CS675: Convex and Combinatorial Optimization Fall 2019 Convex Sets

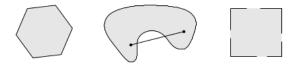
Instructor: Shaddin Dughmi

Convex sets, Affine sets, and Cones

- 2 Examples of Convex Sets
- 3 Convexity-Preserving Operations
- Separation Theorems

Convex Sets

A set $S \subseteq \mathbb{R}^n$ is convex if the line segment between any two points in S lies in S. i.e. if $x, y \in S$ and $\theta \in [0, 1]$, then $\theta x + (1 - \theta)y \in S$.



Convex Sets

A set $S \subseteq \mathbb{R}^n$ is convex if the line segment between any two points in S lies in S. i.e. if $x, y \in S$ and $\theta \in [0, 1]$, then $\theta x + (1 - \theta)y \in S$.

Equivalent Definition

S is convex if every convex combination of points in S lies in S.

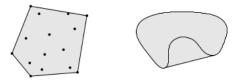
Convex Combination

- Finite: y is a convex combination of x_1, \ldots, x_k if
 - $y = \theta_1 x_1 + \ldots \theta_k x_k$, where $\theta_i \ge 0$ and $\sum_i \theta_i = 1$.
- General: expectation of probability measure on S.

Convex Hull

The convex hull of $S \subseteq \mathbb{R}^n$ is the smallest convex set containing S.

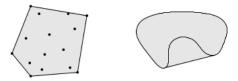
- $\bullet\,$ Intersection of all convex sets containing $S\,$
- $\bullet\,$ The set of all convex combinations of points in $S\,$



Convex Hull

The convex hull of $S \subseteq \mathbb{R}^n$ is the smallest convex set containing S.

- Intersection of all convex sets containing S
- The set of all convex combinations of points in S



A set S is convex if and only if convexhull(S) = S.

Affine Set

A set $S \subseteq \mathbb{R}^n$ is affine if the line passing through any two points in S lies in S. i.e. if $x, y \in S$ and $\theta \in \mathbb{R}$, then $\theta x + (1 - \theta)y \in S$.

Obviously, affine sets are convex.

Affine Set

A set $S \subseteq \mathbb{R}^n$ is affine if the line passing through any two points in S lies in S. i.e. if $x, y \in S$ and $\theta \in \mathbb{R}$, then $\theta x + (1 - \theta)y \in S$.

Obviously, affine sets are convex.

Equivalent Definition

S is affine if every affine combination of points in S lies in S.

Affine Combination

y is an affine combination of x_1, \ldots, x_k if $y = \theta_1 x_1 + \ldots + \theta_k x_k$, and $\sum_i \theta_i = 1$.

Generalizes convex combinations

Convex sets, Affine sets, and Cones

Equivalent Definition II

 ${\cal S}$ is affine if and only if it is a shifted subspace

• i.e. $S = x_0 + V$, where V is a linear subspace of \mathbb{R}^n .

- Any $x_0 \in S$ will do, and yields the same V.
- The dimension of *S* is the dimension of subspace *V*.

Equivalent Definition II

 ${\cal S}$ is affine if and only if it is a shifted subspace

• i.e. $S = x_0 + V$, where V is a linear subspace of \mathbb{R}^n .

- Any $x_0 \in S$ will do, and yields the same V.
- The dimension of *S* is the dimension of subspace *V*.

Equivalent Definition III

S is affine if and only if it is the solution of a set of linear equations (i.e. the intersection of hyperplanes).

• i.e.
$$S = \{x : Ax = b\}$$
 for some matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Affine Hull

The affine hull of $S \subseteq \mathbb{R}^n$ is the smallest affine set containing S.

- Intersection of all affine sets containing S
- The set of all affine combinations of points in ${\cal S}$

Affine Hull

The affine hull of $S \subseteq \mathbb{R}^n$ is the smallest affine set containing S.

- Intersection of all affine sets containing S
- The set of all affine combinations of points in S

A set S is affine if and only if affinehull(S) = S.

Affine Hull

The affine hull of $S \subseteq \mathbb{R}^n$ is the smallest affine set containing S.

- Intersection of all affine sets containing S
- The set of all affine combinations of points in S

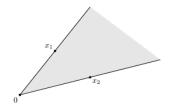
A set S is affine if and only if affinehull(S) = S.

Affine Dimension

The affine dimension of a set is the dimension of its affine hull

Cones

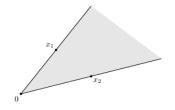
A set $K \subseteq \mathbb{R}^n$ is a cone if the ray from the origin through every point in K is in K i.e. if $x \in K$ and $\theta \ge 0$, then $\theta x \in K$.



