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Optimization over Sets

Most combinatorial optimization problems can be thought of as
choosing the best set from a family of allowable sets

Shortest paths
Max-weight matching
Independent set
...

Set system: Pair (X , I) where X is a finite ground set and I ⊆ 2X

are the feasible sets
Objective: often “linear”, referred to as modular
Analogues of concave and convex: submodular and supermodular
(in no particular order!)
Today, we will look only at optimizing modular objectives over an
extremely prolific family of set systems

Related, directly or indirectly, to a large fraction of optimization
problems in P
Also pops up in submodular/supermodular optimization problems
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Maximum Weight Forest Problem

Given a connected undirected graph G = (V,E), and weights we ∈ R
on edges e, find a maximum weight acyclic subgraph (aka forest) of G.

Slight generalization of minimum weight spanning tree
We use n and m to denote |V | and |E|, respectively.
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The Greedy Algorithm
1 B ← ∅
2 Sort non-negative weight edges in decreasing order of weight

e1, . . . , em, with w1 ≥ w2 ≥ . . . ≥ wm ≥ 0

3 For i = 1 to m:
if B

⋃
{ei} is acyclic, add ei to B.

Theorem
The greedy algorithm outputs a maximum-weight forest.
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Lemma
1 The empty set is acyclic
2 If A is an acyclic set of edges, and B ⊆ A, then B is also acyclic.

Converse: if B cyclic then so is A

3 If A,B are acyclic, and |B| > |A|, then there is e ∈ B \A such that
A
⋃
{e} is acyclic

Inductively: can extend A by adding |B| − |A| elements from B \A
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(1) and (2) are trivial, so let’s prove (3)
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Inductively: can extend A by adding |B| − |A| elements from B \A

Sub-lemma: if C is acyclic, then |C| = n−#components(C).
Induction

When |B| > |A|, this means #components(B) < #components(A)

Can’t be that all e ∈ B are “inside” connected components of A
Some e ∈ B must “go between” connected components of A.
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Proof

Going back to proving the algorithm correct.

Inductive Hypothesis (i)
There is a maximum-weight acyclic forest B∗i which “agrees” with the
algorithm’s choices on edges e1, . . . , ei.

i.e. if Bi denotes the algorithm’s choice up to iteration i, then
Bi = B∗i

⋂
{e1, . . . , ei}

Assume true for step i− 1, and consider step i

If ei 6∈ Bi, then Bi−1
⋃
{ei} is cyclic. Since Bi−1 ⊆ B∗i−1, then

ei 6∈ B∗i−1 (Property 2). So take B∗i = B∗i−1.
If ei ∈ Bi and ei 6∈ B∗i , extend Bi to the size of B∗i−1 (property 3)

Recall that Bi−1 = Bi \ {ei} ⊆ B∗i−1
B∗i = B∗i−1

⋃
{ei} \ {ek} for some k > i

B∗i has weight no less than B∗i−1, so optimal.
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To prove optimality of the greedy algorithm, all we needed was the
following.

Matroids
A set system M = (X , I) is a matroid if

1 ∅ ∈ I
2 If A ∈ I and B ⊆ A, then B ∈ I (Downward Closure)
3 If A,B ∈ I and |B| > |A|, then ∃ x ∈ B \A such that A

⋃
{x} ∈ I

(Exchange Property)

Three conditions above are called the matroid axioms
A ∈ I is called an independent set of the matroid.
The matroid whose independent sets are acyclic subgraphs is
called a graphic matroid
Other examples abound!
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Example: Linear Matroid
X is a finite set of vectors {v1, . . . , vm} ⊆ Rn

S ∈ I iff the vectors in S are linearly independent

Downward closure: If a set of vectors is linearly independent, then
every subset of it is also
Exchange property: Can always extend a low-dimension
independent set S by adding vectors from a higher dimension
independent set T

Matroids and The Greedy Algorithm 6/29



Example: Uniform Matroid
X is an arbitrary finite set {1, . . . , n}.
S ∈ I iff |S| ≤ k.

Downward closure: If a set S has |S| ≤ k then the same holds for
T ⊆ S.
Exchange property: If |S| < |T | ≤ k, then there is an element in
T \ S, and we can add it to S while preserving independence.
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Example: Partition Matroid
X is the disjoint union of classes X1, . . . , Xm

Each class Xj has an upperbound kj .
S ∈ I iff |S

⋂
Xj | ≤ kj for all j

This is the “disjoint union” of a number of uniform matroids
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Example: Transversal Matroid
Described by a bipartite graph E ⊆ L×R

X = L

S ∈ I iff there is a bipartite matching which matches S

Downward closure: If we can match S, then we can match T ⊆ S.
Exchange property: If |T | > |S| is matchable, then an augmenting
path/alternating path extends the matching of S to some x ∈ T \S.
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The Greedy Algorithm on Matroids

The Greedy Algorithm
1 B ← ∅
2 Sort nonnegative elements of X in decreasing order of weight

{1, . . . , n} with w1 ≥ w2,≥ . . . ≥ wn ≥ 0.
3 For i = 1 to n:

if B
⋃
{i} ∈ I, add i to B.

