CS675: Convex and Combinatorial Optimization
Fall 2016

Consequences of the Ellipsoid Algorithm

Instructor: Shaddin Dughmi



@ Recapping the Ellipsoid Method



Recall: Feasibility Problem

The ellipsoid method solves the following problem.

Convex Feasibility Problem

Given as input the following
@ A description of a compact convex set K C R”
@ An ellipsoid E(c, Q) (typically a ball) containing K
@ A rational number R > 0 satisfying vol(E) < R.

@ A rational number r > 0 such that if K is nonempty, then
vol(K) > r.

Find a point z € K or declare that K is empty.

@ Equivalent variant: drop the requirement on volume vol(X), and
either find a point x € K or an ellipsoid £ 2 K with vol(E) < r.
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All the ellipsoid method needed was the following subroutine

Separation oracle

An algorithm that takes as input € R", and either certifies z € K or
outputs a hyperplane separting = from K.

@ i.e. avector h € R™ with hTx > hTy for all y € K.
@ Equivalently, K is contained in the halfspace

H(h,z) = {y : hTy < ha}

with z at its boundary.
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Examples:
@ Explicitly written polytope Ay < b: take h = a; to the row of A
corresponding to a constraint violated by .
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h = </ fi(x) for some violated constraint.
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All the ellipsoid method needed was the following subroutine

Separation oracle

An algorithm that takes as input « € R"”, and either certifies =z € K or
outputs a hyperplane separting = from K.

@ i.e. avector h € R™ with hTz > hTy for all y € K.
@ Equivalently, K is contained in the halfspace

H(h,z) = {y : hTy < ha}

with z at its boundary.

Examples:
@ Explicitly written polytope Ay < b: take h = a; to the row of A
corresponding to a constraint violated by .
@ Convex set given by a family of convex inequalities f;(y) < 0: Let
h = </ fi(x) for some violated constraint.
@ The positive semi-definite cone S,: Let H be the outer product
vuT of an eigenvector v of X corresponding to a negative

eigenvalue.
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Ellipsoid Method
@ Start with initial ellipsoid £ = E(¢,Q) 2 K

@ Using the separation oracle, check if the center ¢ € K.
e If so, terminate and output c.
e Otherwise, we get a separating hyperplane h such that K is
contained in the half-ellipsoid E (" {y : ATy < hTc}
Q Let £/ = E(¢, Q') be the minimum volume ellipsoid containing the
half ellipsoid above.

Q If vol(E’) > r then set E = E’ and repeat (step 2), otherwise stop
and return “empty”.

Recapping the Ellipsoid Method 2/26



Ellipsoid Method
@ Start with initial ellipsoid E = E(¢,Q) 2 K

@ Using the separation oracle, check if the center ¢ € K.
e If so, terminate and output c.
e Otherwise, we get a separating hyperplane h such that K is
contained in the half-ellipsoid E (" {y : ATy < hTc}
Q Let £/ = E(¢, Q') be the minimum volume ellipsoid containing the
half ellipsoid above.

Q If vol(E’) > r then set E = E’ and repeat (step 2), otherwise stop
and return “empty”.

Recapping the Ellipsoid Method 2/26



Ellipsoid Method
@ Start with initial ellipsoid E = E(¢,Q) 2 K

@ Using the separation oracle, check if the center ¢ € K.
e If so, terminate and output c.
o Otherwise, we get a separating hyperplane h such that K is
contained in the half-ellipsoid E (" {y : ATy < hTc}
©Q Let E' = E(¢, Q') be the minimum volume ellipsoid containing the
half ellipsoid above.

Q If vol(E’) > r then set E = E’ and repeat (step 2), otherwise stop
and return “empty”.

Recapping the Ellipsoid Method 2/26



Ellipsoid Method
@ Start with initial ellipsoid E = E(¢,Q) 2 K

@ Using the separation oracle, check if the center ¢ € K.
e If so, terminate and output c.
e Otherwise, we get a separating hyperplane h such that K is
contained in the half-ellipsoid E (" {y : ATy < hTc}
Q Let £/ = E(¢, Q') be the minimum volume ellipsoid containing the
half ellipsoid above.