Note: every cone contains 0.

Cones

A set $K \subseteq \mathbb{R}^n$ is a cone if the ray from the origin through every point in K is in K i.e. if $x \in K$ and $\theta \ge 0$, then $\theta x \in K$.



Note: every cone contains 0.

Special Cones

- A convex cone is a cone that is convex
- A cone is pointed if whenever $x \in K$ and $x \neq 0$, then $-x \notin K$.
- We will mostly mention proper cones: convex, pointed, closed, and of full affine dimension.

Equivalent Definition

K is a convex cone if every conic combination of points in K lies in K.

Conic Combination

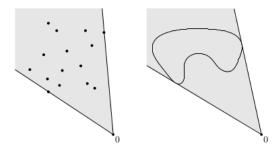
y is a conic combination of x_1, \ldots, x_k if $y = \theta_1 x_1 + \ldots + \theta_k x_k$, where $\theta_i \ge 0$.

Cones

Conic Hull

The conic hull of $K \subseteq \mathbb{R}^n$ is the smallest convex cone containing K

- Intersection of all convex cones containing K
- The set of all conic combinations of points in K

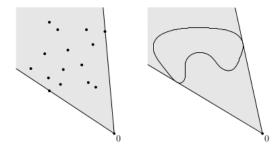


Cones

Conic Hull

The conic hull of $K \subseteq \mathbb{R}^n$ is the smallest convex cone containing K

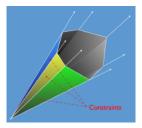
- Intersection of all convex cones containing K
- The set of all conic combinations of points in K



A set K is a convex cone if and only if conichull(K) = K.

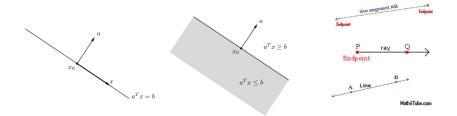
Polyhedral Cone

A cone is polyhedral if it is the set of solutions to a finite set of homogeneous linear inequalities $Ax \leq 0$.

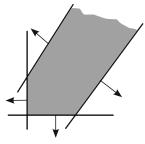


- 3 Convexity-Preserving Operations
- Separation Theorems

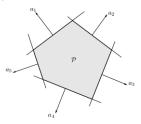
- Linear Subspace: Affine, Cone
- Hyperplane: Affine, cone if includes 0
- Halfspace: Cone if origin on boundary
- Line: Affine, cone if includes 0
- Ray: Cone if endpoint at 0
- Line segment



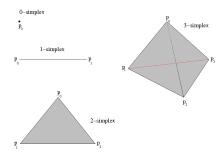
• Polyhedron: finite intersection of halfspaces



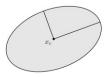
Polytope: Bounded polyhedron



- Nonnegative Orthant \mathbb{R}^{n}_{+} : Polyhedral cone
- Simplex: convex hull of affinely independent points
 - Unit simplex: $x \succeq 0$, $\sum_i x_i \le 1$
 - Probability simplex: $x \succeq 0$, $\sum_i x_i = 1$.



- Euclidean ball: $\{x : ||x x_c||_2 \le r\}$ for center x_c and radius r
- Ellipsoid: $\{x : (x x_c)^T P^{-1} (x x_c) \le 1\}$ for symmetric $P \succeq 0$ • Equivalently: $\{x_c + Au : ||u||_2 \le 1\}$ for some linear map A



• Norm ball: $\{x : ||x - c|| \le r\}$ for any norm ||.||

$$\begin{array}{c} \bullet \\ p = 1 \end{array} \qquad \begin{array}{c} \bullet \\ p = 2 \end{array} \qquad \begin{array}{c} \bullet \\ 2$$

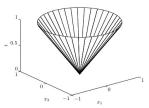
The unit sphere for different metrics: $||x||_{l_p} = 1$ in \mathbb{R}^2 .

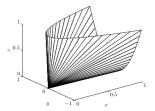
• Norm ball: $\{x : ||x - c|| \le r\}$ for any norm ||.||

$$\begin{array}{c} \bullet \\ p=1 \end{array} \qquad \left(\begin{array}{c} \bullet \\ p=2 \end{array} \right) \qquad \left(\begin{array}{c} \bullet \\ 2$$

The unit sphere for different metrics: $||x||_{l_p} = 1$ in \mathbb{R}^2 .