Theorem
The greedy algorithm returns the maximum weight set for every choice
of weights if and only if the set system (X , I) is a matroid.

We already saw the “if” direction. We will skip “only if”.
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The Greedy Algorithm on Matroids

The Greedy Algorithm
1 B ← ∅
2 Sort nonnegative elements of X in decreasing order of weight

{1, . . . , n} with w1 ≥ w2,≥ . . . ≥ wn ≥ 0.
3 For i = 1 to n:

if B
⋃
{i} ∈ I, add i to B.

To implement this, we need an independence oracle for step 3
A subroutine which checks whether S ∈ I or not.

Runs in time O(n log n) + nT , where T is runtime of the
independence oracle.
For most “natural” matroids, indepenendence oracle is easy to
implement efficiently

Graphic matroid
Linear matroid
Uniform/partition matroid
Transversal matroid
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Independent Sets, Bases, and Circuits

Consider a matroidM = (X , I).
An independent set is a set A ∈ I.

A base ofM is a maximal independent set
A base of S ⊆ X inM is maximal independent subset of S

I.e. a base of the matroid after deleting S.

A circuit S ⊆ X is a minimal dependent subset of X

What are these for:
Graphic matroid
Linear matroid
Uniform matroid
Partition matroid
Transversal matroid
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Rank

Lemma
For every S ⊆ X , all bases of S inM have the same cardinality.

Special case of S = X : all bases ofM have the same cardinality.
Should remind you of vector space dimension

Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank
The Rank of S ⊆ X inM is the size of the maximal independent
subsets (i.e. bases) of S.
The rank ofM is the size of the bases ofM.
The function rankM(S) : 2X → N is called the rank function ofM.

E.g.: Graphic matroid, linear matroid, transversal matroid

Basic Terminology and Properties 13/29



Rank

Lemma
For every S ⊆ X , all bases of S inM have the same cardinality.

Special case of S = X : all bases ofM have the same cardinality.
Should remind you of vector space dimension

Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank
The Rank of S ⊆ X inM is the size of the maximal independent
subsets (i.e. bases) of S.
The rank ofM is the size of the bases ofM.
The function rankM(S) : 2X → N is called the rank function ofM.

E.g.: Graphic matroid, linear matroid, transversal matroid

Basic Terminology and Properties 13/29



Rank

Lemma
For every S ⊆ X , all bases of S inM have the same cardinality.

Special case of S = X : all bases ofM have the same cardinality.
Should remind you of vector space dimension

Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank
The Rank of S ⊆ X inM is the size of the maximal independent
subsets (i.e. bases) of S.
The rank ofM is the size of the bases ofM.
The function rankM(S) : 2X → N is called the rank function ofM.

E.g.: Graphic matroid, linear matroid, transversal matroid

Basic Terminology and Properties 13/29



Rank

Lemma
For every S ⊆ X , all bases of S inM have the same cardinality.

Special case of S = X : all bases ofM have the same cardinality.
Should remind you of vector space dimension

Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank
The Rank of S ⊆ X inM is the size of the maximal independent
subsets (i.e. bases) of S.
The rank ofM is the size of the bases ofM.
The function rankM(S) : 2X → N is called the rank function ofM.

E.g.: Graphic matroid, linear matroid, transversal matroid
Basic Terminology and Properties 13/29



Span

Span
Given S ⊆ X , span(S) = {i ∈ X : rank(S) = rank(S

⋃
{i})}

i.e. the elements which would form a circuit if added to a base of S
e.g.: Linear matroid, graphic matroid, uniform matroid.

