed data. Variable is
a positive semi-definite covariance matrix.
As a relaxation to combinatorial problems that encode pairwise
relationships: e.g. finding the maximum cut of a graph.
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Example: Max Cut Problem
Given an undirected graph G = (V,E), find a partition of V into
(S, V \ S) maximizing number of edges with exactly one end in S.

maximize
∑

(i,j)∈E
1−xixj

2

subject to xi ∈ {−1, 1} , for i ∈ V.

Vector Program relaxation

maximize
∑

(i,j)∈E
1−xi·xj

2

subject to ||xi||2 = 1, for i ∈ V.
xi ∈ Rn, for i ∈ V.

SDP Relaxation

maximize
∑

(i,j)∈E
1−Xij

2

subject to Xii = 1, for i ∈ V.
X ∈ Sn+
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