CS675: Convex and Combinatorial Optimization
Fall 2019

Duality of Convex Optimization Problems

Instructor: Shaddin Dughmi



0 The Lagrange Dual Problem



Recall: Optimization Problem in Standard Form

minimize  fo(x)
subjectto  fi(x) <0, fori=1,...,m.
hi(x) =0, fori=1,... k.

@ For convex optimization problems in standard form, f; is convex
and h; is affine.

@ Let D denote the domain of all these functions (i.e. when their
value is finite)
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Recall: Optimization Problem in Standard Form

minimize  fo(x)
subjectto  fi(x) <0, fori=1,...,m.
hi(x) =0, fori=1,... k.

@ For convex optimization problems in standard form, f; is convex
and h; is affine.

@ Let D denote the domain of all these functions (i.e. when their
value is finite)

This Lecture + Next

We will develop duality theory for convex optimization problems,
generalizing linear programming duality.

The Lagrange Dual Problem 1/25



Running Example: Linear Programming

We have already seen the standard form LP below

maximize cTx —minimize —c'z
subjectto Az <b subjectto Az —b=<0
z>=0 —x =0
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Running Example: Linear Programming

We have already seen the standard form LP below

maximize cTx —minimize —c'z
subjectto Az <b subjectto Az —b=<0
z>=0 —x =0

Along the way, we will recover the following standard form dual
minimize  yTb
subjectto ATy = ¢
y=0
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The Lagrangian

minimize  fy(z)
subjectto fi(x) <0, fori=1,...,m.

Basic idea of Lagrangian duality is to relax/soften the constraints by
replacing each with a linear “penalty term” or “cost” in the objective. J
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The Lagrangian

minimize  fo(z)
subjectto  fi(r) <
hi(z) =

0, fori=1,...,m.
0, fori=1,... k.
Basic idea of Lagrangian duality is to relax/soften the constraints by
replacing each with a linear “penalty term” or “cost” in the objective.

v

The Lagrangian Function
k
L(z,\v) —l—Z)\ fi(z +ZVihi($)
=1

@ )\, is Lagrange Multiplier for i’th inequality constraint
@ Required to be nonnegative

@ v; is Lagrange Multiplier for i’th equality constraint
o Allowed to be of arbitrary sign
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The Lagrange Dual Function

minimize  fo(x)

subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.
The Lagrange dual function gives the optimal value of the primal
problem subject to the softened constraints J
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The Lagrange Dual Function

minimize  fy(z)
subjectto fi(x) <0, fori=1,...,m.
hi(x) =0, fori=1,... k.

The Lagrange dual function gives the optimal value of the primal
problem subject to the softened constraints J

The Lagrange Dual Function
k
g\, v) :xing)L(x,)\,V) = mf ( -I—Z)\ fi(z Z W Z(x))

=1

v

@ Observe: g is a concave function of the Lagrange multipliers

@ We will see: Its quite common for the Lagrange dual to be
unbounded (—oo) for some A and v

@ By convention, domain of g is (A, v) s.t. g(A\,v) > —c0
The'Cagrange Dual Problem

y
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Langrange Dual of LP

minimize —cTz
subjectto Az —b=<0
—z =0
First, the Lagrangian function

L(z,\) = —cTz + A\ (Az — b) — Nz
== (AT)\l — C— )\Q)Tl' - )\.{b
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Langrange Dual of LP

minimize —cTz
subjectto Az —b=<0
—x =<0
First, the Lagrangian function

L(z,\) = —cTz + A\ (Az — b) — Nz
== (AT)\l — C — )\Q)TCL' - )\.{b
And the Lagrange Dual
g(A\) =inf L(x, \)

. —0o0 ifAT)\l—C—)\Q%O
Tl =ATh AN —e— =0

The Lagrange Dual Problem

5/25



Langrange Dual of LP

minimize —cTz
subjectto Az —b=<0
—z =0
First, the Lagrangian function

L(z,\) = —cTz + A\ (Az — b) — Nz
== (AT)\l — C — )\Q)TCL' - )\.{b
And the Lagrange Dual
g(A\) =inf L(x, \)

