Homework #4
CS675 Fall 2023

Due Wednesday Sept 27, by midnight

General Instructions The following assignment is meant to be challenging. Feel free to discuss
with fellow students, though please write up your solutions independently and acknowledge everyone
you discussed the homework with on your writeup. I also expect that you will not attempt to consult
outside sources, on the Internet or otherwise, for solutions to any of these homework problems —
doing so would be considered cheating.

Several of these problems are drawn from the following texts, each of which is linked on the
course website: Luenberger and Ye (4th edition), Korte and Vygen (5th edition), and Boyd and
Vendenberghe. Please make sure you are using the correct edition of each of the books by using
the links on the course website.

We request that you submit your homework as a pdf file, by email to the TA.

Finally, whenever a question asks you to “show” or “prove” a claim, please provide a formal
mathematical proof.

Problem 1. (4 points)
B&V Exercise 3.2.

Problem 2. (4 points)
B&V Exercise 3.12.

Problem 3. (4 points)
B&V Exercise 3.24.

Problem 4. (4 points)
B&V Exercise 3.29.

Problem 5. (4 points)
B&V Exercise 3.30.

Problem 6. (4 points)
B&V Exercise 3.36, parts a and c.

Problem 7. (14 points)
In this problem, we will explore the relationship between polar and Lagrangian duality. Specifically,



in the context of linear programming, we will argue that the two are respectively geometric and
algebraic formulations of the same idea.

a (2 points). Consider a linear program of the form

maximize clx

subject to Ax <b (1)

Using the rules we saw in class, we can derive the Lagrangian dual of as the following LP

minimize b7y
subject to ATy =c (2)
y=0

Naturally, scaling each inequality a;-x < b; of (1) by a constant a; > 0 to get the inequality a;a; -z <
«;b; preserves the feasible set and objective function of (and therefore also preserves the optimal
solution and objective value). In other words, scaling the inequalities produces a geometrically
equivalent optimization problem. Show that the same cannot be said for the Lagrangian dual of
(1); specifically, show that scaling the inequalities of changes feasible set and optimal solution
of its dual. Conclude that Lagrangian duality is an algebraic transformation, since given two
equivalent LPs (same feasible set and objective) represented differently, it yields different dual LPs.

b (2 points). For simplicity, assume z = 0is a strictly feasible solution of — i.e., the feasible
region includes an open ball about the originm Show that is equivalent, in the sense of having
the same feasible set and objective function, to an LP of the following “normalized” form, and has
an optimal value v* > 0.

maximize ¢’z

subject to Ax <1

3)

¢ (2 points). Using the rules for taking duals, the dual of is the following LP.

minimize TTy
subject to ATy =c (4)
y=0

Show that and are equivalent up to a simple transformation of the variables, and note that
said transformation preserves the optimal value.

d (4 points). Let P = {a: eR": Az < T} denote the feasible set of (and therefore also of
(1)), and let P° denote its polar. You will show that one can derive tight bounds on v* from the
polar P°. Specifically, show that if %c € P° for some constant v > 0, then v* < v. Conversely,
show that Vi*c € pP°.

1 This is without loss of generality in most (though not all) natural applications of LP, since it can be enfored by
a combination of projection and a suitable shift of the feasible set.



e (4 points). Recall from class that if P = {x ER": Az = T} is a polytope, then its polar P°
is equal to the convex hull of the rows of the matrix A. More generally, when P is a polyhedron
its polar P° is the convex hull of T‘O'lUS(.Zl\) U {6} (you are invited to verify this for yourself if

curious). Explain how LP (4) — and by (c), also LP (2) — can be interpreted as finding the
tightest upperbound on v* implied by the polar, in the sense of (d). Conclude that Lagrangian

duality is an algebraic analog of polar duality, which is a purely geometric relationship between
convex sets.