Q If vol(E’) > r then set E = E’ and repeat (step 2), otherwise stop
and return “empty”.

Recapping the Ellipsoid Method 2/26



Using T to denote the runtime of the separation oracle

The ellipsoid algorithm terminates in time polynomial », In %, and T,
and either outputes = € K or correctly declares that K is empty.

We proved most of this (modulo the ellipsoid updating Lemma which
we cited and briefly discussed).
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Using T to denote the runtime of the separation oracle

The ellipsoid algorithm terminates in time polynomial », In %, and T,
and either outputes = € K or correctly declares that K is empty.

We proved most of this (modulo the ellipsoid updating Lemma which
we cited and briefly discussed).

For runtime polynomial in input size we need
@ T polynomial in input size
R . . . .
@ - exponential in input size
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9 Complexity of Convex Optimization



Recall: Convex Optimization Problem
A problem of minimizing a convex function (or maximizing a concave
function) over a convex set.

minimize  f(x)
subjectto ze€ X

Where X C R"™ is convex and closed, and f : R™ — R is convex
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Recall: Convex Optimization Problem
A problem of minimizing a convex function (or maximizing a concave
function) over a convex set.

minimize  f(x)
subjectto ze€ X

Where X C R™ is convex and closed, and f : R™ — R is convex

@ Recall: A problem II is a family of instances I = (f, X)
@ When represented explicitly, often given in standard form

minimize  f(x)
subjectto g;(z) <0, forie (.
aiT:U =b;, forie(Cs.
@ The functions f,{g;}, are given in some parametric form allowing
evaluation of each function and its derivatives.
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Recall: Convex Optimization Problem
A problem of minimizing a convex function (or maximizing a concave
function) over a convex set.

minimize  f(x)
subjectto ze€ X

Where X C R™ is convex and closed, and f : R™ — R is convex

@ We will abstract away details of how instances of a problem are
represented, but denote the length of the description by (1)

@ Require polynomial time (in (I) and n) implementation of
separation oracle, and other subroutines.
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Solvability of Convex Optimization

There are many subtly different “solvability statements”. This one is the
most useful, yet simple to describe, IMO.

We say an algorithm weakly solves a convex optimization problem in
polynomial time if it:

@ Takes an approximation parameter ¢ > 0
@ Terminates in time poly((I), n,log(%))
@ Returns an e-optimal z € X:

f(z) < 2%1)13 fly) + E[Iynggc fly) — fjéi}é fW)]

Complexity of Convex Optimization 5/26



Solvability of Convex Optimization

Theorem (Polynomial Solvability of CP)

Consider a family 11 of convex optimization problems I = (f, X))
admitting the following operations in polynomial time (in (I) and n):
@ A separation oracle for the feasible set X C R™
@ A first order oracle for f: evaluates f(x) and <7 f(x).
@ An algorithm which computes a starting ellipsoid E O X with
veitz) = Olexp((1),n))
vol(X) p ) :

Then there is a polynomial time algorithm which weakly solves I1.
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Solvability of Convex Optimization

Theorem (Polynomial Solvability of CP)

Consider a family 11 of convex optimization problems I = (f, X))
admitting the following operations in polynomial time (in (I) and n):
@ A separation oracle for the feasible set X C R™
@ A first order oracle for f: evaluates f(x) and <7 f(x).
@ An algorithm which computes a starting ellipsoid E O X with
veitz) = Olexp((1),n))
vol(X) p ) :

Then there is a polynomial time algorithm which weakly solves I1.

Let’s now prove this, by reducing to the ellipsoid method
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Proof (Simplified)

Simplifying Assumption

Assume we are given minycy f(y) and max,ex f(y). Without loss of
generality assume they are [0, 1].

Complexity of Convex Optimization 6/26



Proof (Simplified)

Simplifying Assumption

Assume we are given minycy f(y) and max,ex f(y). Without loss of
generality assume they are [0, 1].

Our task reduces to the following convex feasibility problem:

find x
subjectto z € X
flz) <e

Complexity of Convex Optimization 6/26



Proof (Simplified)

Simplifying Assumption

Assume we are given minycx f(y) and max,cx f(y). Without loss of
generality assume they are [0, 1].