. —0o0 ifAT)\l—C—)\Q%O
Tl =ATh AN —e— =0

So we restrict the domain of g to A satisfying ATA; —c— Xy =0
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function

k
g\ v) = ziIé%L(x,)\, v)= 1nf ( Z)\ fi(z ;Vzhz(fﬂ))
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function

k
g\ v) = ziIé%L(%,)\,V) = 1nf ( Z)\ fi(z ;wh&@)

g(\,v) is a lowerbound on OPT (primal) for every A = 0 and v € R¥.
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function

m k
g\ v) = mirellf)L(a:, A\ V) = l}g% (fo(x) + ;)\Zfz(x) + ;Vlhz(x)>

v

Fact
g(\,v) is a lowerbound on OPT (primal) for every A = 0 and v € R¥.

v

Proof
@ Every primal feasible x incurs nonpositive penalty by L(z, A, v)
@ Therefore, L(x*, \,v) < fo(z*)
@ So g(\,v) < fo(z*) = OPT(Primal)
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function
k
g\ v) = miIGI%L(x, A\ V) = 1nf ( )+ Z)\ falz) + Z;V,hz(x)>

Interpretation

@ A “hard” feasibility constraint can be thought of as imposing a
penalty of +cc if violated, and a penalty/reward of 0 if satisfied

@ Lagrangian imposes a “soft” linear penalty for violating a
constraint, and a reward for slack

@ Lagrange dual finds the optimal subject to these soft constraints

v
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Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

minimize  fo() é : ’

SUbJeCt to fl ($) S 0 A+t =€](‘/\]_“—-—-—________‘__‘_H
: A

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(z) = v and fy(z) = ¢

@ p* =inf{t: (u,t) € G,u <0}

@ g(\) =inf{du+t : (u,t) € G}
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Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

minimize  fo() é 1

subjectto  fi(z) <0 Autt=gN——— |

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(z) = v and fy(z) = ¢

@ p* =inf{t: (u,t) € G,u <0}

@ g(\) =inf{du+t : (u,t) € G}

@ \u+t = g()) is a supporting hyperplane to G pointing northeast
@ Must intersect vertical axis below p*
@ Therefore g(\) < p*
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The Lagrange Dual Problem

This is the problem of finding the best lower bound on OPT(primal)
implied by the Lagrange dual function

Agu +t = g(Az) G
maximize g(\,v) Xeut = g(x*) =
Subject to A>0 Mt t=g(A) da

@ Note: this is a convex optimization problem, regardless of whether
primal problem was convex

@ By convention, sometimes we add “dual feasibility” constraints to
impose “nontrivial” lowerbounds (i.e. g(\,v) > —0)

@ (\*,v*) solving the above are referred to as the dual optimal
solution
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Langrange Dual Problem of LP

maximize cTx —minimize —cTx
subjectto Az <b subjectto Az —b =<0
=0 —z <0

Our Lagrange dual function for the above minimization LP (to the
right), defined over the domain ATA\; — ¢ — Ay = 0.

g(A) = —AJb
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Langrange Dual Problem of LP

maximize cTx —minimize —cTx
subjectto Az <b subjectto Az —b =<0
=0 —z <0

Our Lagrange dual function for the above minimization LP (to the
right), defined over the domain ATA\; — ¢ — Ay = 0.

g(A) = —AJb

The Lagrange dual problem can then be written as

—maximize —AJb
subjectto ATA1 —c— )Xo =0

A=0
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Langrange Dual Problem of LP

maximize cTx —minimize —cTx
subjectto Az <b subjectto Az —b =<0
=0 —z <0

Our Lagrange dual function for the above minimization LP (to the
right), defined over the domain ATA\; — ¢ — Ay = 0.