- Norm cone: $\{(x,r): ||x|| \leq r\}$
- Cone of symmetric positive semi-definite matrices M
 - Symmetric matrix $A \succeq 0$ iff $x^T A x \ge 0$ for all x





Convex sets, Affine sets, and Cones

Intersection

The intersection of two convex sets is convex. This holds for the intersection of an infinite number of sets.

Examples

- Polyhedron: intersection of halfspaces
- PSD cone: intersection of linear inequalities $z^T A z \ge 0$, for all $z \in \mathbb{R}^n$.

Intersection

The intersection of two convex sets is convex. This holds for the intersection of an infinite number of sets.

Examples

- Polyhedron: intersection of halfspaces
- PSD cone: intersection of linear inequalities $z^T A z \ge 0$, for all $z \in \mathbb{R}^n$.

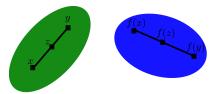
In fact, we will see that every closed convex set is the intersection of a (possibly infinite) set of halfspaces.

Affine Maps

If $f : \mathbb{R}^n \to \mathbb{R}^m$ is an affine function (i.e. f(x) = Ax + b), then

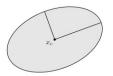
- f(S) is convex whenever $S \subseteq \mathbb{R}^n$ is convex
- $f^{-1}(T)$ is convex whenever $T \subseteq \mathbb{R}^m$ is convex

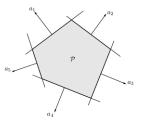
$$\begin{aligned} f(\theta x + (1 - \theta)y) &= A(\theta x + (1 - \theta)y) + b \\ &= \theta(Ax + b) + (1 - \theta)(Ay + b)) \\ &= \theta f(x) + (1 - \theta)f(y) \end{aligned}$$



Examples

- An ellipsoid is image of a unit ball after an affine map
- A polyhedron Ax ≤ b is inverse image of nonnegative orthant under f(x) = b - Ax



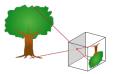


Perspective Function

Let $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$ be P(x,t) = x/t.

• P(S) is convex whenever $S \subseteq \mathbb{R}^{n+1}$ is convex

• $P^{-1}(T)$ is convex whenever $T \subseteq \mathbb{R}^n$ is convex

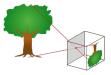


Perspective Function

Let $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$ be P(x,t) = x/t.

• P(S) is convex whenever $S \subseteq \mathbb{R}^{n+1}$ is convex

• $P^{-1}(T)$ is convex whenever $T \subseteq \mathbb{R}^n$ is convex

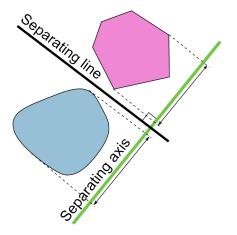


Generalizes to linear fractional functions $f(x) = \frac{Ax+b}{c^Tx+d}$ • Composition of perspective with affine. Convex sets, Affine sets, and Cones

- 2 Examples of Convex Sets
- 3 Convexity-Preserving Operations

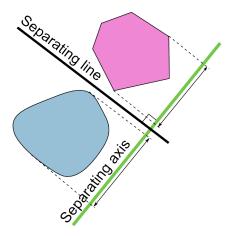
Separating Hyperplane Theorem

If $A, B \subseteq \mathbb{R}^n$ are disjoint convex sets, then there is a hyperplane weakly separating them. That is, there is $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $a^{\mathsf{T}}x \leq b$ for every $x \in A$ and $a^{\mathsf{T}}y \geq b$ for every $y \in B$.



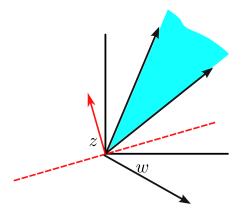
Separating Hyperplane Theorem (Strict Version)

If $A, B \subseteq \mathbb{R}^n$ are disjoint closed convex sets, and at least one of them is compact, then there is a hyperplane strictly separating them. That is, there is $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $a^{\mathsf{T}}x < b$ for every $x \in A$ and $a^{\mathsf{T}}y > b$ for every $y \in B$.



Farkas' Lemma

Let K be a closed convex cone and let $w \notin K$. There is $z \in \mathbb{R}^n$ such that $z^{\mathsf{T}}x \ge 0$ for all $x \in K$, and $z^{\mathsf{T}}w < 0$.



Supporting Hyperplane Theorem.

If $S \subseteq \mathbb{R}^n$ is a closed convex set and y is on the boundary of S, then there is a hyperplane supporting S at y. That is, there is $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $a^{\mathsf{T}}x \leq b$ for every $x \in S$ and $a^{\mathsf{T}}y = b$.