Our task reduces to the following convex feasibility problem:

find x
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We can feed this into the Ellipsoid method!

Needed Ingredients

@ Separation oracle for new feasible set K:

@ Ellipsoid E containing K:

© Guarantee that ::3:((1?) < exp(n, (I),log ¢):
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Proof (Simplified)

Simplifying Assumption

Assume we are given minycx f(y) and max,cx f(y). Without loss of
generality assume they are [0, 1].

Our task reduces to the following convex feasibility problem:

find x
subjectto z € X
flz) <e

We can feed this into the Ellipsoid method!

Needed Ingredients

@ Separation oracle for new feasible set K: Use the separation
oracle for X and first order oracle for f

@ Ellipsoid E containing K: Use the ellipsoid containing X

© Guarantee that Yoi£)

vari) < exp(n, (1), log ¢): Not obvious, but true!
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Proof (Simplified)

K={zeX: f(zx)<e}

vol(K) > " vol(X).

This shows that vol(K) is only exponentially smaller (in n and log %)
than vol(X'), and therefore also vol(FE), so it suffices.
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@ Assume wlog 0 € X and f(0) = mingex f(x) = 0.
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This shows that vol(K) is only exponentially smaller (in n and log %)
than vol(X'), and therefore also vol(FE), so it suffices.

@ Assume wlog 0 € X and f(0) = mingex f(x) = 0.
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Proof (Simplified)

K={zeX: f(z)<e}

vol(K) > €" vol(X).

This shows that vol(K) is only exponentially smaller (in n and log %)
than vol(X'), and therefore also vol(FE), so it suffices.

@ Assume wlog 0 € X and f(0) = mingex f(x) = 0.

@ Consider scaling X by € to get eX.

@ vol(eX) = €" vol(X).

@ We show that eX C K by showing f(y) < eforall y € eX.
@ Lety = ex for x € X, and invoke Jensen’s inequality

f(y) = flex+ (1 —€)0) < ef(x)+ (1 —€)f(0) <€
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Proof (General)

@ Denote L = minycx f(y) and H = maxycx f(y)

@ If we knew the target T' = L + ¢[H — L], we can reduce to solving
the feasibility problem over K = {x € X' : f(z) < T'}.
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Proof (General)

@ Denote L = minycx f(y) and H = maxycx f(y)
@ If we knew the target T' = L + ¢[H — L], we can reduce to solving
the feasibility problem over K = {x € X' : f(z) < T'}.

@ If we knew it lied in a sufficiently narrow range, we could binary
search for T
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Proof (General)

@ Denote L = minycx f(y) and H = maxycx f(y)

@ If we knew the target T' = L + ¢[H — L], we can reduce to solving
the feasibility problem over K = {x € X' : f(z) < T'}.

@ If we knew it lied in a sufficiently narrow range, we could binary
search for T

@ We don’t need to know anything about 7!

Key Observation

We don't really need to know T', H, or L to simulate the same
execution of the ellipsoid method on K!!
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Proof (General)

find x
subjectto z € X
f(x) ST =L+¢H— L]

@ Simulate the execution of the ellipsoid method on K
@ Polynomial number of iterations, terminating with point in K
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subjectto z € X
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@ Simulate the execution of the ellipsoid method on K
@ Polynomial number of iterations, terminating with point in K

@ Require separation oracle for K to use sy f only as a last resort

e This is allowed.
o Tries to get feasibility whenever possible.
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@ Polynomial number of iterations, terminating with point in K
@ Require separation oracle for K to use sy f only as a last resort
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@ Action of algorithm in each iteration other than the last can be
described independently of T
o If ellipsoid center ¢ ¢ X, use separating hyperplane with X
o Else use v f(c)
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Proof (General)

find x
subjectto z € X
f(x) ST =L+¢H— L]

@ Simulate the execution of the ellipsoid method on K

@ Polynomial number of iterations, terminating with point in K
@ Require separation oracle for K to use sy f only as a last resort
e This is allowed.
o Tries to get feasibility whenever possible.
@ Action of algorithm in each iteration other than the last can be
described independently of T
o If ellipsoid center ¢ ¢ X, use separating hyperplane with X
o Else use v f(c)
@ Run this simulation until enough iterations have passed, and take
the best feasible point encountered. This must be in K.