g(A) = —AJb

The Lagrange dual problem can then be written as

—maximize —AJb
subjectto  ATA; —e—=X3 =0
AT)\l t C
A0
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Langrange Dual Problem of LP

maximize cTx —minimize —cTx
subjectto Az <b subjectto Az —b =<0
=0 —z <0

Our Lagrange dual function for the above minimization LP (to the
right), defined over the domain ATA\; — ¢ — Ay = 0.

g(A) = —AJb

The Lagrange dual problem can then be written as

minimize  yTb —maximize —Alb
subjectto ATy = ¢ subject to W
y >0 AT = ¢
A=0
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Another Example: Conic Optimization Problem

minimize cTx
subjectto Ax =10
rze K

@ = € K can equivalently be written as 272 < 0, Vz € K°

L(z,\v)=cTz+vT(Ax —b) + Z)\ 2Tx
zeK°
=(c—ATv + Z Az 2)Te +vTh
zeK°
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Another Example: Conic Optimization Problem

minimize cTx
subjectto Ax =10
rze K

@ = € K can equivalently be written as 272 < 0, Vz € K°

L(z,\v)=cTz+vT(Ax —b) + Z)\ 2Tx
z€K®

=(c—ATv + Z Az 2)Te +vTh
zeK®°

@ Can think of A = 0 as choosing some s € K°

L(z,s,v)=(c— ATv + s)Tx + vTh
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Another Example: Conic Optimization Problem

minimize cTx
subjectto Ax =10
rze K

@ = € K can equivalently be written as 272 < 0, Vz € K°

L(z,\v)=cTz+vT(Ax —b) + Z)\ 2Tx
zeK°

=(c—ATv + Z Az 2)Te +vTh
zeK°

@ Can think of A = 0 as choosing some s € K°
L(z,s,v)=(c— ATv + s)Tx + vTh

@ Lagrange dual function g¢(s, v) is bounded when coefficient of = is
zero, in which case it has value v7b
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Another Example: Conic Optimization Problem

minimize ¢’z

subjectto Az =b maximize  vTb
re K subjectto ATv —ce K°

@ = € K can equivalently be written as 272 < 0, Vz € K°

L(z,\v)=cTz+vT(Ax —b) + Z)\ 2Tx
z€K®

=(c—ATv + Z Az 2)Te +vTh
zeK®°

@ Can think of A = 0 as choosing some s € K°
L(z,s,v)=(c— ATv + s)Tx + vTh

@ Lagrange dual function g¢(s, v) is bounded when coefficient of = is
zero, in which case it has value v7b
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@ Duaiity



Weak Duality
Primal Problem
min fo(z)
s.t.

fi(z) <
hl(x) =

Duality

Dual Problem

max g(\,v)
s.t.
A0
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Weak Duality

Primal Problem

Dual Problem

min fo(z)

s.t. ;ntax 9 v)

fi(.CC)SO, Vi:1,...,m. )\.;_0

hi(x) =0, Vi=1,... k. -

. Aqu +t = g(A2) G
Weak Duality Newt = g3 .
7

OPT(dual) < OPT(primal). N+ t=g(\) 4

@ We have already argued holds for every optimization problem
@ Duality Gap: difference between optimal dual and primal values
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Recall: Geometric Interpretation of Weak Duality
minimize  fo(x) é :

subjectto  fi(xz) <0 T

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(x) = v and fo(z) =t

@ p* =inf{t: (u,t) € G,u <0}
@ g(\) =inf{du+t : (u,t) € G}
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Recall: Geometric Interpretation of Weak Duality
minimize  fo(z) ; :

subjectto  fi(z) <0 e

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(x) = v and fo(z) =t

@ p* =inf{t: (u,t) € G,u <0}

@ g(\) =inf{du+t : (u,t) € G}

The equation Au + ¢t = g()\) defines a supporting hyperplane to G,
intersecting ¢ axis at g(\) < p*.
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Strong Duality

Strong Duality
We say strong duality holds if OPT'(dual) = OPT (primal).

@ Equivalently: there exists a setting of Lagrange multipliers so that
g(A\,v) gives a tight lowerbound on primal optimal value.