Observation
i is selected by the greedy algorithm iff i 6∈ span({1, . . . , i− 1})
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Operations preserving Matroidness

GivenM = (X , I), consider the following operations:

Deletion: For B ⊆ X , we defineM\B = (X ′, I ′) with X ′ = X \B,

I ′ =
{
S ⊆ X ′ : S ∈ I

}
Graphic: deleting edges from the graph

Disjoint union: Given M1 = (X1, I2) and M2 = (X2, I2) with
X1
⋂
X2 = ∅, we define

M1 ⊕M2 = (X1

⋃
X2,

{
A1

⋃
A2 : A1 ∈ I1, A2 ∈ I2

}
)

Graphic: combining two node-disjoint graphs

Contraction: Given B ⊆ X , let M/B = (X ′, I ′) with X ′ = X \B,

I ′ =
{
S ⊆ X ′ : B

⋃
S ∈ I

}
i.e. Think of B as always being included
Graphic: contract the connected components of B

Others: truncation, dual, union...
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Others: truncation, dual, union...
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Matroids as an Algebra of Tractable Discrete Problems

Optimization over matroids is “easy”, in the same way that
optimization over convex sets is “easy”

Operations preserving set convexity are analogous to operations
preserving matroid structure
Arguably, matroids and submodular functions are discrete
analogues of convex sets and convex functions, respectively.

Less exhaustive
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Viewing Matroids Polyhedrally

As is often the case with tractable discrete problems, we can view
their feasible set as a polyhedron

ForM = (X , I), the convex hull of independent sets can be
written as a polytope in a natural way

The polytope is “solvable”, and admits a polytime separation oracle
This perspective will be crucial for more advanced applications of
matroids

Optimization of linear functions over matroid intersections
Optimization of submodular functions over matroids
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The Matroid Polytope

Polytope P(M) forM = (X , I)∑
i∈S

xi ≤ rankM(S), for S ⊆ X .

xi ≥ 0, for i ∈ X .

Assigns a variable xi to every element i of the ground set
Each feasible x is a fractional subset of X

0 ≤ xi ≤ 1 since the rank of a singleton is at most 1.

The 0-1 indicator vector xI for independent set I ∈ I is in the
above polytope
In fact, we will show that P(M) is precisely the convex hull of
independent sets I
Note: polytope has 2|X | constraints.
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Integrality of the Matroid Polytope

Polytope P(M) forM = (X , I)∑
i∈S

xi ≤ rankM(S), for S ⊆ X .

xi ≥ 0, for i ∈ X .

Theorem
P(M) = convexhull {xI : I ∈ I}

It is clear that P(M) ⊇ convexhull {xI : I ∈ I}
To show that P(M) ⊆ convexhull {xI : I ∈ I}, we will show that
every vertex of P(M) equals xI for some I ∈ I.
Recall: suffices to show that every linear function wTx is
maximized over P(M) at some xI for I ∈ I.
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Recall:The Greedy Algorithm
1 B ← ∅
2 Sort nonnegative elements of X in decreasing order of weight

{1, . . . , n} with w1 ≥ w2,≥ . . . ≥ wn ≥ 0.
3 For i = 1 to n:

if B
⋃
{i} ∈ I, add i to B.

Theorem
The greedy algorithm returns the maximum weight set for every choice
of weights if and only if the set system (X , I) is a matroid.

We can think of the greedy algorithm as computing the indicator
vector x∗ = xB ∈ P(M)

We will show that x∗ maximizes wᵀx over x ∈ P(M).
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Recall: Observation
i is selected by the greedy algorithm iff i 6∈ span({1, . . . , i− 1})

i.e. if rank[1 : i]− rank[1 : i− 1] = 1.

Therefore, x∗i = rank[1 : i]− rank[1 : i− 1]∑
i

wix
∗
i =

∑
i

wi(rank[1 : i]− rank[1 : i− 1])

Consider an arbitrary x ∈ P(M)

∑
i

wixi =

∑
i

(wi − wi+1)x(1 : i)

≤
∑
i

(wi − wi+1)rank(1 : i)

=
∑
i

wi(rank[1 : i]− rank[1 : i− 1])
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The Matroid Base Polytope

The matroid polytope is the convex hull of independent sets
Graphic: convex hull of forests

What if we wish to consider only “full-rank” sets?
Graphic: spanning trees

Polytope Pbase(M) forM = (X , I)∑
i∈S

xi ≤ rankM(S), for S ⊆ X .∑
i∈X

xi = rank(M)

xi ≥ 0, for i ∈ X .

The 0-1 indicator vector xB for a base B ofM is in above polytope
In fact, we will show that Pbase(M) is precisely the convex hull of
bases ofM
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Polytope Pbase(M) forM = (X , I)∑
i∈S

xi ≤ rankM(S), for S ⊆ X .∑
i∈X

xi = rank(M)

xi ≥ 0, for i ∈ X .