Complexity of Convex Optimization
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e Complexity of Linear Programming



Recall: Linear Programming

Recall: Linear Programming Problem
A problem of maximizing a linear function over a polyhedron.

maximize cTz
subjectto Az <b
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Recall: Linear Programming Problem
A problem of maximizing a linear function over a polyhedron.

maximize cTz
subjectto Az <b

@ When stated in standard form, optimal solution occurs at a vertex.
@ We will consider both explicitly and implicit LPs
o Explicit: given by A, b and ¢
o Implicit: Given by ¢ and a separation oracle for Az <b.
@ In both cases, we require all numbers to be rational
@ In the explicit case, we require polynomial time in (A), (b), and (c),
the number of bits used to represent the parameters of the LP.
@ In the implicit case, we require polynomial time in the bit
complexity of individual entries of A, b, c.
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Theorem (Polynomial Solvability of Explicit LP)

There is a polynomial time algorithm for linear programming, when the
linear program is represented explicitly.

A,

Proof Sketch (Informal)

Using result for weakly solving convex programs, we need 4 things:
@ A separation oracle for Az < b: trivial when explicitly represented
@ A first order oracle for cTz: also trivial

@ A bounding ellipsoid of volume at most an exponential times the
volume of the feasible polyhedron: tricky

@ A way of “rounding” an e-optimal solution to an optimal vertex
solution: tricky
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Theorem (Polynomial Solvability of Explicit LP)

There is a polynomial time algorithm for linear programming, when the
linear program is represented explicitly.

A,

Proof Sketch (Informal)

Using result for weakly solving convex programs, we need 4 things:
@ A separation oracle for Az < b: trivial when explicitly represented
@ A first order oracle for cTz: also trivial

@ A bounding ellipsoid of volume at most an exponential times the
volume of the feasible polyhedron: tricky

@ A way of “rounding” an e-optimal solution to an optimal vertex
solution: tricky

v

Solution to both issues involves tedious accounting of numerical issues
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Ellipsoid and Volume Bound (Informal)

Key to tackling both difficulties is the following observation:

Let v be vertex of the polyhedron Az < b. It is the case that v has
polynomial bit complexity, i.e. (v) < M, where M = O(poly((A), (b))).

Specifically, the solution of a system of linear equations has bit
complexity polynomially related to that of the equations.
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Ellipsoid and Volume Bound (Informal)

Key to tackling both difficulties is the following observation:

Let v be vertex of the polyhedron Az < b. It is the case that v has
polynomial bit complexity, i.e. (v) < M, where M = O(poly((A), (b))).

Specifically, the solution of a system of linear equations has bit
complexity polynomially related to that of the equations.

@ Bounding ellipsoid: all vertices contained in the box
—2M < 2 < 2M 'which in turn is contained in an ellipsoid of
volume exponential in M and n.
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Ellipsoid and Volume Bound (Informal)

Key to tackling both difficulties is the following observation:

Let v be vertex of the polyhedron Az < b. It is the case that v has
polynomial bit complexity, i.e. (v) < M, where M = O(poly((A), (b))).

Specifically, the solution of a system of linear equations has bit
complexity polynomially related to that of the equations.

@ Volume lowerbound when feasible set is full dimensional: follows
from bit complexity of vertices.

@ More generally, need to instead solve a “relaxed problem”.
Specifically, relaxing to Az < b + ¢, for sufficiently small e with
(e) = poly(M). Gives volume exponentially small in M, but no
smaller. Still close enough to original polyhedron so solution to
relaxed problem can be “rounded” to solution of the original

problem.
v
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Ellipsoid and Volume Bound (Informal)

Key to tackling both difficulties is the following observation:

Let v be vertex of the polyhedron Az < b. It is the case that v has
polynomial bit complexity, i.e. (v) < M, where M = O(poly((A), (b))).

Specifically, the solution of a system of linear equations has bit
complexity polynomially related to that of the equations.