@ In general, does not hold for non-convex optimization problems
@ Usually, but not always, holds for convex optimization problems.
e Mild assumptions, such as Slater’s condition, needed.
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Geometric Proof of Strong Duality

minimize  fo(z)
subjectto  fi(z) <0

X+t = gA) .77

(0.glA))

@ Let A be everything northeast (i.e. “worse”) than G
o i.e. (u,t) € Aifthereis an z such that f,(z) <wand fo(z) <t

@ p* =inf{t:(0,t) € A}
@ g(\) =inf{du+1t : (u,t) € A}
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Geometric Proof of Strong Duality

minimize  fo(z)
subjectto  fi(z) <0

X+t = gA) .77

(0.glA))

@ Let A be everything northeast (i.e. “worse”) than G
o i.e. (u,t) € Aifthereis an z such that f,(z) <wand fo(z) <t

@ p* =inf{t:(0,t) € A}
@ g(\) =inf{du+1t : (u,t) € A}

The equation \u + t = g(\) defines a supporting hyperplane to A,
intersecting ¢ axis at g(\) < p*.
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Geometric Proof of Strong Duality

minimize  fo(z) A
subjectto  fi(x) <0

When fy and f; are convex, A is convex. I
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Geometric Proof of Strong Duality

minimize  fo(z) A
subjectto  fi(x) <0

When f, and f; are convex, A is convex.

Proof
@ Assume (u,t) and (u/,t') are in A
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Geometric Proof of Strong Duality

minimize  fo(z) A
subjectto  fi(x) <0

When f, and f; are convex, A is convex.

Proof
@ Assume (u,t) and (u/,t') are in A
@ dx, 2’ with (f1(z), fo(z)) < (u,t) and (f1(z'), fo(z")) < (W, t').
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Geometric Proof of Strong Duality

minimize  fo(z) A
subjectto  fi(x) <0

When f, and f; are convex, A is convex.

Proof
@ Assume (u,t) and (u/,t') are in A
@ dx, 2’ with (f1(z), fo(z)) < (u,t) and (f1(z'), fo(z")) < (W, t').
@ By Jensen’s inequality
(filax+(1—a)x)), folaz+(1—a)z")) < (cu+(1—a)u/, at+(1—a)t’)
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Geometric Proof of Strong Duality

minimize  fo(z) A
subjectto  fi(x) <0

When f, and f; are convex, A is convex.

Proof
@ Assume (u,t) and (u/,t') are in A
o Jdz, 2’ with (f1(z), fo(z)) < (u,t) and (f1(z'), fo(z")) < (W', ).

@ By Jensen’s inequality
(filax+(1—a)x)), folaz+(1—a)z")) < (cu+(1—a)u/, at+(1—a)t’)
@ Therefore, segment connecting (u,t) and (v/,¢') also in A.
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Geometric Proof of Strong Duality

minimize  fo(z)

subjectto fi(z) <0 ¥

Theorem (Informal)

There is a choice of A so that g(\) = p*. Therefore, strong duality
holds.
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Geometric Proof of Strong Duality

minimize  fo(x) .
subjectto  fi(z) <0

Theorem (Informal)

There is a choice of A so that g(\) = p*. Therefore, strong duality
holds.

@ Recall (0,p*) is on the boundary of A

@ By the supporting hyperplane theorem, there is a supporting
hyperplane to A at (0, p*)

@ Direction of the supporting hyperplane gives us an appropriate A
Duality
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| Lied (A little)

minimize  fo(z)

subjectto  fi(x) <0 K

@ In our proof, we ignored a technicality that can prevent strong
duality from holding.
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| Lied (A little)

minimize  fo(x)
subjectto  fi(z) <0

@ In our proof, we ignored a technicality that can prevent strong
duality from holding.

@ What if our supporting hyperplane H at (0, p*) is vertical?
e The normal to H is perpendicular to the ¢ axis

@ In this case, no finite A exists such that (), 1) is normal to H.
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| Lied (A little)

minimize  fo(z)
subjectto  fi(z) <0

@ In our proof, we ignored a technicality that can prevent strong
duality from holding.