Theorem
Pbase(M) = convexhull {xB : B is a base ofM}

As before, one direction is obvious:
Pbase(M) ⊇ convexhull {xB : B is a base ofM}
For the other direction, take x ∈ Pbase(M)

Since x ∈ P(M), x is a convex combination of independent sets
I1, . . . , Ik ofM.
Since ||x||1 = rank(M), and ||xI` ||1 ≤ rank(M) for all `, it must
be that ||xI1 ||1 = ||xI2 ||1 = . . . = ||xIk ||1 = rank(M)
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Solvability of Matroid Polytopes

Polytope P(M) forM = (X , I)∑
i∈S

xi ≤ rankM(S), for S ⊆ X .

xi ≥ 0, for i ∈ X .

When given an independence oracle forM, we can maximize
linear functions over P(M) in O(n log n) time

By integrality, same as finding max-weight independent set ofM.

Therefore, by equivalence of separation and optimization, can
also implement a separation oracle for P(M)

A more direct proof: reduces to submodular function minimization
rankM is a submodular set function.
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Matroid Intersection

Optimization of linear functions over matroids is tractable
Matroid operations provide an algebra for constructing new
matroids from old
We will look at one operation on matroids which does not produce
a matroid, but nevertheless produces a solvable problem.

Matroid Intersection
Given matroidsM1 = (X , I1) andM2 = (X , I2) on the same ground
set, we define the set systemM1

⋂
M2 = (X , I1

⋂
I2).

i.e. a set is feasible if it is independent in both matroids
In general, does not produce a matroid
Nevertheless, it will turn out that maximizing linear functions over
a matroid intersection is tractable
However, maximizing linear functions over the intersection of 3 or
more matroids is NP-hard
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Examples

Bipartite Matching
Given a bipartite graph G, a set of
edges F is a bipartite matching if
and only if each node is incident on
at most one edge in F .

Arborescence
Given a directed graph G, a set of
edges is an r-arborescence if it is a
tree directed away from the root r.

Others: colorful spanning trees, orientations, . . .
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The Matroid Intersection Polytope

Matroid Intersection
Given matroidsM1 = (X , I1) andM2 = (X , I2) on the same ground
set, we define the set systemM1

⋂
M2 = (X , I1

⋂
I2).

Optimizing a modular function overM1
⋂
M2 is equivalent to

optimizing a linear function over convexhull {xI : I ∈ I1
⋂
I2}.

As it turns out, this is a solvable polytope.

Theorem
P(M1)

⋂
P(M2) = convexhull {xI : I ∈ I1

⋂
I2}

One direction is obvious:
P(M1)

⋂
P(M2) ⊇ convexhull {xI : I ∈ I1

⋂
I2}

The other direction is not so obvious
It is conceivable that P(M1)

⋂
P(M2) has fractional vertices

Nevertheless, it is true but hard to prove, so we will skip it.
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Optimization over Matroid Intersections

Optimization over Matroid IntersectionM1

⋂
M2

maximize
∑

i∈X wixi
subject to ∑

i∈S
xi ≤ rankM1(S), for S ⊆ X .∑

i∈S
xi ≤ rankM2(S), for S ⊆ X .

xi ≥ 0, for i ∈ X .

Theorem
Given independence oracles to both matroidsM1 andM2, there is an
algorithm for finding the maximum weight set inM1

⋂
M2 which runs

in poly(n) time.

Proof: Using equivalence of separation and optimization, and the fact
that all coefficients in the LP have poly(n) bits.

Matroid Intersection 28/29



Optimization over Matroid Intersections

Optimization over Matroid IntersectionM1

⋂
M2

maximize
∑

i∈X wixi
subject to ∑

i∈S
xi ≤ rankM1(S), for S ⊆ X .∑

i∈S
xi ≤ rankM2(S), for S ⊆ X .

xi ≥ 0, for i ∈ X .

Theorem
Given independence oracles to both matroidsM1 andM2, there is an
algorithm for finding the maximum weight set inM1

⋂
M2 which runs

in poly(n) time.

Proof: Using equivalence of separation and optimization, and the fact
that all coefficients in the LP have poly(n) bits.

Matroid Intersection 28/29



Optimization over Matroid Intersections

Optimization over Matroid IntersectionM1

⋂
M2

maximize
∑

i∈X wixi
subject to ∑

i∈S
xi ≤ rankM1(S), for S ⊆ X .∑

i∈S
xi ≤ rankM2(S), for S ⊆ X .

xi ≥ 0, for i ∈ X .

Theorem
Given independence oracles to both matroidsM1 andM2, there is an
algorithm for finding the maximum weight set inM1

⋂
M2 which runs

in poly(n) time.

Proof: Using equivalence of separation and optimization, and the fact
that all coefficients in the LP have poly(n) bits.

Matroid Intersection 28/29



NP-hardness of 3-way Matroid Intersection

By a reduction from Hamiltonian Path in directed graphs
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