
Homework #9

CS675 Fall 2023

Due Wednesday Nov 22, by midnight

General Instructions The following assignment is meant to be challenging. Feel free to discuss
with fellow students, though please write up your solutions independently and acknowledge everyone
you discussed the homework with on your writeup. I also expect that you will not attempt to consult
outside sources, on the Internet or otherwise, for solutions to any of these homework problems —
doing so would be considered cheating.

Several of these problems are drawn from the following texts, each of which is linked on the
course website: Luenberger and Ye (4th edition), Korte and Vygen (5th edition), and Boyd and
Vendenberghe. Please make sure you are using the correct edition of each of the books by using
the links on the course website.

We request that you submit your homework as a pdf file, by email to the TA.
Finally, whenever a question asks you to “show” or “prove” a claim, please provide a formal

mathematical proof.

Problem 1. (15 points)
In the lecture devoted to submodular function maximization subject to a matroid constraint, your
instructor neglected the implementation details of the Pipage rounding procedure. At issue were
steps (1) and (3). Step (1) requires computing the minimum-size tight set of a matroid M = (X , I)
with respect to a given point x ∈ P(M) subject to including a fractional element. Step (3) requires
optimally trading off xi and xj while remaining in the matroid polytope. In this problem, you will
show how to fill in these blanks.

(a) [2 points]. Let x be in the matroid base polytope Pbase(M), and recall that Pbase(M) ⊆ P(M).
Show that the family of tight sets {S ⊆ X : x(S) = rankM(S)} forms a lattice. Conclude that, for
each i ∈ X , there is a tight set Ti with i ∈ Ti such that every tight set containing i is a superset of
Ti; we say Ti is the minimum tight set containing i.

(b) [8 points]. Show how to efficiently implement step (1) of the Pipage rounding procedure.
Your algorithm should compute T in time polynomial in |X | and the bit complexity ⟨x⟩ of the
solution x. You should assume that you have access to an independence oracle for the matroid M.
(Hint: Reduce this to computing Ti for each i ∈ X . To compute Ti, use a greedy algorithm
which starts with R = X , and iteratively removes elements from R until it ends up with Ti. Your
algorithm will use submodular minimization as a subroutine.)

(c) [5 points]. Show how to efficiently implement step (3) of the Pipage rounding procedure. Given

1

x ∈ P(M) and i, j ∈ X , your algorithm should compute µ ∈ [0, 1] maximizing F (x + µ(ei − ej)),
where F is the multilinear extension of a submodular function, in time polynomial in |X | and ⟨x⟩.
As usual, you may assume access to an independence oracle for M. Moreover, for purposes of this
problem you may assume that you can exactly evaluate F in constant time.

Problem 2. (10 points)
The following is a (simplification of) a task encountered in speech recognition. Here, we wish to
select a small vocabulary (a set of words) which express many common phrases. Specifically, you
are given a set P of phrases which, collectively, use only the words in the set W . Moreover, each
phrase p ∈ P is given a nonnegative weight w(p) indicating its importance. For a vocabulary
V ⊆ W , we use P (V) ⊆ P to denote the phrases which use only words in V . Your goal is to choose
a vocabulary optimizing a tradeoff between the total weight of expressed phrases and the size of the

vocabulary; specifically, find V ⊆ W maximizing
(∑

p∈P (V)w(p)
)
− |V |. Show that this problem

is solvable in poly(|P |, |W |) time. You may assume that you can test whether a particular word
occurs in a particular phrase in constant time.

Problem 3. (15 points)
We showed in class that there is a polynomial-time algorithm for submodular minimization (and
equivalently, supermodular maximization) when there are no constraints. In this problem, we will
see how hardness kicks in as soon as even simple constraints are introduced.

(a) [6 points]. Show that it is NP-hard to minimize a submodular function subject to a cardinality
lower-bound. Specifically, given an integer k and a submodular function f : 2X → R, your task is
to minimize f(S) over sets S ⊆ X with |S| ≥ k. You may reduce from the NP-complete problem
CLIQUE: given a graph G and an integer k, determine if G contains a clique with k nodes.

(b) [3 points]. Show that part (a) implies NP-hardness for minimizing a submodular function
subject to a cardinality upper-bound: i.e., over sets S with |S| ≤ k for a given integer k. Note
that we can now also conclude that supermodular maximization is NP-hard subject to a cardinality
upperbound or cardinality lowerbound.

(c) [6 points]. We will now show that the problem is hard to approximate. In the densest k-
subgraph problem, we are given an undirected graph G and an integer k, and we must find a k-node
subgraph of G with the maximum number of edges. The densest k-subgraph problem is known
to not admit a constant approximation algorithm if we assume the exponential time hypothesis
(ETH), which is a well-believed complexity-theoretic assumption stronger than P ̸= NP . Show by
a reduction from the densest k-subgraph problem that the problem of maximizing a supermodular
function subject to a cardinality upperbound does not admit a constant approximation algorithm
assuming ETH.

2