@ What if our supporting hyperplane H at (0, p*) is vertical?
e The normal to H is perpendicular to the ¢ axis
@ In this case, no finite A exists such that (), 1) is normal to H.
@ Somewhat counterintuitively, this can happen even in simple
convex optimization problems (though its somewhat rare in
practice)
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Violation of Strong Duality

x

<0

minimize e

subject to :

%
@ Let domain of constraint be region y > 1

@ Problem is convex, with feasible region given by = = 0
@ Optimalvalueis 1l,atz =0andy =1
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Violation of Strong Duality

minimize e %
subject to % <0

@ Let domain of constraint be region y > 1

@ Problem is convex, with feasible region given by z = 0

@ Optimalvalueis 1l,atz =0andy =1

o A=R2, U({0} x [1,))

@ Therefore, any supporting hyperplane to A at (0, 1) must be
vertical.

@ Optimal dual value is 0; a duality gap of 1.
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Slater’'s Condition

There exists a point z € D where all inequality constraints are strictly
satisfied (i.e. f;(z) < 0). l.e. the optimization problem is strictly
feasible.

@ A sufficient condition for strong duality.
@ Forces supporting hyperplane to be non-vertical
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Slater’'s Condition

There exists a point z € D where all inequality constraints are strictly
satisfied (i.e. f;(z) < 0). l.e. the optimization problem is strictly
feasible.

@ A sufficient condition for strong duality.

@ Forces supporting hyperplane to be non-vertical

@ Can be weakened to requiring strict feasibility only of non-affine
constraints
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e Optimality Conditions



Recall: Lagrangian Duality

Primal Problem

Dual Problem
;ntm o) max g(\, v)
filzx) <0, Vi=1,...,m. iio
hi(z) =0, Vi=1,...,k. -
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Recall: Lagrangian Duality

Primal Problem

min fo(z)
s.t.
filz) <0, Vi=1,...,m.
hi(z) =0, Vi=1,... k.
Ague + 1= g(ha)
Weak Duallty Mau+t=g(A)
OPT(dual) < OPT(primal). Nu+t=glh)

Dual Problem

max g(\, v)
s.t.
A=0

Optimality Conditions
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Recall: Lagrangian Duality

Primal Problem

Dual Problem
;ntm o) max g(\, v)
filz) <0, Yi=1,...,m. i.t.}()
hi(z) =0, Vi=1,...,k. -
(ﬁ:a
A

Strong Duality
OPT(dual) = OPT (primal).

S

Optimality Conditions
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Dual Solution as a Certificate

Primal Problem

Dual Problem
rsntm fo@) max g(\,v)
filz) <0, Vi=1,. S
hi(x) =0, Vi=1,. k; -

@ Dual solutions serves as a certificate of optimality
o If fo(x) = g(\,v), and both are feasible, then both are optimal.

Optimality Conditions 21/25



Dual Solution as a Certificate

Primal Problem

Dual Problem
rsntm fo@) max g(\,v)
filz) <0, Vi=1,. S
hi(x) =0, Vi=1,. k; -

@ Dual solutions serves as a certificate of optimality

o If fo(x) = g(\,v), and both are feasible, then both are optimal.
o If fo(z) — g(\,v) < ¢, then both are within e of optimality.
e OPT(primal) and OPT(dual) lie in the interval [g()\, v), fo(z)]

Optimality Conditions 21/25



Dual Solution as a Certificate

Primal Problem

Dual Problem
rsntm fo@) max g(\,v)
filz) <0, Vi=1,. S
hi(x) =0, Vi=1,. k; -

@ Dual solutions serves as a certificate of optimality
o If fo(x) = g(\,v), and both are feasible, then both are optimal.
o If fo(z) — g(\,v) < ¢, then both are within e of optimality.
e OPT(primal) and OPT(dual) lie in the interval [g()\, v), fo(z)]
@ Primal-dual algorithms use dual certificates to recognize
optimality, or bound sub-optimality.