@ Rounding to a vertex: If a point y is e-optimal for the e-relaxed
problem, for sufficiently small e chosen carefully to polynomial in
description of input, then rounding to the nearest x with M bits
recovers the vertex.
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Theorem (Polynomial Solvability of Implicit LP)
Consider a family 11 of linear programming problems I = (A, b, c¢)
admitting the following operations in polynomial time (in (I) and n):
@ A separation oracle for the polyhedron Az < b
@ Explicit access to c

Moreover, assume that every (ai;), (b;), (c;) are at most poly((I),n).
Then there is a polynomial time algorithm for 11 (both primal and dual*).

Informal Proof Sketch (Primal)
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@ However, no lowerbound on the volume of Az < b — can’t relax to
Ax < b+ € as in the explicit case.
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Theorem (Polynomial Solvability of Implicit LP)

Consider a family 11 of linear programming problems I = (A, b, c¢)
admitting the following operations in polynomial time (in (I) and n):
@ A separation oracle for the polyhedron Az < b
@ Explicit access to c

Moreover, assume that every (ai;), (b;), (c;) are at most poly((I),n).
Then there is a polynomial time algorithm for 11 (both primal and dual*).

Informal Proof Sketch (Primal)

@ Separation oracle and first order oracle are given
@ Rounding to a vertex exactly as in the explicit case.
o Every vertex v still has polynomial bit complexity M
@ Bounding ellipsoid: Still true that we get a bounding ellipsoid of
volume exponential in (I) and n

@ However, no lowerbound on the volume of Az < b — can’t relax to
Ax < b+ € as in the explicit case.
@ It turns out this is still OK, but takes a lot of work.
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Theorem (Polynomial Solvability of Implicit LP)
Consider a family 11 of linear programming problems I = (A, b, c¢)
admitting the following operations in polynomial time (in (I) and n):
@ A separation oracle for the polyhedron Az < b
@ Explicit access to c

Moreover, assume that every (ai;), (b;), (c;) are at most poly((I),n).
Then there is a polynomial time algorithm for 11 (both primal and dual*).

For the dual, we need equivalence of separation and optimization.
Also, we necessarily get a solution to a normalized version of the dual.
(HW)
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Separation and Optimization

@ One interpretation of the previous theorem is that optimization of
linear functions over a polytope of polynomial bit complexity
reduces to implementing a separation oracle

@ As it turns out, the two tasks are polynomial-time equivalent.
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Separation and Optimization

@ One interpretation of the previous theorem is that optimization of
linear functions over a polytope of polynomial bit complexity
reduces to implementing a separation oracle

@ As it turns out, the two tasks are polynomial-time equivalent.

Lets formalize the two questions, parametrized by a polytope P.

Linear Optimization Problem

@ Input: Linear objective ¢ € R™.
@ Output: argmax,cp cTx.

v

Separation Problem

@ Input: y e R”
@ Output: Decide that y € P, or else find h € R™ s.t. hTx < hTy for
allz € P.

A,
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Recall: Minimum Cost Spanning Tree

Given a connected undirected
graph G = (V, E), and costs ¢, on
edges e, find a minimum cost
spanning tree of G.
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Recall: Minimum Cost Spanning Tree

Given a connected undirected
graph G = (V, E), and costs ¢, on
edges e, find a minimum cost
spanning tree of G.

Spanning Tree Polytope
S 2. <|X|—1, forXcCV.

ze 2> 0, fore e E.
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Recall: Minimum Cost Spanning Tree

Given a connected undirected
graph G = (V, E), and costs ¢, on
edges e, find a minimum cost
spanning tree of G.

Spanning Tree Polytope

ax. <|X|-1, forX CV.
eCX

S re=n—1

ecE

Te > 0, fore € E.

@ Optimization: Find the minimum/maximum weight spanning tree
@ Separation: Find X C V with >°_ - ze > |X| — 1, if one exists
e i.e. When edge weights are z, find a “dense” subgraph
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Theorem (Equivalence of Separation and Optimization for

Polytopes)

Consider a family P of polytopes P = {x : Az < b} described implicitly
using (P) bits, and satisfying (ai;), (b;) < poly((P),n). Then the
separation problem is solvable in poly ((P),n, (y)) time for P € P if and
only if the linear optimization problem is solvable in poly((P), n, (c))
time.

