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Mathematical Optimization

The task of selecting the “best” configuration of a set of variables from
a “feasible” set of configurations.

minimize (or maximize) f(x)
subject to reX

@ Terminology: decision variable(s), objective function, feasible set,

optimal solution, optimal value
@ Two main classes: continuous and combinatorial
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Continuous Optimization Problems

Optimization problems where feasible set X" is a connected subset of
Euclidean space, and f is a continuous function.

@ Instances typically formulated as follows.

minimize  f(x)
subjectto g;(z) <b;, forieC.

@ Objective function f : R™ — R.

@ Constraint functions g; : R — R. The inequality g;(x) < b; is the
i’th constraint.

@ In general, intractable to solve efficiently (NP hard)
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Convex Optimization Problem

A continuous optimization problem where f is a convex function on X,
and X is a convex set.

@ Convex function: f(az + (1 —a)y) < af(x) + (1 — a) f(y) for all
z,y € X and a € [0, 1]

@ Convex set: ax + (1 —a)y € X, forall z,y € X and a € [0, 1]

@ Convexity of X implied by convexity of g;'s

@ For maximization problems, f should be concave

@ Typically solvable efficiently (i.e. in polynomial time)

@ Encodes optimization problems from a variety of application areas
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Convex Optimization Example: Least Squares

Regression

Given a set of measurements (a1,b1), ..., (am, by), Where a; € R™ is
the 7’th input and b; € R is the ’th output, find the linear function
f : R™ — R best explaining the relationship between inputs and

outputs.

@ f(a) = zTa for some z € R"
@ Least squares: minimize
mean-square error.

minimize ||Az — b||3
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Convex Optimization Example: Minimum Cost Flow

Given a directed network G = (V, E) with cost ¢, € R per unit of

traffic on edge e, and capacity d., find the minimum cost routing of »
divisible units of traffic from s to ¢.
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Convex Optimization Example: Minimum Cost Flow

Given a directed network G = (V, E) with cost ¢, € R per unit of
traffic on edge e, and capacity d., find the minimum cost routing of »
divisible units of traffic from s to ¢.

minimize ) . cee
subjectto > .. , xe=> ., Te, forveV\{st}.

Zeesx =r
Te < de, foree E.
T > 0, forec E.
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Convex Optimization Example: Minimum Cost Flow

Given a directed network G = (V, E) with cost ¢, € R per unit of
traffic on edge e, and capacity d., find the minimum cost routing of »
divisible units of traffic from s to .

minimize ) . cee
subjectto > .. , xe=> ., Te, forveV\{st}.

Zeesx =r
Te < de, foree E.
T > 0, forec E.

Generalizes to traffic-dependent costs. For example
Ce(Te) = aex? + bexe + co.
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Combinatorial Optimization

Combinatorial Optimization Problem
An optimization problem where the feasible set X’ is finite.

@ e.g. X is the set of paths in a network, assignments of tasks to
workers, etc...

@ Again, NP-hard in general, but many are efficiently solvable (either
exactly or approximately)
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Combinatorial Optimization Example: Shortest Path

Given a directed network G = (V, E) with cost ¢, € R, on edge e, find
the minimum cost path from s to ¢. J
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Combinatorial Optimization Example: Traveling

Salesman Problem

Given a set of cities V, with d(u, v) denoting the distance between
cities v and v, find the minimum length tour that visits all cities. J
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Continuous vs Combinatorial Optimization

@ Some optimization problems are best formulated as one or the
other

@ Many problems, particularly in computer science and operations
research, can be formulated as both

@ This dual perspective can lead to structural insights and better
algorithms
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Example: Shortest Path

The shortest path problem can be encoded as a minimum cost flow

problem, using distances as the edge costs, unit capacities, and
desired flow rate 1

minimize ) _pcete
subjectto > .., ze=> ., T, forveV\{s,t}.

Ze(—s Le = 1
Te < 1, fore ¢ E.
Te > 0, foree E.

The optimum solution of the (linear) convex program above will assign
flow only on a single path — namely the shortest path. J
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Course Goals

@ Recognize and model convex optimization problems, and develop
a general understanding of the relevant algorithms.

@ Formulate combinatorial optimization problems as convex
programs

@ Use both the discrete and continuous perspectives to design
algorithms and gain structural insights for optimization problems
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Who Should Take this Class

@ Anyone planning to do research in the design and analysis of
algorithms
e Convex and combinatorial optimization have become an
indispensible part of every algorithmist’s toolkit
@ Students interested in theoretical machine learning and Al
o Convex optimization underlies much of machine learning
e Submodularity has recently emerged as an important abstraction
for feature selection, active learning, planning, and other
applications
@ Anyone else who solves or reasons about optimization problems:
electrical engineers, control theorists, operations researchers,
economists ...
o If there are applications in your field you would like to hear more
about, let me know.
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Who Should Not Take this Class

@ You don't satisfy the prerequisites “in practice”
@ You are looking for a “cookbook” of optimization algorithms, and/or
want to learn how to use CPLEX, CVX, etc

e This is a THEORY class

o We will bias our attention towards simple yet theoretically insightful
algorithms and questions

o We will not write code
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Course Outline

@ Weeks 1-5: Convex optimization basics and duality theory

@ Weeks 6-7: Combinatorial problems posed as linear and convex
programs

@ Weeks 8-9: Algorithms for convex optimization
@ Weeks 10-11: Matroid theory and optimization
@ Weeks 12-13: Submodular Function optimization

@ Week 14: Semidefinite programming and constraint satisfaction
problems

@ Week 15: Additional topics
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Basic Information

@ Lecture time: Mondays and Wednesdays 4:00pm - 5:50pm

@ Lecture place: VHE 214
@ Instructor: Shaddin Dughmi

e Email: shaddin@usc.edu
o Office: SAL 234
e Office Hours: TBD

o TA: TBA
o Email: TBA
e Office Hours: TBA
@ Course Homepage:
http://www-bcf.usc.edu/ shaddin/cs675fa19/index.html
@ References: Convex Optimization by Boyd and Vandenberghe,
and Combinatorial Optimization by Korte and Vygen. (Available
online through USC libraries. Will place on reserve)
@ Additional References: Schrijver, Luenberger and Ye (available
online through USC libraries)
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@ Mathematical maturity: Be good at proofs, at the graduate level.

@ Linear algebra at advanced undergrad / beginning grad level

@ Exposure to algorithms or optimization at advanced undergrad /
beginning grad level

e CS570 or equivalent, or
e CS270 and you did really well
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Requirements and Grading

@ This is an advanced elective class, so grade is not the point.
o | assume you want to learn this stuff.
@ 4-6 homeworks, 75% of grade.

e Proof based.

o Challenging.

e Discussion allowed, even encouraged, but must write up solutions
independently.

@ Research project worth 25% of grade. Project suggestions will be
posted on website.

@ 5 late days allowed total (use in integer amounts)
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