Optimality Conditions 21/25



Implications of Strong Duality

Primal Problem

Dual Problem
min fo(z)
st max g(\, v)
fi(x) <0, Vi=1,...,m. f\to
hi(z) =0, Vi=1,... k. >

If strong duality holds, and z* and (\*, v*) are feasible & optimal, then
@ z* minimizes L(x, \*,v*) over all x.
@ X\ fi(z*)=0foralli=1,...,m. (Complementary Slackness)
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Implications of Strong Duality

Primal Problem

Dual Problem
min fo(z)
st max g(\, v)
fi(x) <0, Vi=1,...,m. ito
hi(z) =0, Vi=1,... k. >

If strong duality holds, and z* and (\*, v*) are feasible & optimal, then
@ z* minimizes L(x, \*,v*) over all x.
@ X\ fi(z*)=0foralli=1,...,m. (Complementary Slackness)

fo(z™) = g(\*,v*) = min L(x, \*, ")

T

k
L(z*, \*,v") —i—Z/\*f, —i—ZU;‘hi(ﬂc
i=1

< fo(x") )
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Implications of Strong Duality
Primal Problem

Dual Problem
rSn’ln fole) max g(\, v)
fi(x) <0, Vi=1,...,m. ito
hi(z) =0, Vi=1,... k. >

If strong duality holds, and z* and (\*, v*) are feasible & optimal, then
@ z* minimizes L(x, \*,v*) over all x.
@ X\ fi(z*)=0foralli=1,...,m. (Complementary Slackness)

Interpretation

@ Lagrange multipliers (\*,v*) “simulate” the primal feasibility
constraints

@ Interpreting \; as the “value” of the i’th constraint, at optimality
only the binding constraints are “valuable”

o Recall economic interpretation of LP
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KKT Conditions
Suppose the primal problem is convex and defined on an open domain,
and moreover the constraint functions are differentiable everywhere in
the domain. If strong duality holds, then z* and (\*, v*) are optimal iff:

@ z* and (\*,v*) are feasible

max g(\,v)
s.t.
A-0

@ X! fi(z*) = 0 for all i (Complementary Slackness)

o V$L($*7A*7V*) = VfO(x*)+Z

i=1""

Vfi(@*)+E

viyhi(z*) =0

i=1"1

v

Optimality Conditions
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min fo() max g(\,v)

s.t. st
fiz) <0, Vi=1,...,m. o
hi(x):O, szl,,k -

KKT Conditions

Suppose the primal problem is convex and defined on an open domain,

and moreover the constraint functions are differentiable everywhere in

the domain. If strong duality holds, then z* and (\*, v*) are optimal iff:
@ z* and (\*,v*) are feasible

@ X! fi(z*) = 0 for all i (Complementary Slackness)

® VuL(a*, X', v) = Vfole)+ LIy NV File")+ 5k, v vhi(a®) =0

Why are KKT Conditions Useful?

@ Derive an analytical solution to some convex optimization
problems
@ Gain structural insights
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Example: Equality-constrained Quadratic Program

minimize  2TPz+¢Tz +r
subjectto Az =1b

@ KKT Conditions: Az* =band Px*+q+ ATv* =0
@ Simply a solution of a linear system with variables z* and v*.
@ m + n constraints and m + n variables
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Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer i has budget m;, and there’s one divisible unit of each good.
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Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer 7 has budget m;, and there’s one divisible unit of each good.

@ Does there exist a market equilibrium?

e Prices p; on items, such that each player can buy his favorite
bundle that he can afford and the market clears (supply = demand).
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Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer 7 has budget m;, and there’s one divisible unit of each good.
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@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer 7 has budget m;, and there’s one divisible unit of each good.

@ Does there exist a market equilibrium?

e Prices p; on items, such that each player can buy his favorite
bundle that he can afford and the market clears (supply = demand).

Eisenberg-Gale Convex Program

maximize Zz m; log Zj Wjj Tij
subjectto >, x;; <1, forjeG.
z =0

Using KKT conditions, we can prove that the dual variables
corresponding to the item supply constraints are market-clearing
prices!
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