@ Colloquially, we say such polytope families are solvable.
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using (P) bits, and satisfying (ai;), (b;) < poly((P),n). Then the
separation problem is solvable in poly ((P),n, (y)) time for P € P if and
only if the linear optimization problem is solvable in poly((P), n, (c))
time.

@ Colloquially, we say such polytope families are solvable.

@ E.g. Spanning tree polytopes, represented by graphs, are
solvable.

@ We already sketched the proof of the forward direction
@ Separation = optimization
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Theorem (Equivalence of Separation and Optimization for

Polytopes)

Consider a family P of polytopes P = {x : Az < b} described implicitly
using (P) bits, and satisfying (ai;), (b;) < poly((P),n). Then the
separation problem is solvable in poly ((P),n, (y)) time for P € P if and
only if the linear optimization problem is solvable in poly((P), n, (c))
time.

@ Colloquially, we say such polytope families are solvable.

@ E.g. Spanning tree polytopes, represented by graphs, are
solvable.
@ We already sketched the proof of the forward direction
@ Separation = optimization

@ For the other direction, we need polars
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Recall: Polar Duality of Convex Sets

One way of representing the all halfspaces containing a convex set.

Polar

Let S C R” be a closed convex set containing the origin. The polar of
S is defined as follows:
S°={y:xz-y<lforallze S}

@ Every halfspace aTz < b with b # 0 can be written as a
“normalized” inequality yTx < 1, by dividing by b.
@ S° can be thought of as the normalized representations of

halfspaces containing S.
EqUivalence of Separation and Optimization 7126




Properties of the Polar

@ If Sis bounded and 0 € interior(S), then the same holds for S°.
e SOO — S

S={zr:y-x<1forallyc S} Se={y:z-y<lforallze S}
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Polarity of Polytopes

Polytopes

Given a polytope P represented as Az < 1, the polar P° is the convex
hull of the rows of A.

@ Facets of P correspond to vertices of P°.
@ Dually, vertices of P correspond to facets of P°.
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Proof Outline: Optimization = Separation

Separation on P

prosdryr

-

y

Optimization on P

20/26
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Proof Outline: Optimization = Separation

Optimization on P°

\

Separation on P

>

prosdig
Ellipsoid

-

y

Optimization on P Separation on P°
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Proof Outline: Optimization = Se

Polarit; R
« Y Optimization on P°

\

Separation on P

>

prosdig
Ellipsoid

<

y

Polarity
Separation on P°

>

Optimization on P
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S={z:y-x<1lforally € S°} Se={y:x-y<lforallz e S}
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S={z:y-x<1lforally € S°} Se={y:x-y<lforallz e S}

Separation over S reduces in constant time to optimization over S°,
and vice versa since S°° = §.
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S={zx:y-x<lforallye S°} S°={y:xz-y<lforallz € S}

Lemma

Separation over S reduces in constant time to optimization over S°,
and vice versa since S°° = §S.

.

Proof

@ We are given vector x, and must check whether z € .S, and if not
output separating hyperplane.
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S={z:y-x<1lforally € S°} Se={y:x-y<lforallz e S}

Lemma

Separation over S reduces in constant time to optimization over S°,
and vice versa since S°° = §S.

.

Proof

@ We are given vector x, and must check whether z € .S, and if not
output separating hyperplane.

e reSiffy-x<1forallye S°
@ equivalently, iff maxyecgo y -z < 1.
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S={z:y-x<1lforally € S°} Se={y:x-y<lforallz e S}

Lemma

Separation over S reduces in constant time to optimization over S°,
and vice versa since S°° = §S.

.

Proof
@ We are given vector x, and must check whether z € .S, and if not
output separating hyperplane.
e reSiffy-x<1forallye S°
@ equivalently, iff maxyecgo y -z < 1.
o Ifwefindy € S°s.t. y-2z > 1, then y is the separating hyperplane
o yTz <1< yTxforevery z € S.
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Optimization <= Separ

v 9

Polarit; R
Y Optimization on P°

\

Separation on P
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Polarity X
> Separation on P°
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Beyond Polytopes

Essentially everything we proved about equivalence of separation and J

optimization for polytopes extends (approximately) to arbitrary convex
sets.
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Beyond Polytopes

Essentially everything we proved about equivalence of separation and
optimization for polytopes extends (approximately) to arbitrary convex J
sets.

Problems parametrized by P, a closed convex set.

Weak Optimization Problem

@ Input: Linear objective ¢ € R™.
@ Output: z € P*¢, and cTz > maxyecpcla’ — e

v

Weak Separation Problem

@ Input: y e R"
@ Output: Decide that y € P~¢, or else find h € R™ with ||h|| = 1 s.t.
hTz < hTy 4+ eforall x € P.
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Beyond Polytopes

optimization for polytopes extends (approximately) to arbitrary convex

Essentially everything we proved about equivalence of separation and
sets. J

Problems parametrized by P, a closed convex set.

Weak Optimization Problem

@ Input: Linear objective ¢ € R™.
@ Output: z € P*¢, and cTz > maxyecpcla’ — e

v

Weak Separation Problem

@ Input: y e R"
@ Output: Decide that y € P~¢, or else find h € R™ with ||h|| = 1 s.t.
hTz < hTy 4+ eforall x € P.

| could have equivalently stated the weak optimization problem for
convex functions instead of linear.
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Theorem (Equivalence of Separation and Optimization for

Convex Sets)

Consider a family P of convex sets described implicitly using (P) bits.
Then the weak separation problem is solvable in

poly ((P), n, (y),log(1/¢)) time for P € P if and only if the weak
optimization problem is also solvable in poly((P),n, (c),log(1/¢)) time.
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Theorem (Equivalence of Separation and Optimization for

Convex Sets)

Consider a family P of convex sets described implicitly using (P) bits.
Then the weak separation problem is solvable in

poly ((P), n, (y),log(1/¢)) time for P € P if and only if the weak
optimization problem is also solvable in poly((P),n, (c),log(1/¢)) time.

@ The “approximation” in this statement is necessary, since we can'’t
solve convex optimization problems exactly.

@ Weak separation suffices for ellipsoid, which is only approximately
optimal anyways

@ By polarity, weak optimization is equivalent to weak separation
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Theorem (Equivalence of Separation and Optimization for

Convex Sets)

Consider a family P of convex sets described implicitly using (P) bits.
Then the weak separation problem is solvable in

poly ((P), n, (y),log(1/¢)) time for P € P if and only if the weak
optimization problem is also solvable in poly((P),n, (c),log(1/¢)) time.

@ The “approximation” in this statement is necessary, since we can'’t
solve convex optimization problems exactly.

@ Weak separation suffices for ellipsoid, which is only approximately
optimal anyways

@ By polarity, weak optimization is equivalent to weak separation
@ For proof / details, see the GLS book.
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Implication: Operations preserving solvability

@ Assume you can efficiently optimize over two convex sets P and @

What about P|JQ and P Q? I
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Implication: Operations preserving solvability

@ Assume you can efficiently optimize over two convex sets P and

What about P|JQ and PN Q?

PUQ
@ Yes! Simply optimize over each separately, and take the better of
the two outcomes.

@ Equivalent to optimizing over the convex hull of P Q.

@ Implication of Separation/optimization equivalence: there is a
separation oracle for convexhull(P|J Q).
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Implication: Operations preserving solvability

@ Assume you can efficiently optimize over two convex sets P and

What about P|JQ and PN Q?

PQ
@ Yes! Follows from equivalence of separation and optimization.

@ Specifically, can separate over P and @ individually, therefore can
separate over P ()@, and then can optimize over P Q.

@ Applications: colorful spanning tree, cardinality-constrained
matching, . ..
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Implication: Constructive Caratheodory

Problem

Given a point z € P, where P C R" is a solvable polytope, write = as a
convex combination of n + 1 vertices of P, and do so in polynomial
time.

@ Existence: Caratheodory’s theorem.

@ E.g. Birkhoff Von-Neumann, fractional spanning trees, fractional
matchings, . ..

@ Follows from equivalence of separation and optimization. See
HW4.

Equivalence of Separation and Optimization 26/26



	Recapping the Ellipsoid Method
	Complexity of Convex Optimization
	Complexity of Linear Programming
	Equivalence of Separation and Optimization

